21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр"

Транскрипт

1 -е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр Найти разложения функции в степенной ряд по степеням, вычислить радиус сходимости степенного ряда: A f() = 3. A f() = ( ) /. 87 f() = arcsin. 873б f() = 4 ln + + arctg. 883 f() = ( ) ch. Теорема Абеля. Пусть R радиус сходимости степенного ряда S() сумма ряда при < R, и пусть ряд сумма равна A3 lim S(). R a n n, a n R n сходится. Тогда его С помощью теоремы Абеля найти сумму ряда Применяя почленное дифференцирование, вычислить суммы следующих рядов: 96 S() = S() = Применяя почленное интегрирование, вычислить суммы рядов: 9 S() = S() =

2 Домашнее задание Матем. анализ, прикл. матем., 3-й семестр 87 f() = ln( cos α + ). (Эта задача сложнее других.) A С помощью теоремы Абеля найти сумму ряда f() = ln( cos α + ). Применяя различные методы, найти разложения в степенной ряд следующих функций: 873а f() = ( + ) ln( + ). 873в f() = arctg д f() = arctg ln ж f() = arcsin +. Производя соответствующие действия со степенными рядами, получить разложения в степенные ряды следующих функций: 88 f() = ( + )e. 885 f() = ( + ) arctg. Применяя почленное дифференцирование, вычислить суммы следующих рядов: Указание к 9: производную ряда умножить на. Применяя почленное интегрирование, вычислить суммы рядов: Разложить в степенной ряд функции: dt sin t dt. t 4 t

3 Конспект -го занятия. Ряды Тейлора Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр Найти разложения функции в степенной ряд по степеням, вычислить радиус сходимости степенного ряда: A f() = 3. Решение. Сначала раскладываем рациональную функцию в сумму элементарных дробей: 3 ( 4)( + 3) = A 4 + B + 3. Умножая это равенство на 4 и подставляя = 4, найдём A: A = 5 7 ; умножая равенство на + 3 и подставляя = 3, найдём B: B = 9 7. Итак, f() = = 5 7 Далее используем известное разложение a = Ответ: f() = ( ) n. n+ ( 3) n+ A f() = ( ) / k= n a. n+ Решение. Вспоминаем общую формулу разложения степени бинома: ( + t) p = + n= p(p )(p )... (p n + ) n! t n. В нашем случае коэффициент при n равен ( ) n ( ) ( 3 ) (... n ) = n! (n )!!. n n! Ответ: f() = + n= 87 f() = arcsin. (n )!! n n! n.

4 Решение. Сначала дифференцируем arcsin : f () = = ( ) / = + n= (n )!! n n! Радиус сходимости ряда равен. Чтобы получить f(), подставим в полученную формулу ξ вместо и проинтегрируем по ξ от до. В правой части интегрируем степенной ряд почленно: n. f (ξ) dξ = dξ + n= (n )!! n n! ξ n dξ Левая часть равна f() f(), причём f() = arcsin =. В правой части n-й интеграл равен n+ Ответ: arcsin = + n+. n= (n )!! (n)!! (n + ) n+. 873б f() = 4 ln + + arctg. Решение. Найдём производную: f () = + + = = 4n. 4 Радиус сходимости ряда равен. Подставим ξ вместо и проинтегрируем от до : f() f() = ξ 4n dξ. Учитываем, что f() =. 4n+ Ответ: f() = 4n f() = ( ) ch. Решение. Сначала найдём разложение ch : ch = n (n)!.

5 Отсюда где f() = ( + ) n (n)! = S () + S () + S 3 (), S () = S () = S 3 () = n (n)! = + + n= n+ (n)! = n+ (n)! = k= n (n)! ; ] [ k = n + = n = k [ ] k = n + = n = k k= k= k (k 4)!. k (k )! ; Складывая, получаем ответ: Ответ: f() = 3 + ( ) ( ) k (k)! + (k )! + k. (k 4)! Теорема Абеля. Пусть R радиус сходимости степенного ряда S() сумма ряда при < R, и пусть ряд сумма равна A3 lim S(). R a n n, a n R n сходится. Тогда его С помощью теоремы Абеля найти сумму ряда Решение. Вспоминаем разложение arctg по степеням : arctg = ( ) n n+. n + Радиус сходимости равен : R =. При = получим нужный ряд: ( ) n n +.

