Семинар по теме Интегралы с параметрами

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Семинар по теме Интегралы с параметрами"

Транскрипт

1 Семинар по теме Интегралы с параметрами апреля 6 г. Бета-функция Эйлера Порой приходится иметь дело с интегралами вида: B(p, q) = t p ( t) q dt или интегралами, которые сводятся к интегралам такого вида подстановкой. Это так называемый бета-интаграл Эйлера или просто бета-функция. Этот интеграл удобно выражается через Γ(z) - гамма-функцию Эйлера, значения и свойства которой уже хорошо известны из предыдущих семинаров; это позволяет просто получать значения этого интеграла при различных значениях параметров: B(p, q) = Γ(p)Γ(q) Γ(p + q) Добавим еще одно полезное свойство гамма-функции (приводим без доказательства): Γ(z)Γ( z) = sin z Задача (интегральные представления и подстановки) Вычислим интеграл Френеля: I = cos x dx Перейдем к переменной интегрирования t = x. Получим: I = cos x cos t dx = t dt Следующий шаг нетривиален. Для взятия этого интеграла удобно воспользоваться интегральным представлением функции / t. Такие интегральные представления - часто используемый приём, позволяющий брать определённые интегралы; в данном случае в роли этого интегрального представления будет интеграл Гаусса: = t e tx dx I = dt dxe tx cos t

2 Теперь возьмем интеграл по t, обозначив подынтегральную функцию как J(x ). Тогда: J(a) = e at cos tdt = Re Тем самым, получаем следующий интеграл: e at+it dt = Re a i = a a + I = x + x dx Приведём два способа взятия этого интеграла. Правильный способ Получившийся интеграл является интегралом от дробнорациональной функцией и его можно взять стандартным методом разбиения на элементарные дроби. Он довольно громоздкий, поэтому приведём тут метод, позволяющий вычислить интеграл проще. Сделав замену x =, заметим следующее: t I = ( dt ) /t t + /t = + t dt Беря полусумму двух представлений для интеграла I, получим: I = + x + x dx Теперь можно перейти к стандарнтой переменной для интегрирования симметрических многочленов t = x ; при этом dt = ( ) + x x dx, получим: I = dt t + = arctan t = Главный способ Очень полезно научиться сводить такие интегралы к B-функции, о которой было рассказано выше. Перейдем в этом интеграле к переменной t = x = ( ) t / ( +x t dx = t ) 3/ ( ) t dt t. Имеем: I = ( ) t / t t ( t t ) 3/ ( dt ) = t t 3/ ( t) / dt = ( B, 3 ) Используя приведенные выше свойства бета- и гамма-функций, получаем: ( B, 3 ) = Γ ( ( ) Γ 3 ) = Γ() sin = I = Замечение Заметим, что этот же ответ можно было получить гораздо проще, используя трюк с комплексными переменными и комплексным интегралом Гаусса. Нужно лишь обратить внимание на тонкость, связанную с тем, что i = ±e i/, и необходимо выбрать правильный знак: I = cos x dx = Re e ix dx = Re i = Reei/ =

3 Задача (дифференцирование и интегрирование по параметру) Возьмём интеграл: I(α, β) = ln(α + x ) dx β + x Заметим, что без логарифма интеграл легко считается. Если мы продиффиренцируем интеграл по α, то логарифм заменится на дробь, а интегралы с дробями считать легче: I(α, β) α = Пусть α β, тогда верно разложение: (β + x )(α + x ) = α β α (β + x )(α + x ) dx и каждый полученый интеграл легко считается: I(α, β) α = α ( ) α β β + x dx = α + x На самом деле, при α = β, эта формула тоже верна: α (α + x ) dx = α ( ) β + x α + x dx α + x = α Теперь проинтегрируем полученное выражение по α: I(α, β) = ln(α + β) + C(β) β α ( α β β ) = α α = α (α + β)β Тут постоянная C(β) - произвольная функция, которая не зависит от α. Чтобы найти её подставим в исходный интеграл α = : ln x I (, β) = β + x dx = x = βt dx = βdt = ln t + ln β ln β dt = β( + t ) β + Последний интеграл равен нулю, это посто показать сделав замену t = e z : ln t + t dt = z + e z ez dz = z e z + e z dz = ln t + t dt Итого I(, β) = ln β C(β). Стоит заметить, что в решении мы неявно β пользовались тем, что α, β > ; но поскольку исходный интеграл очевидным образом не чувствителен к изменению их знака, то ответ в общем виде записывается как: I (α, β) = ln( α + β ) β 3

