«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости).

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости)."

Транскрипт

1 «Ряды» Тесты для самопроверки Необходимый признак сходимости ряда Теорема необходимый признак сходимости Если ряд сходится то lim + Следствие достаточное условие расходимости ряда Если lim то ряд расходится + Важно! Если lim то вывода о сходимости или расходимости ряда сделать + нельзя Задание Среди следующих рядов si 7 6 rcsi найдите те для которых справедливы утверждения: а lim б lim + + в ряд сходится г ряд расходится Правильные ответы: ряда 6 lim + e + сходится или расходится неизвестно расходится расходится неизвестно неизвестно расходится

2 Признаки сравнения Теорема признак сравнения Пусть и b два знакоположительных ряда таких что b Тогда если ряд b сходится то сходится и ряд ряд расхо- дится то расходится и ряд b Важно! При решении использовать: а ряд Дирихле α который сходится если α > и расходится если α б геометрическую прогрессию рядом если < q и расходящимся рядом если q q которая является сходящимся Задание Найти верные оценки для : l + si + cos Варианты ответов < > < < > > + + l > < > < < > + > <

3 Правильные ответы номера: Задание Используя признак сравнения среди рядов приведенных в задании найти сходящиеся и расходящиеся Правильные ответы: сходится расходится Теорема предельный признак сравнения Пусть и b два знакоположительных ряда Если существует конечный отличный от предел lim A то ряды сходятся или расходятся + b одновременно Задание Используя предельный признак сравнения исследовать на сходимость ряды с общими членами : si Указание: Использовать для сравнения подходящий ряд Дирихле Правильные ответы: С каким рядом b сравнили b b b b lim Сходится или расходится A + b A сходится A расходится A расходится A сходится

4 Теорема признак сравнения в эквивалентной форме Пусть ряд с положительными членами и ~ + α Тогда при α > ряд сходится а при α ряд расходится Важно! При решении нужно использовать таблицу эквивалентных функций: siα ~ α l + α ~ α α tg α ~ α ~ α l rcsiα ~ α e α ~ α rctg α ~ α если α - бесконечно малая функция А также тот факт что ~ + A для Задание Используя признак сравнения в эквивалентной форме найти A ~ и сделать вывод о сходимости следующих рядов: + α + + e l + si rctg + rcsi + + ~ сходится ~ сходится ~ сходится ~ расходится ~ сходится 6 ~ расходится 7 ~ расходится 8 ~ сходится Правильные ответы номера: 6 8 7

5 Признак Даламбера Теорема признак Даламбера Пусть ряд с положительными членами и существует + lim Тогда ряд сходится при < и расходится при > + Важно! Если то вывода о сходимости ряда сделать нельзя Задание 6 Найти + если ! ! Варианты ответов ! ! ! ! ! ! Правильные ответы номера:

6 Задание 7 Исследовать сходимость рядов из задания 6 вычисляя + lim и применяя признак Даламбера сходится 7 + расходится 8 7 сходится 7 расходится 7 сходится 76 вывод сделать нельзя 77 e расходится 78 e сходится Правильные ответы номера: Радикальный признак Коши Теорема признак Коши Пусть ряд с положительными членами и существует lim Тогда ряд сходится при < и расходится при > + Важно! Если то вывода о сходимости ряда сделать нельзя Важно! lim и lim + b + + Задание 8 Вычислить lim и используя признак Коши исследовать сходимость следующих рядов: rctg e 8 сходится 8 расходится e 8 сходится 8 сходится 8 сходится 86 расходится 87 сходится

7 Правильные ответы номера: Интегральный признак Коши Теорема интегральный признак Коши Если члены знакоположительного ряда могут быть представлены как числовые значения некоторой монотонно-убывающей на [ + функции так что то: + если d сходится то сходится и ряд + если d расходится то расходится и ряд Задание 9 Применить интегральный признак для исследования сходимости рядов: l A Указать вид первообразной F для и lim d B A + Варианты ответов F + B + расходится F rctg B сходится F l B l сходится F B l l сходится Правильные ответы номера:

8 6 Знакочередующие ряды Признак Лейбница Знакопеременные ряды Теорема признак Лейбница Знакочередующийся ряд сходится если: последовательность абсолютных величин членов ряда монотонно убывает те > > > > общий член ряда стремится к нулю: lim + При этом сумма S ряда удовлетворяет неравенству: < S < k Важно! Если S S k то погрешность при этом меньше k чем + Если члены ряда принимают положительные и отрицательные значения то он называется знакопеременным Определение Знакопеременный ряд называется абсолютно схо- дящимся если сходится ряд составленный из модулей его членов и условно сходящимся если сам он сходится а ряд составленный из модулей его членов расходится Важно! Для исследования абсолютной сходимости к рядам можно применять все признаки сходимости знакоположительных рядов Важно! Признак Лейбница - это признак условной сходимости рядов Задание Даны ряды: si + rctg Выберите из них те которые удовлетворяют условиям: а знакочередующиеся l + 6 cos + + +!

