«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости).

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости)."

Транскрипт

1 «Ряды» Тесты для самопроверки Необходимый признак сходимости ряда Теорема необходимый признак сходимости Если ряд сходится то lim + Следствие достаточное условие расходимости ряда Если lim то ряд расходится + Важно! Если lim то вывода о сходимости или расходимости ряда сделать + нельзя Задание Среди следующих рядов si 7 6 rcsi найдите те для которых справедливы утверждения: а lim б lim + + в ряд сходится г ряд расходится Правильные ответы: ряда 6 lim + e + сходится или расходится неизвестно расходится расходится неизвестно неизвестно расходится

2 Признаки сравнения Теорема признак сравнения Пусть и b два знакоположительных ряда таких что b Тогда если ряд b сходится то сходится и ряд ряд расхо- дится то расходится и ряд b Важно! При решении использовать: а ряд Дирихле α который сходится если α > и расходится если α б геометрическую прогрессию рядом если < q и расходящимся рядом если q q которая является сходящимся Задание Найти верные оценки для : l + si + cos Варианты ответов < > < < > > + + l > < > < < > + > <

3 Правильные ответы номера: Задание Используя признак сравнения среди рядов приведенных в задании найти сходящиеся и расходящиеся Правильные ответы: сходится расходится Теорема предельный признак сравнения Пусть и b два знакоположительных ряда Если существует конечный отличный от предел lim A то ряды сходятся или расходятся + b одновременно Задание Используя предельный признак сравнения исследовать на сходимость ряды с общими членами : si Указание: Использовать для сравнения подходящий ряд Дирихле Правильные ответы: С каким рядом b сравнили b b b b lim Сходится или расходится A + b A сходится A расходится A расходится A сходится

4 Теорема признак сравнения в эквивалентной форме Пусть ряд с положительными членами и ~ + α Тогда при α > ряд сходится а при α ряд расходится Важно! При решении нужно использовать таблицу эквивалентных функций: siα ~ α l + α ~ α α tg α ~ α ~ α l rcsiα ~ α e α ~ α rctg α ~ α если α - бесконечно малая функция А также тот факт что ~ + A для Задание Используя признак сравнения в эквивалентной форме найти A ~ и сделать вывод о сходимости следующих рядов: + α + + e l + si rctg + rcsi + + ~ сходится ~ сходится ~ сходится ~ расходится ~ сходится 6 ~ расходится 7 ~ расходится 8 ~ сходится Правильные ответы номера: 6 8 7

5 Признак Даламбера Теорема признак Даламбера Пусть ряд с положительными членами и существует + lim Тогда ряд сходится при < и расходится при > + Важно! Если то вывода о сходимости ряда сделать нельзя Задание 6 Найти + если ! ! Варианты ответов ! ! ! ! ! ! Правильные ответы номера:

6 Задание 7 Исследовать сходимость рядов из задания 6 вычисляя + lim и применяя признак Даламбера сходится 7 + расходится 8 7 сходится 7 расходится 7 сходится 76 вывод сделать нельзя 77 e расходится 78 e сходится Правильные ответы номера: Радикальный признак Коши Теорема признак Коши Пусть ряд с положительными членами и существует lim Тогда ряд сходится при < и расходится при > + Важно! Если то вывода о сходимости ряда сделать нельзя Важно! lim и lim + b + + Задание 8 Вычислить lim и используя признак Коши исследовать сходимость следующих рядов: rctg e 8 сходится 8 расходится e 8 сходится 8 сходится 8 сходится 86 расходится 87 сходится

7 Правильные ответы номера: Интегральный признак Коши Теорема интегральный признак Коши Если члены знакоположительного ряда могут быть представлены как числовые значения некоторой монотонно-убывающей на [ + функции так что то: + если d сходится то сходится и ряд + если d расходится то расходится и ряд Задание 9 Применить интегральный признак для исследования сходимости рядов: l A Указать вид первообразной F для и lim d B A + Варианты ответов F + B + расходится F rctg B сходится F l B l сходится F B l l сходится Правильные ответы номера:

8 6 Знакочередующие ряды Признак Лейбница Знакопеременные ряды Теорема признак Лейбница Знакочередующийся ряд сходится если: последовательность абсолютных величин членов ряда монотонно убывает те > > > > общий член ряда стремится к нулю: lim + При этом сумма S ряда удовлетворяет неравенству: < S < k Важно! Если S S k то погрешность при этом меньше k чем + Если члены ряда принимают положительные и отрицательные значения то он называется знакопеременным Определение Знакопеременный ряд называется абсолютно схо- дящимся если сходится ряд составленный из модулей его членов и условно сходящимся если сам он сходится а ряд составленный из модулей его членов расходится Важно! Для исследования абсолютной сходимости к рядам можно применять все признаки сходимости знакоположительных рядов Важно! Признак Лейбница - это признак условной сходимости рядов Задание Даны ряды: si + rctg Выберите из них те которые удовлетворяют условиям: а знакочередующиеся l + 6 cos + + +!

9 б знакопеременные в знакоположительные Правильные ответы номера: а б в Задание Для знакочередующихся рядов из задания проверить выполнены ли условия признака Лейбница Правильные ответы: да да 7 нет Задание Из знакочередующихся и знакопеременных рядов задания найти: а абсолютно сходящиеся б условно сходящиеся в расходящиеся Правильные ответы: а абсолютно сходятся: 6 б условно сходятся: в расходятся: 7 8 Задание Вычислить сумму S ряда + с точностью: Сколько членов ряда при этом надо взять? S S S 9 Правильные ответы номера: 7 Степенные ряды Степенным рядом называется ряд вида или вида где - постоянное число

10 Теорема Абеля Если степенной ряд сходится при b то он абсолютно сходится при всех х : < b Если ряд расходится при d то он расходится при всех х : > d Из теоремы Абеля вытекает что степенной ряд сходится в интервале -R R и расходится вне этого интервала Число R называется радиусом сходимости При R ряд сходится в единственной точке х при R ряд сходится при R На концах интервала сходимости те при ± R вопрос о сходимости решается для каждого ряда отдельно Для ряда интервал сходимости имеет вид: R + R Если R то ряд сходится в точке Формулы для нахождения радиуса сходимости имеют вид: R lim R lim Задание Даны степенные ряды: + +! 6 +! Найти: а радиус сходимости б интервал сходимости в область сходимости а радиус сходимости: R R R R R 6 R б интервал сходимости: точка в область сходимости: [ [ ] [ [ [ ] 9 точка Правильные ответы номера: 6 а 6 6 б 7 6 в 8 9 7

11 8 Применение степенных рядов Запишите разложения в ряд Тейлора некоторых элементарных функций: e α si cos + l + rctg rcsi Задание Зная разложение в степенной ряд элементарных функций разложить в ряд Маклорена следующие функции: e si cos l !!!! 6! + + l Правильные ответы номера: Задание 6 Найти разложение в ряд первообразных F функций из задания проинтегрировав соответствующие степенные ряды их в пределах от до х 6 F l F F + 7!! 7 6 F +! 7! Правильные ответы номера: Для того чтобы найти сумму ряда с заданной степенью точности см задание

12 9 Ряды Фурье Пусть периодическая функция с периодом T Тогда ее ряд Фурье имеет вид + cos + b si cos d b si d Теорема Дирихле Пусть - периодическая функция на отрезке [ ] удовлетворяет условиям: кусочно-непрерывна те непрерывна или имеет конечное число точек разрыва рода кусочно-монотонна те монотонна на всем отрезке или этот отрезок можно разбить на конечное число интервалов так что на каждом из них функция монотонна Тогда ряд Фурье функции сходится на этом отрезке и при этом: В точках непрерывности функции сумма ряда S совпадает с самой функцией: S В каждой точке разрыва функции сумма ряда равна + + S те равна среднему арифметическому пределов функции справа и слева В точках ± сумма ряда равна: + + S S Вспомните как выглядят ряды Фурье для четных и нечетных функций Задание 7 Запишите формулы с помощью которых вычисляются коэффициенты b ряда Фурье функции если: 7 - периодическая функция заданная на [ ] 7 - периодическая функция заданная на [ ] 7 задана на [ ] 7 задана на [ ]