4 Задача 3 (составление дифференциальных уравнений) Вычислим интегралы Лапласа: I (a, ω) = I (a, ω) = cos(ωx) x + a dx x sin(ωx) x + a dx Обезразмерим интеграл, перейдя к переменной интегрирования x = at и введя безразмерный параметр α = ωa; для определенности далее будем считать, что α >. Получим: I (a, ω) = Возьмем производную J(α) по α: α J(α) = α cos αx x + dx a = a J(α) cos αx x + dx = x sin αx x + dx Получившийся интеграл сходится, однако производная от него уже расходится. В таком случае используем такой трюк: α J(α) = x sin αx x + dx [ x = ] sin αx dx = + x + x sin(αx) x + dx x Тут мы воспользовались табличным значением интеграла sin xdx =. Теперь x можно вычислять вторую производную, так как получающийся интеграл сходится: α J(α) = α sin(αx) x + dx x = cos(ωx) dx = J(α) x + a Мы получили замкнутое дифференциальное уравнение на функцию J(α). Это уравнение линейно и с постоянными коэффициентами, поэтому оно решается с помощью подстановки J(α) = e λα. Такая подстановка приводит к алгебраическому уравнению на λ: λ = λ = ± и, следовательно, общее решение уравнения записывается как: J(α) = C e α + C e α Константа C должна быть положена равной нулю. Это связано с тем, что исходный интеграл, очевидно, ограничен: J (α) dx x + =. Константу C можно найти из значения интеграла при α = J() =. Значит, наш интеграл записывается как: J(α) = e α Ответ был получен в предположении α >. Поскольку исходный интеграл зависит лишь от модулей параметров a и ω, то ответ в общем виде записывается как:

5 Ну и кроме того, заметим, что: I (a, ω) = a e aω I (a, ω) = ω I (a, ω) = e αω signω Задача (экспоненциальняа регуляризация) Используя экспоненциальную регуляризацию, найти сумму ряда из натуральных чисел n n= Указание Суть экспоненциальной регуляризации сводится к домножению на e εn и рассмотрению поведения функции при ε. Нам необходимо рассмотреть следующий ряд: S(ε) = n= ne εn Этот ряд можно представить как производную по ε от геометрической прогрессии: S(ε) = e εn = e ε ε ε e = e ε ε (e ε ) n= А теперь разложимся по ε, чтобы взять предел ε : ( S (ε) = + ε + ε + 6 ε3 + o(ε 3 ) = ε ( + ε + ε 6 + o(ε ) = ε ( ε ε 3 + 3ε + o(ε ) ) ) ( + ε + ε + o(ε ) = ) ) ( + ε + ε + o(ε ) = ) ) ( + ε + ε + o(ε ) = ε + o() Замечение Дзета-функция Римана при Rez > определяется как сумма ряда ζ(z) = n= n z. Используя экспоненциальную регуляризацию, мы, на самом деле, получили значение ζ( ) =. Эту функцию можно доопределить (единственным образом) и для Rez < так, чтобы полученная функция получилась аналитической (то есть имела все производные вплоть до бесконечного порядка везде, кроме некоторого набора особых точек); и значение в z = получено именно в смысле аналитического продолжения. Этот результат означает, что (в определенном смысле) сумма всех натуральных чисел равна. 5

6 Задачи для домашнего решения: Задача. При < m < вычислите интеграл: I(m) = Указание: используйте подстановку x = m Γ(m) cos x x dx m t m e xt dt Задача. Используя бета-функцию Эйлера, вычислите интегралы I (n, m) = Задача 3. Вычислите интеграл Задача. Вычислите интеграл: / I (n, m, k) = I = I = dx sin n x cos m x x n ( + x m ) k dx cos x (x + ) dx sin x dx x Задача 5. Функция Бесселя первого рода целого индекса n можно определить как интеграл: J n (z) = cos(nϕ z sin ϕ)dϕ Покажите, что она удовлетворяет так называемому уравнению Бесселя: J n(z) + ) z J n(z) + ( n J n (z) = Также выразить производную функции Бесселя через её же, но, возможно, с другими индексами n. z 6

Простейшие неопределенные интегралы

Простейшие неопределенные интегралы Простейшие неопределенные интегралы Примеры решения задач Следующие интегралы сводятся к табличным путем тождественного преобразования подынтегрального выражения. 1. dx = dx = 2x 2/3 /3 + 2x 1/2 + C. >2.