9 б знакопеременные в знакоположительные Правильные ответы номера: а б в Задание Для знакочередующихся рядов из задания проверить выполнены ли условия признака Лейбница Правильные ответы: да да 7 нет Задание Из знакочередующихся и знакопеременных рядов задания найти: а абсолютно сходящиеся б условно сходящиеся в расходящиеся Правильные ответы: а абсолютно сходятся: 6 б условно сходятся: в расходятся: 7 8 Задание Вычислить сумму S ряда + с точностью: Сколько членов ряда при этом надо взять? S S S 9 Правильные ответы номера: 7 Степенные ряды Степенным рядом называется ряд вида или вида где - постоянное число

10 Теорема Абеля Если степенной ряд сходится при b то он абсолютно сходится при всех х : < b Если ряд расходится при d то он расходится при всех х : > d Из теоремы Абеля вытекает что степенной ряд сходится в интервале -R R и расходится вне этого интервала Число R называется радиусом сходимости При R ряд сходится в единственной точке х при R ряд сходится при R На концах интервала сходимости те при ± R вопрос о сходимости решается для каждого ряда отдельно Для ряда интервал сходимости имеет вид: R + R Если R то ряд сходится в точке Формулы для нахождения радиуса сходимости имеют вид: R lim R lim Задание Даны степенные ряды: + +! 6 +! Найти: а радиус сходимости б интервал сходимости в область сходимости а радиус сходимости: R R R R R 6 R б интервал сходимости: точка в область сходимости: [ [ ] [ [ [ ] 9 точка Правильные ответы номера: 6 а 6 6 б 7 6 в 8 9 7

11 8 Применение степенных рядов Запишите разложения в ряд Тейлора некоторых элементарных функций: e α si cos + l + rctg rcsi Задание Зная разложение в степенной ряд элементарных функций разложить в ряд Маклорена следующие функции: e si cos l !!!! 6! + + l Правильные ответы номера: Задание 6 Найти разложение в ряд первообразных F функций из задания проинтегрировав соответствующие степенные ряды их в пределах от до х 6 F l F F + 7!! 7 6 F +! 7! Правильные ответы номера: Для того чтобы найти сумму ряда с заданной степенью точности см задание

12 9 Ряды Фурье Пусть периодическая функция с периодом T Тогда ее ряд Фурье имеет вид + cos + b si cos d b si d Теорема Дирихле Пусть - периодическая функция на отрезке [ ] удовлетворяет условиям: кусочно-непрерывна те непрерывна или имеет конечное число точек разрыва рода кусочно-монотонна те монотонна на всем отрезке или этот отрезок можно разбить на конечное число интервалов так что на каждом из них функция монотонна Тогда ряд Фурье функции сходится на этом отрезке и при этом: В точках непрерывности функции сумма ряда S совпадает с самой функцией: S В каждой точке разрыва функции сумма ряда равна + + S те равна среднему арифметическому пределов функции справа и слева В точках ± сумма ряда равна: + + S S Вспомните как выглядят ряды Фурье для четных и нечетных функций Задание 7 Запишите формулы с помощью которых вычисляются коэффициенты b ряда Фурье функции если: 7 - периодическая функция заданная на [ ] 7 - периодическая функция заданная на [ ] 7 задана на [ ] 7 задана на [ ]

13 7 четная функция заданная на ] [ 76 нечетная функция заданная на ] [ si d b si cos d b d d si cos d b d d cos b d d si cos d b d d cos si 6 d b d d Правильные ответы номера:

14 [] Задание 8 Для функции найдите: ] 8 разложение в ряд Фурье 8 разложение в ряд Фурье по синусам 8 разложение в ряд Фурье по косинусам si cos si cos si Правильные ответы номера: Задание 9 Изобразите график суммы S ряда Фурье в каждом из случаев задания 8 и найдите значения S в точках S S S S S S S S S S S S Правильные ответы номера: 9 9 9


МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности.