13 7 четная функция заданная на ] [ 76 нечетная функция заданная на ] [ si d b si cos d b d d si cos d b d d cos b d d si cos d b d d cos si 6 d b d d Правильные ответы номера:

14 [] Задание 8 Для функции найдите: ] 8 разложение в ряд Фурье 8 разложение в ряд Фурье по синусам 8 разложение в ряд Фурье по косинусам si cos si cos si Правильные ответы номера: Задание 9 Изобразите график суммы S ряда Фурье в каждом из случаев задания 8 и найдите значения S в точках S S S S S S S S S S S S Правильные ответы номера: 9 9 9

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

3. Ряды Числовые ряды

3. Ряды Числовые ряды . Ряды Числовые ряды Определение. Числовым рядом называется выражение вида u u u... u..., где числа u, u, u,... называются членами ряда u называется общим членом ряда. Определение. -ой частичной суммой

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» НВ Комиссарова МАТЕМАТИКА Часть 6 РЯДЫ Методические указания для студентов -го и -го курсов

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

Министерство образования Республики Беларусь. Учреждение образования «Полоцкий государственный университет»

Министерство образования Республики Беларусь. Учреждение образования «Полоцкий государственный университет» Министерство образования Республики Беларусь Учреждение образования «Полоцкий государственный университет» МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО РАЗДЕЛУ «РЯДЫ» ДЛЯ СТУДЕНТОВ ЗАОЧНОЙ

Подробнее

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а прикладной математики

Подробнее

Р.Б. КАРАСЕВА Р Я Д Ы

Р.Б. КАРАСЕВА Р Я Д Ы РБ КАРАСЕВА Р Я Д Ы Омск Министерство образования и науки РФ ГОУ ВПО «Сибирская государственная автомобильно-дорожная академия (СибАДИ)» РБКарасева Р Я Д Ы Учебное пособие Омск СибАДИ УДК ББК К Рецензенты:

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ВН Алексеев, ДА Приказчиков, ВВ Ридель РЯДЫ Утверждено редакционно-издательским советом РОАТ в качестве учебного пособия РОАТ Москва 9 5 УДК 575(75)

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Демина ЕЛ, Демин СЕ РЯДЫ г Нижний Тагил 00 Предисловие В настоящем

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК О. В. Исакова Л. А. Сайкова М.Д. Улымжиев УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ

Подробнее

Всего 66 вопросов. 1 год обучения. Модули 1 2.

Всего 66 вопросов. 1 год обучения. Модули 1 2. ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ к итоговому экзамену по дисциплине «Математический анализ» Прикладная математика На устном экзамене студент получает два теоретических вопроса и две задачи Всего 66 вопросов год

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

53 Тел.: (473)

53 Тел.: (473) Данилова ОЮ Синегубов СВ МАТЕМАТИКА РЯДЫ Учебное пособие Издано в авторской редакции по решению методического совета института Воронежский институт МВД России Все права на размножение и распространение

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

{тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды

{тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды {тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды разложение по синусам и косинусам четные и нечетные продолжения}

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени

Подробнее

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда u ; u числа, числовой ряд; u числа по изменению знаков членов ряда знакопостоянные знакоположительные знакопеременные знакочередующиеся k= u степенные u ; u функции, функциональный ряд u функции по классам

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр 9-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр Необх. усл. равномерной сходимости функц. ряда f x): f 0. A Исследовать функ. ряд на сх-ть:

Подробнее

Глава III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ 3.1. Двойные интегралы

Глава III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ 3.1. Двойные интегралы Глава III ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ Двойные интегралы ЛИТЕРАТУРА: [], гл; [], глii; [9], гл XII, 6 Для решения задач по этой теме необходимо,