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

Операционное исчисление. Преобразование Лапласа

Операционное исчисление. Преобразование Лапласа Лекция 6 Операционное исчисление Преобразование Лапласа Образы простых функций Основные свойства преобразования Лапласа Изображение производной оригинала Операционное исчисление Преобразование Лапласа

Подробнее

1. Бета функция. определяется равенством (1)

1. Бета функция. определяется равенством (1) Лекционные наброски на тему Бета и гамма функции Содержание. 1. Бета функция 1 2. Гамма функция 5 3. Выражение бета-функции через гамма-функцию 7 4. Таблица основных формул 9 Графики гамма функции 11 Графики

Подробнее

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя.

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Линейные и нелинейные уравнения физики Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич

Подробнее

Однородные линейные дифференциальные уравнения

Однородные линейные дифференциальные уравнения 1 Семинар 6 по теме Дифференциальные уравнения Однородные линейные дифференциальные уравнения Линейными дифференциальными уравнениями назвыаются уравнения вида: a k (x) y (k) (x) = 0 Такие уравнения называются

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Тема 4. Определенные интегралы, зависящие от параметра

Тема 4. Определенные интегралы, зависящие от параметра Тема 4. Определенные интегралы, зависящие от параметра На этом занятии рассматриваются различные примеры вычисления интегралов с помощью метода дифференцирования и интегрирования по параметру, от которого

Подробнее

Лекция 22 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ (5)

Лекция 22 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ (5) Лекция ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ (5) Интегрирование некоторых иррациональных функций Квадратичные иррациональности Интеграл вида Выделение полного квадрата

Подробнее

~ 1 ~ ФКП. Производная функции комплексного переменного (ФКП), условия Коши - Римана, понятие регулярности ФКП. Изображение и вид комплексного числа.

~ 1 ~ ФКП. Производная функции комплексного переменного (ФКП), условия Коши - Римана, понятие регулярности ФКП. Изображение и вид комплексного числа. ~ ~ ФКП Производная функции комплексного переменного ФКП условия Коши - Римана понятие регулярности ФКП Изображение и вид комплексного числа Вид ФКП: где действительная функция двух переменных действительная

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

24-е занятие. Эйлеровы интегралы (функции Γ и B) Матем. анализ, прикл. матем., 3-й семестр

24-е занятие. Эйлеровы интегралы (функции Γ и B) Матем. анализ, прикл. матем., 3-й семестр 24-е занятие Эйлеровы интегралы (функции Γ и B) Матем анализ, прикл матем, 3-й семестр Определения гамма-функции и бета-функции: Γ(x) = t x 1 e t dt B(x, y) = t x 1 (1 t) y 1 dt Д 3841 Доказать, что функция

Подробнее

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Первообразная и неопределённый интеграл Основная задача дифференциального исчисления состоит в нахождении производной (или дифференциала) данной функции. Интегральное исчисление

Подробнее

Семинар по теме Метод перевала

Семинар по теме Метод перевала Семинар по теме Метод перевала апреля 16 г. Задача 1 формула Стирлинга) Найти асимптотику гамма-функции при z 1: Γz + 1) = t z e t dt Покажем сперва, чем интересна гамма-функция. Во-первых, интегрируя

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1)

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1) 8. Степенные ряды 8.. Функциональный ряд вида c n (z ) n, (8.) n= где c n числовая последовательность, R фиксированное число, а z R, называют степенным рядом с коэффициентами c n. Выполнив замену переменных

Подробнее

Операционное исчисление.