6 Этот ряд сходится по признаку Лейбница. Значит, по теореме Абеля, ( ) n n + = lim arctg = arctg = π 4. Применяя почленное дифференцирование, вычислить суммы следующих рядов: 96 S() = Решение. Радиус сходимости равен. Дифференцируем почленно: Интегрируем: S () = =. S() = d = ln + + C. Чтобы найти C, подтавляем в обе части =. Поскольку в исходном ряде свободный член отсутствует, то S() =. Отсюда C =. Ответ: S() = ln + ( < ). 99 S() = Решение. Дифференцируем: S () = Умножаем на, чтобы показатели совпали со знаменателями: Теперь снова дифференцируем: S () = ( S ()) = = = +. Отсюда видно, что радиус сходимости равен. Интегрируем: S () = ln( ) + C.

7 Подставляя =, находим C = : Выражаем S (): S () = ln( ). S () = ln( ). Интегрируем. Отдельно найдём интеграл от второго слагаемого: [ ] ln( ) d u = ln( ) du = ln( ) = dv = d v = = Отсюда S() = ln( ) = ln( ) = ln( ) ( + ) d = ln + ln( ) + C. ln( ) + C = ( ) ln( ) + C. d ( ) = Подставляя =, в левой части получим, а правой получим +C. Отсюда C =. ( ) ln( ) Ответ: S() = + ( < ). Применяя почленное интегрирование, вычислить суммы рядов: 9 S() = Решение. С помощью Коши-Адамара легко найти радиус сходимости: R =. При < ряд можно почленно дифференцировать и интегрировать. Разделим на : S(ξ) ξ = + ξ + 3ξ +... Затем проинтегрируем от до : Итак, S(ξ) ξ dξ = (n + )ξ n dξ = S(ξ) ξ n+ = dξ = +. = +.

8 Теперь продифференцируем по. В левой части получим производную интеграла с переменным верхним пределом, равную S() : Ответ: S() = ( ) ( < ). S() = ( ). 9 S() = Решение. Разделим на : S() = Найдём отсюда первообразную F функции S() : Опять разделим на : F() = F() = Найдём отсюда первообразную G функции F() : G() = = + = +. Дифференцируя, найдём F() : F() = ( + ). Отсюда F() = ( + ) = ( + ) ( + ). Дифференцируя, найдём S() : S() = (+) + (+). 3 Ответ: S() = ( ) ( + ) 3 ( < ).

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр -е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр Найти радиус сходимости степенного ряда, используя признак Даламбера: ( 89 ( ) n n (n!) ) p (n + )! n= Ряд Тейлора f(x)

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

4. Функциональные ряды, область сходимости

4. Функциональные ряды, область сходимости 4. Функциональные ряды, область сходимости Областью сходимости функционального ряда () называется множество значений аргумента, для которых этот ряд сходится. Функция (2) называется частичной суммой ряда;

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

22-е занятие. Дифференцирование СИЗП. Равномерная сходимость НИЗП Матем. анализ, прикл. матем., 3-й семестр

22-е занятие. Дифференцирование СИЗП. Равномерная сходимость НИЗП Матем. анализ, прикл. матем., 3-й семестр 22-е занятие. Дифференцирование СИЗП. Равномерная сходимость НИЗП Матем. анализ, прикл. матем., 3-й семестр ψ(α) d f(, α) = f(ψ(α), α)ψ (α) f(ϕ(α), α)ϕ (α) + dα ϕ(α) ψ(α) ϕ(α) f α(, α). 378а Найти F (α):

Подробнее

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1)

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1) 8. Степенные ряды 8.. Функциональный ряд вида c n (z ) n, (8.) n= где c n числовая последовательность, R фиксированное число, а z R, называют степенным рядом с коэффициентами c n. Выполнив замену переменных

Подробнее

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ Билет 1 Дисциплина высшая математика Факультет нефтемеханический специальности АТ,ОБД семестр IV.

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ Билет 1 Дисциплина высшая математика Факультет нефтемеханический специальности АТ,ОБД семестр IV. Билет. Первообразная. Неопределённый интеграл и его свойства. Таблица неопределённых интегралов. Непосредственное интегрирование.. Найти неопределённые интегралы: а) + ; б) х cos. Вычислить определенный

Подробнее

Разложение функции в ряд Тейлора

Разложение функции в ряд Тейлора 82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

13-е занятие. Частное и суперпозиция степенных рядов. Ряды Лорана для рациональных функций Матем. анализ, прикл. матем.