Подробнее

7. Общие понятия. U n (x),n N, определены в области D. Выра-

7. Общие понятия. U n (x),n N, определены в области D. Выра- Глава Функциональные ряды 7 Общие понятия U (), N, определены в области D Выра- Определение 7 Пусть функции жение () U() U() U(), D U (5) называется функциональным рядом Каждому значению D соответствует

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ О В Афонасенков Т А Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ И ИНТЕГРАЛ ФУРЬЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

16. Равномерная сходимость последовательностей и рядов

16. Равномерная сходимость последовательностей и рядов 16. Равномерная сходимость последовательностей и рядов 16.1. Рассмотрим произвольное множество X и последовательность функций f, определенных на X. Говорят, что последовательность f сходится поточечно

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Математический анализ Конспект лекций

Математический анализ Конспект лекций Министерство образования и науки РФ ФГБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Математический анализ Конспект лекций для направления

Подробнее

Теория рядов 1. Теория рядов

Теория рядов 1. Теория рядов Теория рядов 1 Теория рядов ОСНОВНЫЕ ПОНЯТИЯ Решение задачи представленной в математических терминах например в виде комбинации различных функций их производных и интегралов нужно уметь довести до числа

Подробнее

Т. А. Матвеева, В. Б. Светличная, Н. Н. Короткова ЧИСЛОВЫЕ РЯДЫ

Т. А. Матвеева, В. Б. Светличная, Н. Н. Короткова ЧИСЛОВЫЕ РЯДЫ Т А Матвеева, В Б Светличная, Н Н Короткова ЧИСЛОВЫЕ РЯДЫ Волгоград 00 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

1 Степенные ряды. Радиус сходимости и интервал

1 Степенные ряды. Радиус сходимости и интервал В.В. Жук, А.М. Камачкин 1 Степенные ряды. Радиус сходимости и интервал сходимости. Характер сходимости. Интегрирование и дифференцирование. 1.1 Радиус сходимости и интервал сходимости. Функциональный ряд

Подробнее

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А.

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А. РЯДЫ ФУРЬЕ Автор-составитель: доцент каф ВМ Цапаева СА Великий Новгород ПОНЯТИЕ И СВОЙСТВА ГАРМОНИК Определение Гармониками называются комплекснозначные функции вида iω ( ) e, где действительная переменная,

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Государственное образовательное учреждение высшего профессионального образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики

Подробнее

П Р О Г Р А М М А ( С О Д Е Р Ж А Н И Е ) ( В О П Р О С Ы ) Э К З А М Е Н А

П Р О Г Р А М М А ( С О Д Е Р Ж А Н И Е ) ( В О П Р О С Ы ) Э К З А М Е Н А П Р О Г Р А М М А ( С О Д Е Р Ж А Н И Е ) ( В О П Р О С Ы ) Э К З А М Е Н А П О В Ы С Ш Е Й М А Т Е М А Т И К Е З А 4 С Е М Е С Т Р Д Л Я С Т У Д Е Н Т О В Г Ф 2 1-4, 7-8. Май 2011 г. Лектор Лисеев И.А.

Подробнее

Тематика контрольных (самостоятельных) работ

Тематика контрольных (самостоятельных) работ Фонды Фонды оценочных средств по дисциплине Б.2.1 «Математический анализ» для проведения текущего контроля успеваемости и промежуточной аттестации студентов по направлению 080100.62 «Экономика» Тематика

Подробнее

ГЛОССАРИЙ МИНОБРНАУКИ РОССИИ. Методические указания для студентов I и II курса всех специальностей. Часть 2

ГЛОССАРИЙ МИНОБРНАУКИ РОССИИ. Методические указания для студентов I и II курса всех специальностей. Часть 2 МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) ГЛОССАРИЙ Методические

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Витебский государственный технологический университет» ВЫСШАЯ МАТЕМАТИКА Числовые и функциональные ряды Случайные события в теории вероятностей