Операционное исчисление. Глава 1 Операционное исчисление. 1. Определение преобразования Лапласа. Преобразование Лапласа ставит в соответствие функции f(t) действительной переменной t функцию F () комплексной переменной = x + iy

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

Метод разделения переменных (метод Фурье)

Метод разделения переменных (метод Фурье) Метод разделения переменных (метод Фурье) Общие принципы метода разделения переменных Для простейшего уравнения с частными производными разделение переменных это поиски решений вида только от t. u (x,t

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

ПРИМЕНЕНИЕ ТЕОРИИ ИНТЕГРАЛОВ, ЗАВИСЯЩИХ ОТ ПАРАМЕТРА, К ВЫЧИСЛЕНИЮ НЕКОТОРЫХ НЕСОБСТВЕННЫХ ИНТЕГРАЛОВ. ЭЙЛЕРОВЫ ИНТЕГРАЛЫ.

ПРИМЕНЕНИЕ ТЕОРИИ ИНТЕГРАЛОВ, ЗАВИСЯЩИХ ОТ ПАРАМЕТРА, К ВЫЧИСЛЕНИЮ НЕКОТОРЫХ НЕСОБСТВЕННЫХ ИНТЕГРАЛОВ. ЭЙЛЕРОВЫ ИНТЕГРАЛЫ. Тема курса лекций: ПРИМЕНЕНИЕ ТЕОРИИ ИНТЕГРАЛОВ, ЗАВИСЯЩИХ ОТ ПАРАМЕТРА, К ВЫЧИСЛЕНИЮ НЕКОТОРЫХ НЕСОБСТВЕННЫХ ИНТЕГРАЛОВ ЭЙЛЕРОВЫ ИНТЕГРАЛЫ Лекция 8 Интеграл Эйлера-Пуассона Интеграл Лапласа Интеграл Френеля

Подробнее

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 1 Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 3.1 Линейное однородное уравнение Дифференциальное уравнение вида y (n) + a n 1 y (n 1) +... + a 1 y + a 0 y = 0, (3.1) где a

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Неопределенный интеграл. Вводная часть.

Неопределенный интеграл. Вводная часть. Неопределенный интеграл Вводная часть Определение Функция F( ) называется первообразной для данной функции f( ), если F( ) f( ), или, что то же самое, df f d Данная функция f( ) может иметь различные первообразные,

Подробнее

5. Неопределенный интеграл, методы интегрирования.

5. Неопределенный интеграл, методы интегрирования. 5. Неопределенный интеграл, методы интегрирования. Актуальность темы Неопределенный интеграл одно из важнейших понятий математики, возникшее в связи с потребностью отыскивать функции по их производным

Подробнее

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

Математический анализ

Математический анализ Математический анализ Лектор д.ф.-м.н. В.В.Чепыжов * Факультет математики ВШЭ, 2017 г. 2 семестр Лекция 15 (21 марта 2017) 1. Интеграл Фурье. Основная теорема На прошлых лекциях были установлены условия,

Подробнее

Теория функций комплексного переменного

Теория функций комплексного переменного Теория функций комплексного переменного Лектор Александр Сергеевич Романов 1. Аналитические функции комплексного переменного Комплексные числа. Тригонометрическая и показательная формы комплексного числа.

Подробнее

ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО Лектор Никита Александрович Евсеев Программа курса лекций (3-й семестр, лекции 36 ч., семинары 36 ч., экз.). Аналитические функции комплексного переменного Комплексные

Подробнее

1. Определение и основные свойства интеграла Римана. Разбиением отрезка [a, b] называется набор точек. a = x 1 < x 2 < < x n+1 = b.

1. Определение и основные свойства интеграла Римана. Разбиением отрезка [a, b] называется набор точек. a = x 1 < x 2 < < x n+1 = b. 1. Определение и основные свойства интеграла Римана Определение разбиения Разбиением отрезка [, b] называется набор точек = x 1 < x 2 < < x n+1 = b. Разбиение обозначают буквой P. Разбиение может быть

Подробнее

Разложение рациональных дробей на простейшие. Лекция 2

Разложение рациональных дробей на простейшие. Лекция 2 Разложение рациональных дробей на простейшие Лекция 1 n n1 Пусть Pn ( z) anz an 1z a0, an 0 многочлен степени n с комплексными в общем случае коэффициентами. Теорема 1. Всякий многочлен степени n можно

Подробнее

16. Равномерная сходимость последовательностей и рядов

16. Равномерная сходимость последовательностей и рядов 16. Равномерная сходимость последовательностей и рядов 16.1. Рассмотрим произвольное множество X и последовательность функций f, определенных на X. Говорят, что последовательность f сходится поточечно

Подробнее

7 1. Даны комплексные числа z1 8 8i. 1) Изобразите их на комплексной плоскости. 2) Запишите число 3) Запишите число z 2. в тригонометрической форме.