13-е занятие. Частное и суперпозиция степенных рядов. Ряды Лорана для рациональных функций Матем. анализ, прикл. матем. стр. из 9 3-е занятие. Частное и суперпозиция степенных рядов. Ряды Лорана для рациональных функций Матем. анализ, прикл. матем., 4-й семестр Вычисление коэффициентов композиции и частного Найти первые

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

сгупс Методические указания к выполнению типового расчета «Ряды».

сгупс Методические указания к выполнению типового расчета «Ряды». сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр 9-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр Необх. усл. равномерной сходимости функц. ряда f x): f 0. A Исследовать функ. ряд на сх-ть:

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Лекция 3. Представление функций степенными рядами

Лекция 3. Представление функций степенными рядами С А Лавренченко wwwlawrecekoru Лекция Представление функций степенными рядами Введение Представление функций степенными рядами оказывается полезным при решении следующих задач: - интегрирование функций

Подробнее

15-е занятие. Ряды Лорана Матем. анализ, прикл. матем., 4-й семестр

15-е занятие. Ряды Лорана Матем. анализ, прикл. матем., 4-й семестр стр. из 0 5-е занятие. Ряды Лорана Матем. анализ, прикл. матем., 4-й семестр Разложить функции в ряды Лорана в окрестностях указанных точек возможно, в проколотых окрестностях) или в указанных кольцах.

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

1.Разложение аналитической функции в степенной ряд.

1.Разложение аналитической функции в степенной ряд. ЛЕКЦИЯ N37. Ряды аналитических функций. Разложение аналитической функции в степенной ряд. Ряд Тейлора. Ряд Лорана..Разложение аналитической функции в степенной ряд.....ряд Тейлора.... 3.Разложение аналитической

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

Неопределенный интеграл. Вводная часть.

Неопределенный интеграл. Вводная часть. Неопределенный интеграл Вводная часть Определение Функция F( ) называется первообразной для данной функции f( ), если F( ) f( ), или, что то же самое, df f d Данная функция f( ) может иметь различные первообразные,

Подробнее

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда u ; u числа, числовой ряд; u числа по изменению знаков членов ряда знакопостоянные знакоположительные знакопеременные знакочередующиеся k= u степенные u ; u функции, функциональный ряд u функции по классам

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

Тема 4. Операторный метод решения линейных дифференциальных уравнений и систем. + e pt f(t)dt. (4.1) f(t) = = lim. = lim p

Тема 4. Операторный метод решения линейных дифференциальных уравнений и систем. + e pt f(t)dt. (4.1) f(t) = = lim. = lim p 1 Тема 4. Операторный метод решения линейных дифференциальных уравнений и систем 4.1 Преобразование Лапласа Оригиналом называется любая функция f(t) действительного переменного t, удовлетворяющая следующим

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Тема: Степенные ряды.

Тема: Степенные ряды. Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

Подробнее

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Простейшие неопределенные интегралы

Простейшие неопределенные интегралы Простейшие неопределенные интегралы Примеры решения задач Следующие интегралы сводятся к табличным путем тождественного преобразования подынтегрального выражения. 1. dx = dx = 2x 2/3 /3 + 2x 1/2 + C. >2.

Подробнее

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а прикладной математики

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

k называется рядом Лорана. Здесь k, z

k называется рядом Лорана. Здесь k, z Практическое занятие 6 Ряды Тейлора и Лорана 6 Ряд Тейлора 6 Ряд Лорана 6 Ряд Тейлора Т е о р е м а ( Т е й л о р а ) Функция однозначная и аналитическая в круге R единственным образом разлагается в этом

Подробнее

Курс лекций. Министерство образования и науки Российской Федерации

Курс лекций. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Подробнее

1.8. Общие функциональные ряды

1.8. Общие функциональные ряды Лекция. Степенные ряды. Гармонический анализ; ряды и преобразование Фурье. Свойство ортогональности.8. Общие функциональные ряды.8.. Уклонение функций Ряд U + U + U называется функциональным, если его

Подробнее

7. Общие понятия. U n (x),n N, определены в области D. Выра-

7. Общие понятия. U n (x),n N, определены в области D. Выра- Глава Функциональные ряды 7 Общие понятия U (), N, определены в области D Выра- Определение 7 Пусть функции жение () U() U() U(), D U (5) называется функциональным рядом Каждому значению D соответствует

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

~ 1 ~ ФКП. Производная функции комплексного переменного (ФКП), условия Коши - Римана, понятие регулярности ФКП. Изображение и вид комплексного числа.