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ ВОЕННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР ВВС «ВОЕННО-ВОЗДУШНАЯ АКАДЕМИЯ имени профессора Н. Е. ЖУКОВСКОГО и Ю. А. ГАГАРИНА» Н. Г. АФЕНДИКОВА, И. Н. ОМЕЛЬЧЕНКО, Г. В. РЫЖАКОВ, А. Ф. САЛИМОВА МАТЕМАТИЧЕСКИЙ АНАЛИЗ ПРИМЕРЫ

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

МАТЕМАТИКА ЧИСЛОВЫЕ И СТЕПЕННЫЕ РЯДЫ

МАТЕМАТИКА ЧИСЛОВЫЕ И СТЕПЕННЫЕ РЯДЫ ООО «Резольвента», wwwresolvetaru, resolveta@listru, (495) 59-8- Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу ЧИСЛОВЫЕ

Подробнее

Рецензенты Канд. ф.-м. наук, доцент.

Рецензенты Канд. ф.-м. наук, доцент. Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

Математический анализ (v2.0)

Математический анализ (v2.0) Математический анализ (v.) 1 Числовые ряды. 1.1 Понятие числового ряда. Сходимость числового ряда. Определение. Рассмотрим числовую последовательность {a n } и образуем выражение вида: a 1 + a +... + a

Подробнее

n p. p параметр. (При p = 1 получается простой гармонический ряд.)

n p. p параметр. (При p = 1 получается простой гармонический ряд.) Лектор Лисеев И.А. А Ф -, + Ф П К - О с е н ь 0 0 4 г о да. Весна 006 (Г Ф -, 4 Р а з д е л РЯДЫ ( С в о д к а р е з у л ь т а т о в Н ач ин аем Понятие ряда. Общий член ряда. Частичная сумма ряда. Сумма

Подробнее

Вопросы для экзамена 1-й курс (1-й семестр)

Вопросы для экзамена 1-й курс (1-й семестр) Вопросы для экзамена 1-й курс (1-й семестр) 1. Определения основных операций над множествами. 2. Законы дистрибутивности для операций над множествами. 3. Произведение множеств, простейшие свойства произведений

Подробнее

Математический анализ

Математический анализ Математический анализ Определённый интеграл Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики Томского политехнического университета. Национальный

Подробнее

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ НОВОСИБИРСК 200 2 МИНОБРНАУКИ РОССИИ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Е.М. Рудой МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Подробнее

УДК 51(075.8) ББК 22.1.я7

УДК 51(075.8) ББК 22.1.я7 УДК 5(758) ББК я7 Рецензенты: кандидат физико-математических наук доцент кафедры информатики и прикладной математики ТвГТУ Пиджакова ЛМ; кандидат физико-математических наук доцент кафедры математических

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Учреждение образования «Витебский государственный технологический университет»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ. Учреждение образования «Витебский государственный технологический университет» МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Витебский государственный технологический университет» ВЫСШАЯ МАТЕМАТИКА Числовые и функциональные ряды Случайные события в теории вероятностей

Подробнее

ТЕОРИЯ РЯДОВ. ОСНОВНЫЕ ПОНЯТИЯ В ИХ ИСТОРИЧЕСКОМ РАЗВИТИИ

ТЕОРИЯ РЯДОВ. ОСНОВНЫЕ ПОНЯТИЯ В ИХ ИСТОРИЧЕСКОМ РАЗВИТИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования "Оренбургский государственный университет" Кафедра математического анализа

Подробнее

РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 7 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ РЯЗАНСКАЯ ГОСУДАРСТВЕННАЯ РАДИОТЕХНИЧЕСКАЯ АКАДЕМИЯ РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ Методические указания и контрольные задания Рязань 5 УДК

Подробнее

Лекция 2. Степенные ряды

Лекция 2. Степенные ряды С А Лавренченко wwwlwreekoru Лекция Степенные ряды Понятие степенного ряда Степенной ряд можно рассматривать как многочлен с бесконечным числом членов Определение (степенного ряда) Степенным рядом называется

Подробнее

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1)