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности. Числовые ряды Числовая последовательность Опр Числовой последовательностью называют числовую ф-цию, определенную на множестве натуральных чисел х - общий член последовательности х =, х =, х =,, х =,,,,,,,,

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Сходимость знакопеременных числовых рядов

Сходимость знакопеременных числовых рядов ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Сходимость знакопеременных числовых рядов Числовой ряд u, в котором имеется бесконечно много как положительных, так = и отрицательных элементов, называется числовым рядом с произвольными

Подробнее

ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г.

ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г. ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г. Замечание. 1) вопросы, не содержащие доказательства; ) вопросы, с серьезным доказательством; 3) вопросы с небольшим

Подробнее

3. Ряды Числовые ряды

3. Ряды Числовые ряды . Ряды Числовые ряды Определение. Числовым рядом называется выражение вида u u u... u..., где числа u, u, u,... называются членами ряда u называется общим членом ряда. Определение. -ой частичной суммой

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Глава 12. Ряды Числовые ряды. Формальная запись суммы членов некоторой числовой последовательности

Глава 12. Ряды Числовые ряды. Формальная запись суммы членов некоторой числовой последовательности Глава Ряды Формальная запись суммы членов некоторой числовой последовательности Числовые ряды называется числовым рядом Суммы S, называются частичными суммами ряда Если существует предел lim S, S то ряд

Подробнее

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,,

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

1. Числовые ряды, основные понятия.

1. Числовые ряды, основные понятия. Числовой ряд. Числовые ряды, основные понятия. () называется сходящимся, если его частичная сумма (2) имеет конечный предел Тогда называется суммой ряда, а разность lim. (3) (4) называют остатком ряда.

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

сгупс Методические указания к выполнению типового расчета «Ряды».

сгупс Методические указания к выполнению типового расчета «Ряды». сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

{основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными

{основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными {основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными членами признак Даламбера, признак Коши, интегральный

Подробнее

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА.

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра инженерной математики И В Прусова Н А Кондратьева Н К Прихач ВЫСШАЯ МАТЕМАТИКА РЯДЫ, ТЕОРИЯ ФУНКЦИЙ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» НВ Комиссарова МАТЕМАТИКА Часть 6 РЯДЫ Методические указания для студентов -го и -го курсов

Подробнее

a......, a,... называют членами...

a......, a,... называют членами... РЯДЫ Числовые ряды Основные понятия числового Пусть дана последовательность вещественных или комплексных чисел Числовым рядом называется сумма всех членов числовой последовательности: Числа,,,, называют

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды Числовые и функциональные ряды Основные понятия Знакочередующиеся ряды Функциональные ряды Степенные ряды и разложение функций в степенной ряд Применение степенных рядов Ряды Фурье Основные понятия Пусть

Подробнее

Третий семестр. Лектор: Князева Людмила Павловна

Третий семестр. Лектор: Князева Людмила Павловна Третий семестр Лектор: Князева Людмила Павловна Темы: Наименование раздела, темы Всего аудиторных часов Лекции, часы Практически е занятия, часы 1 2 3 4 Тема 1. Аналитическая геометрия и линейная алгебра

Подробнее

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2 Содержание Числовые ряды. Основные понятия 2 Необходимый признак сходимости ряда 3 Простейшие свойства числовых рядов 2 4 Знакоположительные ряды 3 5 Знакочередующиеся ряды 9 6 Знакопеременные ряды 0 7

Подробнее

3 РЯДЫ Хабаровск 2004

3 РЯДЫ Хабаровск 2004 РЯДЫ Хабаровск 4 4 ЧИСЛОВЫЕ РЯДЫ Числовым рядом называется выражение, где,,, числа, которые образуют бесконечную числовую последовательность, общий член ряда, где N ( N множество натуральных чисел) Пример

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте   Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Типовой расчет по математическому анализу Контрольные задания по теме Ряды Задание. Найти сумму числового ряда ) ) = + + ( )( 5) + ) ( ) = 5 = Решение ) 5 ( ) + + = = = = + + 5 + + 5 + + 5 + + 5

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Министерство образования Российской Федерации МАТИ Российский государственный технологический университет им.к.э.циолковского Кафедра «Высшая математика» ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Варианты курсовых

Подробнее

ДОМАШНИЕ ЗАДАНИЯ 8, 9 ПО РЯДАМ

ДОМАШНИЕ ЗАДАНИЯ 8, 9 ПО РЯДАМ ДОМАШНИЕ ЗАДАНИЯ 8 9 ПО РЯДАМ Для выполнения домашнего задания Вам необходимо пользуясь табл заполнить первую строку табл затем выписать соответствующие Вашему номеру варианта данные из табл Например Вы