~ 1 ~ ФКП. Производная функции комплексного переменного (ФКП), условия Коши - Римана, понятие регулярности ФКП. Изображение и вид комплексного числа. ~ ~ ФКП Производная функции комплексного переменного ФКП условия Коши - Римана понятие регулярности ФКП Изображение и вид комплексного числа Вид ФКП: где действительная функция двух переменных действительная

Подробнее

16-е занятие. Изолированные особые точки однозначного характера (ИОТОХ) Матем. анализ, прикл. матем., 4-й семестр

16-е занятие. Изолированные особые точки однозначного характера (ИОТОХ) Матем. анализ, прикл. матем., 4-й семестр стр. из 9 6-е занятие. Изолированные особые точки однозначного характера (ИОТОХ) Матем. анализ, прикл. матем., 4-й семестр A Разложить функцию ln z + 2 z 3 в ряд Лорана в окрестности точки. Корни и кратности

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ ИНСТИТУТ

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x)

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x) Приложение Определение производной Пусть и значения аргумента, а f ) и f ) - ( ( соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Подробнее

Тема: Производная. Краткие теоретические сведения. Таблица производных. ( c) 0

Тема: Производная. Краткие теоретические сведения. Таблица производных. ( c) 0 Тема: Производная. Краткие теоретические сведения. Таблица производных. ( c) 0 (arcsin ) ( ) (arccos ) (sin ) cos (cos ) sin ( arctg ) ( tg) cos ( arcctg ) ( ctg ) sin v vln u vln u v v ( u ) ( e ) e (

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ЕРЛяликова, ЛИСпинко Несобственные

Подробнее

9. Первообразная и неопределенный интеграл

9. Первообразная и неопределенный интеграл 9. Первообразная и неопределенный интеграл 9.. Пусть на промежутке I R задана функция f(). Функцию F () называют первообразной функции f() на промежутке I, если F () = f() для любого I, и первообразной

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

Решение типовых вариантов. контрольной работы по теме Интегралы функции одной переменной. Методические указания

Решение типовых вариантов. контрольной работы по теме Интегралы функции одной переменной. Методические указания Решение типовых вариантов контрольной работы по теме Интегралы функции одной переменной Методические указания УДК 517.91 Методические указания содержат подробные решения типовых вариантов контрольной работы

Подробнее

7 1. Даны комплексные числа z1 8 8i. 1) Изобразите их на комплексной плоскости. 2) Запишите число 3) Запишите число z 2. в тригонометрической форме.

7 1. Даны комплексные числа z1 8 8i. 1) Изобразите их на комплексной плоскости. 2) Запишите число 3) Запишите число z 2. в тригонометрической форме. ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен научиться: находить тригонометрическую и показательную формы комплексного числа по

Подробнее

ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции.

ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции. ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции..окрестность бесконечно удаленной точки.....разложение Лорана в окрестности бесконечно удаленной точки.... 3.Поведение

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

Всего 66 вопросов. 1 год обучения. Модули 1 2.

Всего 66 вопросов. 1 год обучения. Модули 1 2. ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ к итоговому экзамену по дисциплине «Математический анализ» Прикладная математика На устном экзамене студент получает два теоретических вопроса и две задачи Всего 66 вопросов год

Подробнее

16. Равномерная сходимость последовательностей и рядов

16. Равномерная сходимость последовательностей и рядов 16. Равномерная сходимость последовательностей и рядов 16.1. Рассмотрим произвольное множество X и последовательность функций f, определенных на X. Говорят, что последовательность f сходится поточечно

Подробнее

24-е занятие. Эйлеровы интегралы (функции Γ и B) Матем. анализ, прикл. матем., 3-й семестр

24-е занятие. Эйлеровы интегралы (функции Γ и B) Матем. анализ, прикл. матем., 3-й семестр 24-е занятие Эйлеровы интегралы (функции Γ и B) Матем анализ, прикл матем, 3-й семестр Определения гамма-функции и бета-функции: Γ(x) = t x 1 e t dt B(x, y) = t x 1 (1 t) y 1 dt Д 3841 Доказать, что функция