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1) 8. Степенные ряды 8.. Функциональный ряд вида c n (z ) n, (8.) n= где c n числовая последовательность, R фиксированное число, а z R, называют степенным рядом с коэффициентами c n. Выполнив замену переменных

Подробнее

Методические указания

Методические указания Московский государственный технический университет имени Н. Э. Баумана Методические указания В.Я. Томашпольский, М.Н. Шевченко, И.О. Янов ЧИСЛОВЫЕ РЯДЫ Издательство МГТУ им. Н. Э. Баумана Московский государственный

Подробнее

Методические материалы для промежуточной аттестации Вопросы для подготовки к экзамену по дисциплине «Математический анализ» 1. Понятие функции.

Методические материалы для промежуточной аттестации Вопросы для подготовки к экзамену по дисциплине «Математический анализ» 1. Понятие функции. Методические материалы для промежуточной аттестации Вопросы для подготовки к экзамену по дисциплине «Математический анализ» 1. Понятие функции. Способы задания функций. Область определения. Четные и нечетные,

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

Тема: Несобственные интегралы

Тема: Несобственные интегралы Математический анализ Раздел: Определенный интеграл Тема: Несобственные интегралы Лектор Рожкова С.В. 23 г. 5. Несобственные интегралы Для существования необходимы условия: [;] конечен, 2 f ограничена

Подробнее

2. Сформулировать и доказать теоремы о почленном дифференцировании и почленном интегрировании

2. Сформулировать и доказать теоремы о почленном дифференцировании и почленном интегрировании Билет 1 1. Дать определение и вывести свойства двойного интеграла. Геометрический смысл двойного интеграла. Формулировка теорема существование. Билет 2 1. Вычисление двойного интеграла в декартовых координатах.

Подробнее

для студентов дневной формы обучения специальности «Автоматизация технологических процессов и производств» Составитель: доц. Никонова Т.В.

для студентов дневной формы обучения специальности «Автоматизация технологических процессов и производств» Составитель: доц. Никонова Т.В. Практические занятия по курсу высшей математики (III семестр) на основе учебного пособия «Сборник индивидуальных заданий по высшей математике», том, под ред Рябушко АП для студентов дневной формы обучения

Подробнее

Экзаменационный билет 2 Кафедра высшей математики

Экзаменационный билет 2 Кафедра высшей математики Экзаменационный билет Факультет: ПО и ВП, гр.04, 07 и 7.Однородные дифференциальные уравнения первого порядка.. Признак Лейбница. 3 Вычислить интеграл: dx 0 x 6x + Экзаменационный билет Факультет: : ЭМФ.

Подробнее

Фонд оценочных средств по теории функций комплексного переменного

Фонд оценочных средств по теории функций комплексного переменного Вопросы к экзамену Вопросы для проверки уровня обучаемости «ЗНАТЬ» Основные понятия теории рядов Критерий Коши сходимости числового ряда Необходимый признак сходимости числовых рядов Достаточные признаки

Подробнее

Математика для направления торговое дело

Математика для направления торговое дело Математика для направления 8..6 торговое дело Контрольные вопросы по курсу Математика семестр. п мерные векторы. п мерное векторное пространство.. Матрицы. Линейные операции над матрицами. Умножение матриц..

Подробнее

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

Подробнее

Несобственные интегралы

Несобственные интегралы 7 Занятие Несобственные интегралы. Несобственные интегралы первого и второго рода Понятие определенного интеграла f() от ограниченной функции по конечному отрезку [; b] распространяют на случаи, когда

Подробнее

12. Числовые ряды. 12.1. Пусть дана числовая последовательность x n. Если эту последовательность

12. Числовые ряды. 12.1. Пусть дана числовая последовательность x n. Если эту последовательность . Числовые ряды.. Пусть дана числовая последовательность x. Если эту последовательность рассматривают с точки зрения нахождения «суммы» всех ее членов, то говорят, что рассматривают числовой ряд x, а члены

Подробнее

5. ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА (РЯДЫ И ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ)

5. ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА (РЯДЫ И ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ) 5 ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА РЯДЫ И ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 5 Программа курса «Ряды и обыкновенные дифференциальные уравнения» Аннотация: Изучаются числовые и степенные ряды а также

Подробнее

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ

СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ Методические указания для подготовки дипломированных специалистов по направлению 6547

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

} сходятся и, начиная с некоторого номера выполняется неравенство x y. Тогда lim xn. lim yn

} сходятся и, начиная с некоторого номера выполняется неравенство x y. Тогда lim xn. lim yn ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 6 Предел числовой последовательности СОДЕРЖАНИЕ: Предельный переход в неравенствах Подпоследовательности Фундаментальные последовательности

Подробнее

Разложение функции в ряд Тейлора

Разложение функции в ряд Тейлора 82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр,

Вопросы и задачи к экзамену по математическому анализу I семестр, Вопросы и задачи к экзамену по математическому анализу I семестр, - Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Подробнее

Chair of Math. Analysis, SPb. State University. A.V.Potepun, 2011

Chair of Math. Analysis, SPb. State University. A.V.Potepun, 2011 Chir of Mth. Anlysis, SPb. Stte University. A.V.Poteun, Исследование сходимости несобственных интегралов Методические указания для решения задач А. В. Потепун Как известно (см. [], глава III, 7), если

Подробнее

4. Понятие числового ряда. Критерий Коши сходимости числового ряда.

4. Понятие числового ряда. Критерий Коши сходимости числового ряда. 4. Понятие числового ряда. Критерий Коши сходимости числового ряда. Под словом "ряд"в математическом анализе понимают сумму бесконечного числа слагаемых. Рассмотрим произвольную числовую последовательность

Подробнее

Функциональные и степенные ряды

Функциональные и степенные ряды Глава 4. Функциональные и степенные ряды 4.1. Занятие 1 4.1.1. Функциональные ряды. Область сходимости ОПРЕДЕЛЕНИЕ 4.1.1. Пусть u (x) функции, определенные в некоторой области D при N. Тогда ряд u (x)

Подробнее

Московский Государственный Университет им. М.В.Ломоносова Химический факультет.

Московский Государственный Университет им. М.В.Ломоносова Химический факультет. Московский Государственный Университет им МВЛомоносова Химический факультет Пособие для подготовки к экзамену по математическому анализу для студентов общего потока Третий семестр Числовые ряды Дифференциальные

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. Программа и контрольные работы 5-7 по курсу. «Высшая математика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. Программа и контрольные работы 5-7 по курсу. «Высшая математика» Министерство образования и науки Российской Федерации Московский государственный университет геодезии и картографии Факультет дистанционных форм обучения МЕТОДИЧЕСКИЕ УКАЗАНИЯ Программа и контрольные работы

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция. Определение ряда, свойства, критерий Коши сходимости ряда. Сравнение положительных рядов. Достаточные признаки сходимости Даламбера, Коши, Коши-Адамара, Раабе,

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и

Подробнее

Методические рекомендации по дисциплине «Математика» для студентов заочного и дистанционного обучения экономических и инженерных специальностей

Методические рекомендации по дисциплине «Математика» для студентов заочного и дистанционного обучения экономических и инженерных специальностей Федеральное агентство по сельскому озяйству Федеральное государственное образовательное учреждение высшего профессионального образования «Мичуринский государственный аграрный университет» Кафедра математики

Подробнее

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА

ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА Методические указания и варианты заданий к контрольной

Подробнее

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр -е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр Найти радиус сходимости степенного ряда, используя признак Даламбера: ( 89 ( ) n n (n!) ) p (n + )! n= Ряд Тейлора f(x)

Подробнее

Курс лекций. Министерство образования и науки Российской Федерации

Курс лекций. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Подробнее

УЧЕБНО-МЕТОДИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Часть 3

УЧЕБНО-МЕТОДИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Часть 3 Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНАНСОВЫЙ УНИВЕРСИТЕТ) Кафедра «Математика»

Подробнее