7 1. Даны комплексные числа z1 8 8i. 1) Изобразите их на комплексной плоскости. 2) Запишите число 3) Запишите число z 2. в тригонометрической форме. ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен научиться: находить тригонометрическую и показательную формы комплексного числа по

Подробнее

Задача Коши для волнового уравнения. Формула Даламбера

Задача Коши для волнового уравнения. Формула Даламбера Задача Коши для волнового уравнения. Формула Даламбера 37, 438, I, II, 385, 439, 445, 37, III, IV, 37, 446.. 37 Найти общее решение уравнения u tt a u xx..) Шаг. Находим замену переменных Способ через

Подробнее

( ) n ( ) ( ) ( ) ( x) ( ) ( ) ( ) Лекция 2. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ

( ) n ( ) ( ) ( ) ( x) ( ) ( ) ( ) Лекция 2. ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ Лекция ИНТЕГРИРОВАНИЕ РАЦИОНАЛЬНЫХ ДРОБЕЙ Рациональные дроби Интегрирование простейших рациональных дробей Разложение рациональной дроби на простейшие дроби Интегрирование рациональных дробей Рациональные

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Интегралы Определенные и Неопределенные

Интегралы Определенные и Неопределенные 1 Интегралы Определенные и Неопределенные Опр. Интеграл функции это естественный аналог суммы последовательности. Опр. Интегрирование процесс нахождения интеграла. Зам. Интегрирование это операция обратная

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

ω n =, а коэффициенты a n и

ω n =, а коэффициенты a n и Интеграл Фурье Действительная и комплексная формы записи интеграла Фурье Пусть f () непериодическая функция, определенная на всей числовой оси и удовлетворяющая условиям Дирихле на любом конечном промежутке

Подробнее

Решение типовых вариантов. контрольной работы по теме Интегралы функции одной переменной. Методические указания

Решение типовых вариантов. контрольной работы по теме Интегралы функции одной переменной. Методические указания Решение типовых вариантов контрольной работы по теме Интегралы функции одной переменной Методические указания УДК 517.91 Методические указания содержат подробные решения типовых вариантов контрольной работы

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

I. ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. есть первообразная для f x

I. ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. есть первообразная для f x или или I ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ Определение Функция F называется первообразной для f F f если () df f d () 5 f 5 так как 5 5 Пример F есть первообразная для 5 d Пример F si есть первообразная

Подробнее

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши)

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Лекция 7 Дифференциальные уравнения Дифференциальные уравнения -го порядка f (, ). Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Дифференциальным

Подробнее

Èíòåãðèðîâàíèå òðèãîíîìåòðè åñêèõ ôóíêöèé

Èíòåãðèðîâàíèå òðèãîíîìåòðè åñêèõ ôóíêöèé Èíòåãðèðîâàíèå òðèãîíîìåòðè åñêèõ ôóíêöèé Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Интегрирование тригонометрических функций с помощью различных подстановок. Универсальная тригонометрическая подстановка. Интегрирование

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

Лекция Несобственные интегралы

Лекция Несобственные интегралы Лекция..9. Несобственные интегралы Аннотация: Рассматриваются несобственные интегралы первого и второго рода. Вводится понятие главного значения несобственного интеграла. Определенный интеграл был введен

Подробнее

Кинематика точки. Задачи. - орты осей X, Y и Z) (A, B, C положительные постоянные, ex. 3. Материальная точка движется вдоль оси x по закону: x( t)

Кинематика точки. Задачи. - орты осей X, Y и Z) (A, B, C положительные постоянные, ex. 3. Материальная точка движется вдоль оси x по закону: x( t) 1 Кинематика точки Задачи (,, положительные постоянные, e, e, ez - орты осей X, Y и Z) 1 Материальная точка движется вдоль оси по закону: ( ) cos ω Найдите проекцию скорости V () Материальная точка движется