Подробнее

ЧИСЛОВЫЕ И СТЕПЕННЫЕ РЯДЫ

ЧИСЛОВЫЕ И СТЕПЕННЫЕ РЯДЫ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Уральский государственный университет путей сообщения» Кафедра «Высшая и прикладная математика» И

Подробнее

Лекции «НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ» Составитель: В.П.Белкин

Лекции «НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ» Составитель: В.П.Белкин Лекции «НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ» Составитель: ВПБелкин Лекция Неопределенный интеграл Основные понятия Свойства неопределенного интеграла 3 Основная таблица первообразных 3 4 Типовые примеры 3 5 Простейшие

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Первообразная и неопределённый интеграл Основная задача дифференциального исчисления состоит в нахождении производной (или дифференциала) данной функции. Интегральное исчисление

Подробнее

М. С. Семчёнок, Е. Н. Бегун, В. А. Власьева, В. Г. Галкина Математика Конспект лекций

М. С. Семчёнок, Е. Н. Бегун, В. А. Власьева, В. Г. Галкина Математика Конспект лекций 009 М. С. Семчёнок, Е. Н. Бегун, В. А. Власьева, В. Г. Галкина Математика Конспект лекций Часть третья Конспект вёл А. Димент СПбГУКиТ, ФАВТ, гр. 7 ГЛАВА 0. ЧИСЛОВЫЕ РЯДЫ 0.. ПОНЯТИЕ О СХОДИМОСТИ ЧИСЛОВЫХ

Подробнее

Chair of Math. Analysis, SPb. State University. A.V.Potepun, 2011

Chair of Math. Analysis, SPb. State University. A.V.Potepun, 2011 Chir of Mth. Anlysis, SPb. Stte University. A.V.Poteun, Исследование сходимости несобственных интегралов Методические указания для решения задач А. В. Потепун Как известно (см. [], глава III, 7), если

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА МАТЕМАТИКА МАТЕМАТИЧЕСКИЙ АНАЛИЗ РЯДЫ Методические рекомендации

Подробнее

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу 1. Дайте определение конечного предела последовательности. Приведите пример последовательности,

Подробнее

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ]

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ] 8 Барроу Исаак (Brrow Is) -77 английский математик, филолог, богослов. Профессор Кембриджского университета. Автор труда лекции по оптике и геометрии (9-7). Из теоремы следует, что определенный интеграл

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

РЯДЫ. 1. Числовые ряды

РЯДЫ. 1. Числовые ряды РЯДЫ. Числовые ряды. Основные определения Пусть дана бесконечная последовательность чисел Выражение (бесконечная сумма) a, a 2,..., a n,... a i = a + a 2 + + a n +... () i= называется числовым рядом. Числа

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Интегрирование простейших рациональных дробей. q R, называются простейшими рациональными дробями I, II, III и IV типов.

Интегрирование простейших рациональных дробей. q R, называются простейшими рациональными дробями I, II, III и IV типов. Правильные рациональные дроби вида где Интегрирование простейших рациональных дробей. A a I A, k a kn, k II M N, p q0 pq III M N, p q0, k pq kn, k IV A, M, N, a, p, q R, называются простейшими рациональными

Подробнее

Лекция 1. Функциональные ряды

Лекция 1. Функциональные ряды С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Подробнее

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА. КАЛЕНДАРНЫЙ ПЛАН Дисциплина «Интегральное исчисление и ряды»

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА. КАЛЕНДАРНЫЙ ПЛАН Дисциплина «Интегральное исчисление и ряды» Факультет геологии, геофизики и геохимии РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА КАЛЕНДАРНЫЙ ПЛАН Дисциплина «Интегральное исчисление и ряды» УЧЕБНЫЙ ПЛАН Всего часов 60 Весенний

Подробнее

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости).

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости). «Ряды» Тесты для самопроверки Необходимый признак сходимости ряда Теорема необходимый признак сходимости Если ряд сходится то lim + Следствие достаточное условие расходимости ряда Если lim то ряд расходится

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

Математический анализ Методические рекомендации для студентов II курса математического факультета, 4 семестр

Математический анализ Методические рекомендации для студентов II курса математического факультета, 4 семестр Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Уральский государственный педагогический университет» Математический факультет Кафедра

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0 Ряды Лорана Более общим типом степенных рядов являются ряды, содержащие как положительные, так и отрицательные степени z z 0. Как и ряды Тейлора, они играют важную роль в теории аналитических функций.