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

РЯДЫ МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ (с элементами квантования текста)

РЯДЫ МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ (с элементами квантования текста) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный университет путей сообщения»

Подробнее

Числовые ряды. Лекции 6-7

Числовые ряды. Лекции 6-7 Числовые ряды Лекции 6-7 Понятие числового ряда Аналитическое выражение вида, a a2 a a a, a, a, где 2 последовательность чисел членов ряда, выражение a - называется общим членом ряда. Последовательность

Подробнее

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8 Министерство образования и науки РФ Ачинский филиал федерального государственного автономного образовательного учреждения высшего профессионального образования «Сибирский федеральный университет» МАТЕМАТИКА

Подробнее

Числовые ряды. lim. S n. Определение Числовым рядом называется выражение следующего вида:

Числовые ряды. lim. S n. Определение Числовым рядом называется выражение следующего вида: Тема 9 Определение Числовым рядом называется выражение следующего вида: a 1 a2 a3... a... a Если предел последовательности последовательностью частичных сумм ряда. lim S S 1 Необходимое условие сходимости:

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ВН Алексеев, ДА Приказчиков, ВВ Ридель РЯДЫ Утверждено редакционно-издательским советом РОАТ в качестве учебного пособия РОАТ Москва 9 5 УДК 575(75)

Подробнее

Математический анализ Ряды

Математический анализ Ряды Тема 6. Пределы последовательностей и функций, их свойства и приложения Математический анализ Ряды Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

Тема: Степенные ряды.

Тема: Степенные ряды. Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

ВЫСШИЙ ГОСУДАРСТВЕННЫЙ КОЛЛЕДЖ СВЯЗИ ПРОГРАММА, МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ. по дисциплине

ВЫСШИЙ ГОСУДАРСТВЕННЫЙ КОЛЛЕДЖ СВЯЗИ ПРОГРАММА, МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ. по дисциплине ВЫСШИЙ ГОСУДАРСТВЕННЫЙ КОЛЛЕДЖ СВЯЗИ ПРОГРАММА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ по дисциплине «ВЫСШАЯ МАТЕМАТИКА» Часть IV для студентов уровня ВО заочной формы обучения специальности 45 «Сети

Подробнее

РЯДЫ. Методические указания для студентов заочной формы обучения. Составители О.А. Сергеева, О.В. Иванова

РЯДЫ. Методические указания для студентов заочной формы обучения. Составители О.А. Сергеева, О.В. Иванова Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

Е.В. Небогина, О.С. Афанасьева РЯДЫ. ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Е.В. Небогина, О.С. Афанасьева РЯДЫ. ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ ЕВ Небогина, ОС Афанасьева РЯДЫ ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ Самара 9 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК О. В. Исакова Л. А. Сайкова М.Д. Улымжиев УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ

Подробнее

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ. Кафедра «Математика»

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ. Кафедра «Математика» ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Математика» Учебно-методическое пособие по дисциплине «Математика» «Ряды Часть II» Авторы

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Министерство образования Республики Беларусь. Учреждение образования «Полоцкий государственный университет»

Министерство образования Республики Беларусь. Учреждение образования «Полоцкий государственный университет» Министерство образования Республики Беларусь Учреждение образования «Полоцкий государственный университет» МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО РАЗДЕЛУ «РЯДЫ» ДЛЯ СТУДЕНТОВ ЗАОЧНОЙ

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

Степенные ряды. Степенным рядом называется функциональный ряд вида. коэффициентами ряда, а точка разложения ряда. n n

Степенные ряды. Степенным рядом называется функциональный ряд вида. коэффициентами ряда, а точка разложения ряда. n n Тема 9 Степенные ряды Степенным рядом называется функциональный ряд вида при этом числа... коэффициентами ряда, а точка разложения ряда.,,...,,... R... называются центром Степенные ряды Общий член степенного

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА МАТЕМАТИКА МАТЕМАТИЧЕСКИЙ АНАЛИЗ РЯДЫ Методические рекомендации

Подробнее

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки:

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: 4 Сходимость знакопеременных рядов Определение 4 Ряд a с членами произвольных знаков называют знакопеременным Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: a

Подробнее

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а прикладной математики

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

Лекция 2. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши

Лекция 2. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши Лекция. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши.. Ряды Дирихле и их сходимость, гармонический ряд Определение. Числовой ряд вида