Подробнее

1 0. Первообразная и неопределенный интеграл Определение Функцию F(x) называют первообразной для функции f(x) на промежутке X,

1 0. Первообразная и неопределенный интеграл Определение Функцию F(x) называют первообразной для функции f(x) на промежутке X, Глава 4. Интеграл 1. Неопределенный интеграл 1 0. Первообразная и неопределенный интеграл Определение Функцию F(x) называют первообразной для функции f(x) на промежутке X, если x X: F'(x) = f(x). Пример

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Производная сложной и неявно заданной функции нескольких переменных Касательная плоскость и нормаль к поверхности Пусть f ( где (t (t причём функции f ( (t (t дифференцируемы Тогда

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для самостоятельной работы студентов 1 курса

Подробнее

Тема 10. Неопределенный интеграл. Основные свойства. Таблица неопределенных интегралов. Метод непосредственного интегрирования.

Тема 10. Неопределенный интеграл. Основные свойства. Таблица неопределенных интегралов. Метод непосредственного интегрирования. Тема 0 Неопределенный интеграл Основные свойства Таблица неопределенных интегралов Метод непосредственного интегрирования Неопределенный интеграл На занятии по заданной функции y f по известным формулам

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА»

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» Задача 1. Найти общее решение дифференциального уравнения с разделяющимися переменными: 1. d d d d 1 1 0.. d d d. d d d 5. 6d 6d d d 6. d d 0 7. 8. (

Подробнее

Оригиналы и их изображения

Оригиналы и их изображения Занятие 18 Оригиналы и их изображения Операционное исчисление один из методов математического анализа, который мы будем применять к решению дифференциальных уравнений и систем. Суть применения этого метода

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е.

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е. Приложение. Определение первообразной функции Определение. Дифференцируемая функция F() называется первообразной для функции f() на заданном промежутке, если для всех из этого промежутка. справедливо равенство

Подробнее

О РЕШЕНИИ ОБЩИХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С ПОМОЩЬЮ ИНТЕГРАЛОВ ОТ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ Е. Н. Михалкин

О РЕШЕНИИ ОБЩИХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С ПОМОЩЬЮ ИНТЕГРАЛОВ ОТ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ Е. Н. Михалкин Сибирский математический журнал Март апрель, 26. Том 47, 2 УДК 57.55 О РЕШЕНИИ ОБЩИХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С ПОМОЩЬЮ ИНТЕГРАЛОВ ОТ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ Е. Н. Михалкин Аннотация: Получена интегральная

Подробнее

16. Формула Тейлора (продолжение)

16. Формула Тейлора (продолжение) 6. Формула Тейлора (продолжение Докажем единственность представления из теоремы 5.7. Предложение 6.. Пусть f : (p; q R функция класса C n, и пусть a (p; q. Предположим, что f(x = c 0 + c (x a + : : : +

Подробнее

Функции Бесселя в задачах математической физики

Функции Бесселя в задачах математической физики Министерство образования и науки РФ Нижегородский государственный университет им. Н.И. Лобачевского» В.С. Гаврилов Н.А. Денисова А.В. Калинин Функции Бесселя в задачах математической физики Учебно методическое

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда u ; u числа, числовой ряд; u числа по изменению знаков членов ряда знакопостоянные знакоположительные знакопеременные знакочередующиеся k= u степенные u ; u функции, функциональный ряд u функции по классам

Подробнее

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z 1. Электростатика 1 1. Электростатика Урок 6 Разделение переменных в декартовых координатах 1.1. (Задача 1.49) Плоскость z = заряжена с плотностью σ (x, y) = σ sin (αx) sin (βy), где σ, α, β постоянные.