Подробнее

Первообразная и неопределенный интеграл

Первообразная и неопределенный интеграл Первообразная и неопределенный интеграл Основные понятия и формулы 1. Определение первообразной и неопределенного интеграла. Определение. Функция F(x) называется первообразной для функции f(x) на промежутке

Подробнее

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА.

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра инженерной математики И В Прусова Н А Кондратьева Н К Прихач ВЫСШАЯ МАТЕМАТИКА РЯДЫ, ТЕОРИЯ ФУНКЦИЙ

Подробнее

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ С П ПРЕОБРАЖЕНСКИЙ, СР ТИХОМИРОВ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ 987 ОГЛАВЛЕНИЕ Предисловие Формулировка задания 3 Варианты задания 3 Пример выполнения задания и комментарии

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

ПРОГРАММА И ЗАДАНИЯ. по дисциплине: комплексного переменного по направлению подготовки: факультеты: для всех факультетов кафедра: курс:

ПРОГРАММА И ЗАДАНИЯ. по дисциплине: комплексного переменного по направлению подготовки: факультеты: для всех факультетов кафедра: курс: УТВЕРЖДАЮ Проректор по учебной работе Ю.А. Самарский 10 июня 2010 г. ПРОГРАММА И ЗАДАНИЯ Теория функций по дисциплине: комплексного переменного по направлению подготовки: 010600 факультеты: для всех факультетов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ

Подробнее

Глава 6. Неопределенный интеграл

Глава 6. Неопределенный интеграл Глава Неопределенный интеграл Непосредственное интегрирование Функцию F() называют первообразной для функции f(), если выполняется равенство F'() f() Совокупность всех первообразных данной функции f()

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

Экзаменационный билет 2 Кафедра высшей математики

Экзаменационный билет 2 Кафедра высшей математики Экзаменационный билет Факультет: ПО и ВП, гр.04, 07 и 7.Однородные дифференциальные уравнения первого порядка.. Признак Лейбница. 3 Вычислить интеграл: dx 0 x 6x + Экзаменационный билет Факультет: : ЭМФ.

Подробнее

ПРОГРАММА И ЗАДАНИЯ. Многомерный анализ, интегралы и ряды «Прикладные математика и физика» базовая часть 6 зач. ед.

ПРОГРАММА И ЗАДАНИЯ. Многомерный анализ, интегралы и ряды «Прикладные математика и физика» базовая часть 6 зач. ед. по дисциплине: по направлению подготовки факультеты: кафедра: курс: семестр: 2 Трудоёмкость: лекции: УТВЕРЖДАЮ Проректор по учебной работе и экономическому развитию 29 января 2016 г. ПРОГРАММА И ЗАДАНИЯ

Подробнее

Рассмотрим интегрирование простейшей рациональной дроби четвертого типа. M x p + + = + N. dt =

Рассмотрим интегрирование простейшей рациональной дроби четвертого типа. M x p + + = + N. dt = 57 Рассмотрим интегрирование простейшей рациональной дроби четвертого типа ( M N ) d ( ) p q p Сделаем замену переменной, положив d. где a p q. Тогда Интеграл M N d p p p q q a, M p N Mp q d M ( p q) p

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

. Раз- 0 0 x 0 называется приращением функции в точке x 0. в точке x 0. Формулы дифференцирования основных элементарных функций. log a. 4.

. Раз- 0 0 x 0 называется приращением функции в точке x 0. в точке x 0. Формулы дифференцирования основных элементарных функций. log a. 4. ПОНЯТИЕ ПРОИЗВОДНОЙ Раз- 0 0 0 называется приращением функции в точке 0 f ( 0 ) Если существует конечный предел lim f ( 0 ), то он называется производной функции f ( ) в точке 0 0 Отыскание производной

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ИНТЕГРАЛЫ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ИНТЕГРАЛЫ Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный университет имени Франциска Скорины» Ж Н КУЛЬБАКОВА МАТЕМАТИЧЕСКИЙ АНАЛИЗ: ИНТЕГРАЛЫ Практическое пособие

Подробнее

РЯДЫ. Учебное пособие

РЯДЫ. Учебное пособие РЯДЫ Учебное пособие Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б Н Ельцина Ряды Учебное пособие Рекомендовано методическим

Подробнее