Подробнее

Рассмотрим некоторые примеры. Пример. Найдём сумму бесконечной геометрической прогрессии. a+aq+...+aq n (a 0). Формула общего члена этого ряда

Рассмотрим некоторые примеры. Пример. Найдём сумму бесконечной геометрической прогрессии. a+aq+...+aq n (a 0). Формула общего члена этого ряда Рассмотрим некоторые примеры. Пример. Найдём сумму бесконечной геометрической прогрессии Формула общего члена этого ряда a+aq+...+aq n +... (a ). a n = aq n. Вычислим его частичные суммы. Если q =, то

Подробнее

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра математики УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ по математике для студентов заочного обучения ( III семестр ) Уфа Дан теоретический материал (понятия,

Подробнее

Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд

Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд 3. Признаки сходимости знакопеременных рядов Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд Ряд u, не являющийся знакоположительным или знакоотрицательным

Подробнее

Р.Б. КАРАСЕВА Р Я Д Ы

Р.Б. КАРАСЕВА Р Я Д Ы РБ КАРАСЕВА Р Я Д Ы Омск Министерство образования и науки РФ ГОУ ВПО «Сибирская государственная автомобильно-дорожная академия (СибАДИ)» РБКарасева Р Я Д Ы Учебное пособие Омск СибАДИ УДК ББК К Рецензенты:

Подробнее

2. Степенные ряды. 1. Определения, теоремы и формулы для решения задач. Теорема. (теорема Абеля). Если степенной ряд

2. Степенные ряды. 1. Определения, теоремы и формулы для решения задач. Теорема. (теорема Абеля). Если степенной ряд Степенные ряды Определения, теоремы и формулы для решения задач Определение Функциональный ряд ( ) ( ) ( ) ( ) 0 0 0 0 0 0 называется степенным рядом, числа R,,, называются коэффициентами степенного ряда

Подробнее

Математический анализ

Математический анализ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ И М Аксененкова ТР Игонина ОА Малыгина НС Чекалкин АГ Шухов Редактор: НС Чекалкин Математический анализ семестр

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Демина ЕЛ, Демин СЕ РЯДЫ г Нижний Тагил 00 Предисловие В настоящем

Подробнее

ПЛАН ЛЕКЦИИ. Общие определения Понятие степенного ряда Разложение функций в степенной ряд Применение некоторых рядов

ПЛАН ЛЕКЦИИ. Общие определения Понятие степенного ряда Разложение функций в степенной ряд Применение некоторых рядов ЧИСЛОВЫЕ РЯДЫ ПЛАН ЛЕКЦИИ Общие определения Понятие степенного ряда Разложение функций в степенной ряд Применение некоторых рядов ЧИСЛОВОЙ РЯД Бесконечная сумма чисел вида: а а а... а... 3 называется числовым

Подробнее

ОСНОВЫ ТЕОРИИ РЯДОВ. О.В. Сорокина. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет им. Н.Г.

ОСНОВЫ ТЕОРИИ РЯДОВ. О.В. Сорокина. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет им. Н.Г. ФГБОУ ВО «Саратовский национальный исследовательский государственный университет им НГ Чернышевского» ОСНОВЫ ТЕОРИИ РЯДОВ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

{тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды

{тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды {тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды разложение по синусам и косинусам четные и нечетные продолжения}

Подробнее

РЯДЫ. Учебное пособие

РЯДЫ. Учебное пособие РЯДЫ Учебное пособие Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б Н Ельцина Ряды Учебное пособие Рекомендовано методическим

Подробнее

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ. Учебно-методическое пособие

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ. Учебно-методическое пособие КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ Учебно-методическое пособие КАЗАНЬ 008 Печатается по решению секции Научно-методического совета Казанского университета

Подробнее

Типовой расчет : Ряды

Типовой расчет : Ряды Типовой расчет : Ряды Теоретические вопросы Что такое сумма числового ряда? Что такое геометрический ряд? Когда он сходится? Чему равна его сумма? 3 Доказать необходимый признак сходимости ряда Показать,

Подробнее

2. Какая из указанных величин является формулой n-ого члена(n N) ряда: , если. 2 ; г) a n 1 n = ( 1)n 1? 2 n 1

2. Какая из указанных величин является формулой n-ого члена(n N) ряда: , если. 2 ; г) a n 1 n = ( 1)n 1? 2 n 1 Тесты по теме «Числовые ряды» Вариант. Вставьте в выражение недостающий символ,, ): Общий член числового ряда a 0 при )... Числовой ряд a сходится). 2. Какая из указанных величин является формулой -ого

Подробнее

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1 Глава 3. Числовые ряды 3.. Занятие 0 3... Сумма ряда Рассмотрим числовую последовательность {a k } k=. ОПРЕДЕЛЕНИЕ 3... Рядом называется выражение вида a + a 2 +...+ a k +...= a k. k= Величина a k называется

Подробнее

Теоретичеcкие вопроcы и задачи

Теоретичеcкие вопроcы и задачи Теоретичеcкие вопроcы и задачи Теоретичеcкие вопроcы и задачи Дифференциальное иcчиcление функции неcкольких переменных. Дайте определение раccтояния (, b ) между точками, b, q докажите cвойcтва функции

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

Пусть дана числовая последовательность. Определение Числовым рядом называется выражение следующего вида: ... a n

Пусть дана числовая последовательность. Определение Числовым рядом называется выражение следующего вида: ... a n Тема 9 Пусть дана числовая последовательность { } {, 2,..., 1...}. Определение Числовым рядом называется выражение следующего вида: 1 2 3...... 1 Упрощенно : ряд это «бесконечная» сумма. { } Вместе с последовательностью

Подробнее

Математический анализ

Математический анализ МИРЭА РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ И М Аксененкова ТР Игонина ОА Малыгина НС Чекалкин АГ Шухов Редактор: НС Чекалкин Математический анализ семестр Учебное пособие Для студентов очной формы обучения

Подробнее

Санкт-Петербургский государственный университет Кафедра математического анализа

Санкт-Петербургский государственный университет Кафедра математического анализа Санкт-Петербургский государственный университет Кафедра математического анализа МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по математическому анализу Часть 2 Числовые ряды М. Г. Голузина,

Подробнее

( )( )( ) ( )( ) ( ) ( ) ( ) ( )( )

( )( )( ) ( )( ) ( ) ( ) ( ) ( )( ) МАТЕМАТИЧЕСКИЙ АНАЛИЗ. КОНТРОЛЬНАЯ РАБОТА Дифференциальное исчисление Задание. Найти пределы функций, не пользуясь правилом Лопиталя. 8 8 ; 8 8 ~ arcsi arcsi [ ] l l l l l l l l e Задание. Задана функция

Подробнее

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда u ; u числа, числовой ряд; u числа по изменению знаков членов ряда знакопостоянные знакоположительные знакопеременные знакочередующиеся k= u степенные u ; u функции, функциональный ряд u функции по классам

Подробнее

Определение 1. Наибольший из частных пределов последовательности называется верхним пределом последовательности и обозначается

Определение 1. Наибольший из частных пределов последовательности называется верхним пределом последовательности и обозначается Глава. РЯДЫ. Понятия верхнего и нижнего пределов последовательности Пусть дана ограниченная числовая последовательность ( ) (все её члены заключены на числовой прямой между числами а и b), т.е. По теореме

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

1 Степенные ряды. Радиус сходимости и интервал

1 Степенные ряды. Радиус сходимости и интервал В.В. Жук, А.М. Камачкин 1 Степенные ряды. Радиус сходимости и интервал сходимости. Характер сходимости. Интегрирование и дифференцирование. 1.1 Радиус сходимости и интервал сходимости. Функциональный ряд

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

Всего 66 вопросов. 1 год обучения. Модули 1 2.

Всего 66 вопросов. 1 год обучения. Модули 1 2. ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ к итоговому экзамену по дисциплине «Математический анализ» Прикладная математика На устном экзамене студент получает два теоретических вопроса и две задачи Всего 66 вопросов год

Подробнее

Задача Первая теорема сравнения

Задача Первая теорема сравнения Первая теорема сравнения Постановка задачи: Исследовать сходимость ряда с неотрицательными членами где = f(, u (), u 2 (),...) и u (), u 2 (),...- функции с известными наименьшими и наибольшими значениями,

Подробнее

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр 9-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр Необх. усл. равномерной сходимости функц. ряда f x): f 0. A Исследовать функ. ряд на сх-ть:

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени

Подробнее

Глава 6 Числовые ряды

Глава 6 Числовые ряды Глава 6 Числовые ряды Определение числового ряда и основные теоремы Определение : Последовательностью действительных чисел называется функция f, определённая на множестве всех натуральных чисел Число f

Подробнее

Нижнетагильский технологический институт (филиал) Ряды

Нижнетагильский технологический институт (филиал) Ряды Министерство образования и науки РФ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого Президента России

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики

Подробнее