Подробнее

Разложение функции в ряд Тейлора

Разложение функции в ряд Тейлора 82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

9. Первообразная и неопределенный интеграл

9. Первообразная и неопределенный интеграл 9. Первообразная и неопределенный интеграл 9.. Пусть на промежутке I R задана функция f(). Функцию F () называют первообразной функции f() на промежутке I, если F () = f() для любого I, и первообразной

Подробнее

Первообразная и неопределенный интеграл

Первообразная и неопределенный интеграл Первообразная и неопределенный интеграл Основные понятия и формулы 1. Определение первообразной и неопределенного интеграла. Определение. Функция F(x) называется первообразной для функции f(x) на промежутке

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им ВС Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ ЕФ КАЛИНИЧЕНКО ЛЕКЦИИ ПО ВЫЧИСЛЕНИЮ ОПРЕДЕЛЕННЫХ

Подробнее

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия 8 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ 8 Основные понятия Линейным дифференциальным уравнением -го порядка с переменными коэффициентами называется уравнение

Подробнее

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ].

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ]. Лекция 8 Определённый интеграл Определенный интеграл Римана Пусть f ( ) некоторая функция, определенная на отрезке [, ] Произведем разбиение R отрезка [, ] на п частей: = < 1 < K < n = Выберем на каждом

Подробнее

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр -е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр Найти радиус сходимости степенного ряда, используя признак Даламбера: ( 89 ( ) n n (n!) ) p (n + )! n= Ряд Тейлора f(x)

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода

Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода Метод разделения переменных применяется для решения линейных однородных уравнений с линейными однородными граничными условиями вида α 0, β0, 0,

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

Интегралы и дифференциальные уравнения. Лекция 15

Интегралы и дифференциальные уравнения. Лекция 15 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция 15 Решение

Подробнее

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной РАЗДЕЛ 5 Интегральное исчисление функций одной переменной Материалы подготовлены преподавателями математики кафедры общеобразовательных дисциплин для системы электронного дистанционного обучения Содержание

Подробнее

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x)

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x) ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

Подробнее

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения.

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения. 4 Дифференциальные уравнения высших порядков Понижение порядка уравнения 4 Основные понятия и определения Дифференциальными уравнениями высшего порядка называют уравнения порядка выше первого В общем случае

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр

21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр -е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр Найти разложения функции в степенной ряд по степеням, вычислить радиус сходимости степенного ряда: A f()

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

называется вертикальной асимптотой графика функции f (x)

называется вертикальной асимптотой графика функции f (x) Исследование и построение графиков функций Схема исследования графика функции Найти область определения функции множество значений (по возможности точки разрывов вертикальные асимптоты Прямая 0 называется

Подробнее

Рассмотрим интегрирование простейшей рациональной дроби четвертого типа. M x p + + = + N. dt =

Рассмотрим интегрирование простейшей рациональной дроби четвертого типа. M x p + + = + N. dt = 57 Рассмотрим интегрирование простейшей рациональной дроби четвертого типа ( M N ) d ( ) p q p Сделаем замену переменной, положив d. где a p q. Тогда Интеграл M N d p p p q q a, M p N Mp q d M ( p q) p

Подробнее

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА)

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Постановка задачи. Рассматривается задача о вычислении однократного интеграла J(F ) = F (x) dx. ()

Подробнее

Решение дифференциальных уравнений с помощью преобразования Лапласа (операционный метод) 1

Решение дифференциальных уравнений с помощью преобразования Лапласа (операционный метод) 1 Решение дифференциальных уравнений с помощью преобразования Лапласа (операционный метод) Операционное исчисление один из наиболее экономичных методов интегрирования линейных дифференциальных уравнений

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Образцы решения уравнений из «Сборника типовых заданий по курсу высшей математики» Кузнецова Л.А. Авторы: Смирнов А.Н., Беловодский В.Н., кафедра компьютерных систем мониторинга,

Подробнее

Пример выполнения задач, аналогичных задачам 1-10 (КР-3). Найти неопределенные интегралы. Результаты проверить дифференцированием. 1) ; 2) ; 3).

Пример выполнения задач, аналогичных задачам 1-10 (КР-3). Найти неопределенные интегралы. Результаты проверить дифференцированием. 1) ; 2) ; 3). Контрольная работа 3 Тема 5. Неопределенные интегралы Задачи 1-10 посвящены вычислениям нетабличных интегралов различными методами с последующей проверкой дифференцированием. Используются следующие приемы

Подробнее

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ]

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ] 8 Барроу Исаак (Brrow Is) -77 английский математик, филолог, богослов. Профессор Кембриджского университета. Автор труда лекции по оптике и геометрии (9-7). Из теоремы следует, что определенный интеграл

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее