АЛГОРИТМ РАСЧЕТА СПЕКТРА ЧАСТОТ И ФОРМ СВОБОДНЫХ КОЛЕБАНИЙ ВАЛОВ ДВУХВАЛКОВОГО МОДУЛЯ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "АЛГОРИТМ РАСЧЕТА СПЕКТРА ЧАСТОТ И ФОРМ СВОБОДНЫХ КОЛЕБАНИЙ ВАЛОВ ДВУХВАЛКОВОГО МОДУЛЯ"

Транскрипт

1 УДК АЛГОРИТМ РАСЧЕТА СПЕКТРА ЧАСТОТ И ФОРМ СВОБОДНЫХ КОЛЕБАНИЙ ВАЛОВ ДВУХВАЛКОВОГО МОДУЛЯ В.А. МАРТЫШЕНКО, А.В. ПОДЪЯЧЕВ, Р.В. ЗАЙЦЕВ (Костромской государственный технологический университет) Предложенный ранее [] аналитический метод определения собственных частот свободных колебаний двухвалкового модуля не позволяет определить весь спектр частот и формы свободных колебаний двухвалкового модуля. Предлагаемый нами метод позволяет получить весь спектр частот, а также их форму по всей длине вала. Для решения поставленной задачи весь модуль разбивается на участки постоянной жесткости и выполняется статический расчет конструкции с целью определения коэффициентов упругости основания на контактирующих участках валов. Свободные колебания простого элемента рассмотрены ранее []. Рис. 6 6С (34) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 7

2 Свободные колебания парного сэндвичэлемента (рис. ) предлагается описывать системой дифференциальных уравнений в частных производных: EI 4 V / z 4 (V V ) m V / t χ =, EI 4 V / z 4 (V V ) m V / t χ =, () где EI, EI изгибные жесткости элемента нижнего и верхнего валов; m, m погонные массы валов; χ коэффициент упругости основания; V = V (z,t), V = V (z,t) функции прогибов валов. Разделяя переменные по методу Фурье: V (z,t) = υ (z)t(t), V (z,t) = υ (z)t(t), () где υ (z), υ (z) узловые перемещения парных элементов для нижнего и верхнего вала соответственно; функция T(t) удовлетворяет уравнению, описывающему гар- монические колебания d T/dt ω Т=, (3) где ω частота собственных колебаний системы валов. Приводим систему уравнений () к виду: EId υ / dz χ( υ υ) mυω =, (4) EId υ / dz χ( υ υ) mυω =. Для численного решения поставленной задачи представим функции υ, υ в виде рядов [3]:. (5) (i ) (i ) (i ) (i ) υ = ω υ, υ = ω υ (i =,,...,n) Подставим (5) в (4): (i ) (i ) (i ) (i ) EI ω d υ (i ) / dz χ( ω υ(i ) ω υ(i ) ) mω ω υ (i ) =, (i ) (i ) (i ) (i ) EI ω d υ (i ) / dz χ( ω υ(i ) ω υ(i ) ) mω ω υ (i ) =. (6) Чтобы уравнения (6) тождественно выполнялись при любых значениях ω, необходимо сгруппировать все слагаемые, имеющие одинаковые множители ω (i-) (i=,,...,n) и приравнять их к нулю. Так, при удержании двух членов разложения (5) получаем систему четырех линейных однородных дифференциальных уравнений : EId υ / dz χ( υ υ ) =, EId υ / dz χ( υ υ ) =, (7) EId υ / dz χ( υ υ) mυ =, EId υ / dz χ( υ υ) mυ =. Первые два уравнения (7) образуют независимую систему уравнений, для которых строится общее решение. Третье и четвертое уравнения (7) образуют систему неоднородных дифференциальных уравнений относительно функций υ и υ, в 6С (34) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 7 7

3 которой функции υ и υ являются возмущающими членами. Для этой системы уравнений необходимо построить частное решение неоднородных дифференциальных уравнений, которое зависит от вида частных решений однородной системы первого и второго дифференциальных уравнений (7). Краевые кинематические и статические условия представлены в []. Введем новые безразмерные переменные, связанные с функциями V и V и их производными соотношениями: X i- = V /l ; X i = dx i- /dζ ; X i3 = dx i4 /dζ ; X i4 = I i /I dx i /dζ; X i7 = V /l ; X i8 = dx i7 /dζ ; X i = dx i /dζ ; X i = I i /I dx i8 /dζ, (i =,) (8) где I, l нормирующие множители. Уравнения (7) и (8) образуют систему шестнадцати дифференциальных уравнений первого порядка: dx/dζ = AX, (9) где X = [X, X, X 3, X 4, X 5, X 6, X 7, X 8, X 9, X, X, X, X 3, X 4, X 5, X 6 ] т вектор кинематических и статических начальных параметров. A= A A A () Здесь A блочная матрица восьмого порядка, совпадающая с матрицей связи уравнения состояния статического равновесия сэндвич-элемента двухвалкового модуля; нулевая квадратная матрица восьмого порядка; A квадратная матрица восьмого порядка, содержащая только два ненулевых элемента A (5,) = m /m и A (7,3) = m /m ; m нормирующий множитель. Искомый параметр частоты колебаний валкового модуля выражен в этом случае через нормирующие множители k=ω m l 4 /(E I ). Систему шестнадцати однородных дифференциальных уравнений первого порядка (9) интегрируем последовательно восемь раз при различных начальных краевых условиях. Первое интегрирование выполняем при начальном векторе X = (,,,,,,,,,,,,,,,) T и восьмой раз X=(,,,,,,,,,,,,,,,) T. Решение задачи Коши при начальном векторе, содержащем лишь одну ненулевую компоненту, приводит к нахождению в численном виде одного частного решения однородной системы дифференциальных уравнений на другом конце интервала интегрирования. Проинтегрировав систему уравнений восемь раз, получаем восемь линейно независимых частных решений на другом конце интервала интегрирования, которые связаны с начальными параметрами уравнением: V A = A B B V P A A B B P () где A матрица восьмого порядка, расположенная в левом верхнем углу, а B матрица восьмого порядка, расположенная в левом нижнем углу матрицы (6х6), полученной после интегрирования системы уравнений. Представим систему () в виде системы двух матричных уравнений: V = (A kb )V (A kb )P,. () P = (A kb )V (A kb )P. 8 6С (34) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 7

4 Преобразуем уравнение () с целью получения уравнения состояния колебаний двухвалкового модуля. Для этого разрешим первое уравнение системы () относительно P и подставим во второе уравнение (). Объединяя в одно матричное уравнение, получаем уравнение состояния свободных колебаний : P = C C K D D V P C C D D V. (3) Так как исходная система дифференциальных уравнений решается с точностью до ω или k, то и уравнение состояния имеет смысл получать с той же степенью точности. После получения матриц уравнения (3) необходимо в матрицах последовательно изменить знаки элементов столбцов i и строк 4i (i=,, 3, 4). Уравнение (3) представляет собой известную алгебраическую задачу о нахождении собственных значений и векторов матричного уравнения типа F - λе =, где F=CD -. Собственными числами являются нормирующие множители k, а соответствующие им собственные векторы определяют формы свободных колебаний двухвалкового модуля. Предложенный алгоритм реализован в среде Delphi. Динамические исследования проведены на математической модели валкового модуля отжимной машины О-8 (рис. ). Для проведения расчетов были наложены следующие условия закрепления: опорные сечения нижнего вала не имеют линейных перемещений, а сечения верхнего вала, в которых приложены силы, могут перемещаться в вертикальном направлении. Рис. Для данной пары валов был получен весь спектр частот свободных колебаний (-я частота 74 об/мин, -я частота - 5 об/мин и т.д.). Полученные результаты хорошо согласуются с аналогичными расчетами, выполненными аналитически методом сканирования []. На рис. 3 представлены графики форм первых двух частот свободных колебаний парных сэндвич-элементов двухвалкового модуля О-8. 6С (34) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 7 9

5 ,8,6,4, -, -,4 -,6 -,8 - Верхний вал (74 об/мин),995,99,985,98,975,97,965,96,955 Верхний вал (5 об/мин),,8,6,4, -, Ниж ний вал (74 об/мин),5,,5, Нижний вал (5 об/мин) -,4 -,6,5 -,8 -, Рис. 3 В Ы В О Д Ы. Впервые разработан и реализован алгоритм автоматизированного численного расчета спектра частот и форм свободных колебаний валов двухвалкового модуля (колебания стержня на упругом основании, находящемся на упругом стержне).. С помощью созданного программного обеспечения показано влияние эластичного покрытия валов на формы свободных колебаний рубашек валов двухвалкового модуля. Л И Т Е Р А Т У Р А. Мартышенко В.А., Подъячев А.В. Свободные колебания валов двухвалковых механизмов текстильного отделочного оборудования // Межвуз. сб. научн. тр. Ленинградского института текстильной и легкой промышленности. Л., Мартышенко В.А. Уравнения состояния изгиба, устойчивости и поперечных колебаний стержня // Изв. вузов. Строительство и архитектура. 98, 9. С Мартышенко В.А. К автоматизированному расчету вынужденных изгибных колебаний двухвалковых модулей текстильного отделочного оборудования // Вестник КГТУ 3, 6. Рекомендована кафедрой теоретической механики и сопротивления материалов. Поступила С (34) ТЕХНОЛОГИЯ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕННОСТИ 7

УДК :

УДК : УДК 677.057.121:658.512.22.011.56 Использование математического моделирования для описания напряженно-деформированного состояния элементов валкового модуля. Мартышенко В.А., Подъячев А.В. (Костромской

Подробнее

Силовой анализ валов валковой пары отжимной секции шлихтовальной машины. Подъячев А.В., Куревенкова Н.С.

Силовой анализ валов валковой пары отжимной секции шлихтовальной машины. Подъячев А.В., Куревенкова Н.С. УДК 677.057.121.001 Силовой анализ валов валковой пары отжимной секции шлихтовальной машины. Подъячев А.В., Куревенкова Н.С. (Костромской государственный технологический университет) В статье приводятся

Подробнее

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3 ОГЛАВЛЕНИЕ Предисловие... 3 Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ И ПОНЯТИЯ СТРОИТЕЛЬНОЙ МЕХАНИКИ... 4 1.1. Задачи и методы строительной механики... 4 1.2. Понятие о расчетной схеме сооружения и ее элементах.. 6 1.3.

Подробнее

ПРИБОРЫ ТОЧНОЙ МЕХАНИКИ

ПРИБОРЫ ТОЧНОЙ МЕХАНИКИ ПРИБОРЫ ТОЧНОЙ МЕХАНИКИ УДК 6.69.4 С. П. ПИРОГОВ, А. Ю. ЧУБА РАСЧЕТ ЧАСТОТ СОБСТВЕННЫХ КОЛЕБАНИЙ МАНОМЕТРИЧЕСКИХ ТРУБЧАТЫХ ПРУЖИН Представлен вывод уравнений движения манометрической трубчатой пружины.

Подробнее

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ УЛЬЯНОВСК МИНИСТЕРСТВО ОБЩЕГО И

Подробнее

2 РЕГУЛЯРНЫЕ АСИМПТОТИЧЕСКИЕ РАЗЛОЖЕНИЯ

2 РЕГУЛЯРНЫЕ АСИМПТОТИЧЕСКИЕ РАЗЛОЖЕНИЯ РЕГУЛЯРНЫЕ АСИМПТОТИЧЕСКИЕ РАЗЛОЖЕНИЯ Методы возмущений и итераций Далее нам потребуются некоторые факты из линейной алгебры и теории дифференциальных уравнений Матрица А называется самосопряженной, если

Подробнее

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1 Труды международного симпозиума «Надежность и качество 009», Пенза том Горячев ВЯ, Савин АВ ОПРЕДЕЛЕНИЕ СВЯЗИ МЕЖДУ УСКОРЕНИЕМ И ПОПЕРЕЧНОЙ ДЕФОРМАЦИЕЙ УПРУГОГО ЭЛЕМЕНТА ДАТЧИКА Упругий элемент является

Подробнее

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного

Подробнее

Матричный метод разложения вектора фазовых координат линейной механической системы по вариациям ее параметров /453286

Матричный метод разложения вектора фазовых координат линейной механической системы по вариациям ее параметров /453286 Матричный метод разложения вектора фазовых координат линейной механической системы по вариациям ее параметров 77-482/453286 # 9, сентябрь 22 Беляев А. В., Тушев О. Н. УДК 57.947.44 Россия, МГТУ им. Н.Э.

Подробнее

Кафедра «Механика деформируемого твердого тела, основания и фундаменты» А. А. Лахтин ДИНАМИЧЕСКИЙ РАСЧЁТ РАМЫ НА ДЕЙСТВИЕ ВИБРАЦИОННОЙ НАГРУЗКИ

Кафедра «Механика деформируемого твердого тела, основания и фундаменты» А. А. Лахтин ДИНАМИЧЕСКИЙ РАСЧЁТ РАМЫ НА ДЕЙСТВИЕ ВИБРАЦИОННОЙ НАГРУЗКИ Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Механика деформируемого твердого тела, основания и фундаменты» А. А. Лахтин ДИНАМИЧЕСКИЙ

Подробнее

Научный потенциал регионов на службу модернизации. Астрахань: АИСИ, с.

Научный потенциал регионов на службу модернизации. Астрахань: АИСИ, с. Научный потенциал регионов на службу модернизации. Астрахань: АИСИ, 011. 90 с. МЕТОДИКА РАСЧЁТА БАЛОК С КУСОЧНО-ПОСТОЯННЫМИ ПАРАМЕТРАМИ, ОСНОВАННАЯ НА СВОЙСТВАХ ИЗОБРАЖЕНИЙ ФУРЬЕ ФИНИТНЫХ ФУНКЦИЙ Е. Н.

Подробнее

Дифференциально-разностный метод исследования процессов диффузии материалов.

Дифференциально-разностный метод исследования процессов диффузии материалов. УДК 6780153083 Дифференциально-разностный метод исследования процессов диффузии материалов Мартышенко ВА (Военная академия радиационной, химической и бактериологической защиты и инженерных войск) Процессы

Подробнее

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ Основные понятия Нормальные Системой называется совокупность в каждое из которых входят независимая переменная искомые функции и их производные Всегда предполагается

Подробнее

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 007. Т. 48, N- 5 УДК 539.3 ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ Ю. В. Захаров, К. Г. Охоткин,

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

4. Задачи на собственные значения

4. Задачи на собственные значения 4. Задачи на собственные значения 1 4. Задачи на собственные значения Задачи на собственные значения это краевые задачи для системы ОДУ, в которой правые части зависят от одного или нескольких параметров.

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

РАСЧЁТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ БАЛОК С РАСПРЕДЕЛЁННЫМИ ПАРАМЕТРАМИ

РАСЧЁТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ БАЛОК С РАСПРЕДЕЛЁННЫМИ ПАРАМЕТРАМИ УДК 539.3 РАСЧЁТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ БАЛОК С РАСПРЕДЕЛЁННЫМИ ПАРАМЕТРАМИ Оробей В.Ф., д.т.н., профессор, Корнеева И.Б., к.т.н., доцент, Бондаренко Д.О. Одесская государственная академия строительства

Подробнее

УПРАВЛЯЮЩИЕ И ИЗМЕРИТЕЛЬНЫЕ СИСТЕМЫ КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОГИБА ДИСКА ПЕРЕКРЫТИЯ В СТРУКТУРЕ КАРКАСНОГО ЗДАНИЯ

УПРАВЛЯЮЩИЕ И ИЗМЕРИТЕЛЬНЫЕ СИСТЕМЫ КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОГИБА ДИСКА ПЕРЕКРЫТИЯ В СТРУКТУРЕ КАРКАСНОГО ЗДАНИЯ УПРАВЛЯЮЩИЕ И ИЗМЕРИТЕЛЬНЫЕ СИСТЕМЫ УДК 59.:59.:64. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ПРОГИБА ДИСКА ПЕРЕКРЫТИЯ В СТРУКТУРЕ КАРКАСНОГО ЗДАНИЯ А.В. БЫХОВЦЕВ, В.Е. БЫХОВЦЕВ, К.С. КУРОЧКА Учреждение образования «Гомельский

Подробнее

Об определении переменной жёсткости круглой пластины

Об определении переменной жёсткости круглой пластины Вычислительные технологии Том 17, 6, 212 Об определении переменной жёсткости круглой пластины Т. А. Аникина 1, А. О. Ватульян 2, П. С. Углич 3 1 Донской государственный технический университет, Ростов-на-Дону,

Подробнее

Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ

Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ Вестник ПГТУ. Механика. 9. 5 УДК 539.3: 534. Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ Предлагается

Подробнее

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ Лекция 17 Энергетические методы расчета упругих систем. Потенциальная энергия деформации. Обобщенные силы и обобщенные перемещения. Основные энергетические уравнения механики (теорема Кастильяно). Метод

Подробнее

Б Е Л О Р У С С К И Й Н А Ц И О Н А Л Ь Н Ы Й Т Е Х Н И Ч Е С К И Й У Н И В Е Р С И Т Е Т С Т Р О И Т Е Л Ь Н Ы Й Ф А К У Л Ь Т Е Т

Б Е Л О Р У С С К И Й Н А Ц И О Н А Л Ь Н Ы Й Т Е Х Н И Ч Е С К И Й У Н И В Е Р С И Т Е Т С Т Р О И Т Е Л Ь Н Ы Й Ф А К У Л Ь Т Е Т Б Е Л О Р У С С К И Й Н А Ц И О Н А Л Ь Н Ы Й Т Е Х Н И Ч Е С К И Й У Н И В Е Р С И Т Е Т С Т Р О И Т Е Л Ь Н Ы Й Ф А К У Л Ь Т Е Т М Е Ж Д У Н А Р О Д Н Ы Й Н А У Ч Н О М Е Т О Д И Ч Е С К И Й С Е М И

Подробнее

Исследование краевой задачи для одной гибридной системы дифференциальных уравнений

Исследование краевой задачи для одной гибридной системы дифференциальных уравнений Исследование краевой задачи для одной гибридной системы дифференциальных уравнений А.Д.Мижидон Восточно-Сибирский государственный университет технологий и управления, Улан-Удэ e-mail: miarsdu@mail.ru С.Г.Баргуев

Подробнее

КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ

КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ С.П.Тимошенко, Д.Х.Янг, У.Уивер КОЛЕБАНИЯ В ИНЖЕНЕРНОМ ДЕЛЕ В монографии, написанной известным русским ученым и американскими специалистами, изложены результаты исследований различных аспектов теории колебаний

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы.

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы. Памятка для практических занятий по теме «Обыкновенные дифференциальные уравнения» Решение различных задач методом математического моделирования сводится к отысканию неизвестной функции из уравнения, содержащего

Подробнее

О ПЕРСПЕКТИВАХ РАЗВИТИЯ ПОДХОДА, ОСНОВАННОГО НА ИСПОЛЬЗОВАНИИ АЛГЕБРАИЧЕСКОЙ ПРОБЛЕМЫ КВАДРАТИЧНОГО ВИДА В ЗАДАЧАХ СТРОИТЕЛЬНОЙ МЕХАНИКИ

О ПЕРСПЕКТИВАХ РАЗВИТИЯ ПОДХОДА, ОСНОВАННОГО НА ИСПОЛЬЗОВАНИИ АЛГЕБРАИЧЕСКОЙ ПРОБЛЕМЫ КВАДРАТИЧНОГО ВИДА В ЗАДАЧАХ СТРОИТЕЛЬНОЙ МЕХАНИКИ УДК 624.04: 517.926.7+512.643.4 О ПЕРСПЕКТИВАХ РАЗВИТИЯ ПОДХОДА, ОСНОВАННОГО НА ИСПОЛЬЗОВАНИИ АЛГЕБРАИЧЕСКОЙ ПРОБЛЕМЫ КВАДРАТИЧНОГО ВИДА В ЗАДАЧАХ СТРОИТЕЛЬНОЙ МЕХАНИКИ А.Н. Потапов Рассмотрены вопросы

Подробнее

ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ

ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 24. Т. 45, N- 5 67 УДК 539.3 ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ Ю. В. Захаров, К. Г. Охоткин, А. Д. Скоробогатов Институт физики им. Л. В. Киренского

Подробнее

Ключевые слова: растущее тело, теплопроводность, шар, собственные функции, разложение, замкнутое решение.

Ключевые слова: растущее тело, теплопроводность, шар, собственные функции, разложение, замкнутое решение. УДК 539.3 А. В. М а н ж и р о в, С. А. Л ы ч е в, С. И. К у з н е ц о в, И. Ф е д о т о в АНАЛИТИЧЕСКОЕ ИССЛЕДОВАНИЕ ПРОЦЕССА ТЕПЛОПРОВОДНОСТИ В РАСТУЩЕМ ШАРЕ Работа посвящена исследованию эволюции температурного

Подробнее

Классификация колебаний

Классификация колебаний Классификация колебаний Классификация колебаний КОЛЕБАНИЯ нет Наличие возмущающей силы есть СВОБОДНЫЕ ВЫНУЖДЕННЫЕ СВОБОДНЫЕ КОЛЕБАНИЯ нет Наличие силы сопротивления есть ГАРМОНИЧЕСКИЕ ЗАТУХАЮЩИЕ ВЫНУЖДЕННЫЕ

Подробнее

Курсовая работа по дисциплине: «дифференциальные уравнения»

Курсовая работа по дисциплине: «дифференциальные уравнения» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович

Подробнее

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 1 Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 3.1 Линейное однородное уравнение Дифференциальное уравнение вида y (n) + a n 1 y (n 1) +... + a 1 y + a 0 y = 0, (3.1) где a

Подробнее

РАСЧЁТ СООРУЖЕНИЙ ПО ДЕФОРМИРОВАННОЙ СХЕМЕ

РАСЧЁТ СООРУЖЕНИЙ ПО ДЕФОРМИРОВАННОЙ СХЕМЕ УДК 624.04 РАСЧЁТ СООРУЖЕНИЙ ПО ДЕФОРМИРОВАННОЙ СХЕМЕ Досько В.А., аспирант, Сидорович Е.М., д-р техн. наук, профессор (БНТУ) Аннотация. Проводится анализ требований, предъявляемых современными нормативными

Подробнее

Наука ЮУрГУ: материалы 66-й научной конференции Секции технических наук

Наука ЮУрГУ: материалы 66-й научной конференции Секции технических наук УДК 624.07+ 624.04 ОПРЕДЕЛЕНИЕ ЧАСТОТ СВОБОДНЫХ КОЛЕБАНИЙ В КОНИЧЕСКИХ СТЕРЖНЯХ, ИМЕЮЩИХ ЗАМКНУТЫЙ ПРЯМОУГОЛЬНЫЙ, НЕДЕФОРМИРУЕМЫЙ КОНТУР, НАХОДЯЩИХСЯ В УСЛОВИЯХ СТЕСНЁННОГО КРУЧЕНИЯ В.Ф. Сбитнев Излагается

Подробнее

Проектирование сжатых стержней силовых авиационных конструкций с использованием критерия подобия

Проектирование сжатых стержней силовых авиационных конструкций с использованием критерия подобия УДК 69.78 Проектирование сжатых стержней силовых авиационных конструкций с использованием критерия подобия В.Е. Кичеев Предлагается новый подход к проектированию сжатых стержней. Сформирован критерий подобия

Подробнее

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ ПОДЗЕМНЫХ ОБОЛОЧЕК В ПОДАТЛИВЫХ ИНЕРЦИОННЫХ СРЕДАХ ПРИ ДЕЙСТВИИ ПОДВИЖНЫХ НАГРУЗОК. Владимир Львовский

ИССЛЕДОВАНИЕ КОЛЕБАНИЙ ПОДЗЕМНЫХ ОБОЛОЧЕК В ПОДАТЛИВЫХ ИНЕРЦИОННЫХ СРЕДАХ ПРИ ДЕЙСТВИИ ПОДВИЖНЫХ НАГРУЗОК. Владимир Львовский ИССЛЕДОВАНИЕ КОЛЕБАНИЙ ПОДЗЕМНЫХ ОБОЛОЧЕК В ПОДАТЛИВЫХ ИНЕРЦИОННЫХ СРЕДАХ ПРИ ДЕЙСТВИИ ПОДВИЖНЫХ НАГРУЗОК Владимир Львовский Автор работы поставил целью выяснить почему произошли несчастные случаи в подземных

Подробнее

Воронежская государственная технологическая академия, Воронеж

Воронежская государственная технологическая академия, Воронеж ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 009. Т. 50, N- 6 19 УДК 59.; 5; 517.946 РЕШЕНИЕ ЗАДАЧИ О КРУЧЕНИИ УПРУГОГО СТЕРЖНЯ s-угольного СЕЧЕНИЯ МЕТОДОМ РАСШИРЕНИЯ ГРАНИЦ А. Д. Чернышов Воронежская государственная

Подробнее

Ульяновский государственный технический университет, Ульяновск

Ульяновский государственный технический университет, Ульяновск 36 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 211. Т. 52, N- 4 УДК 622.233.6 ВЫЧИСЛЕНИЕ КРИТИЧЕСКОЙ СКОРОСТИ СТУПЕНЧАТОЙ СТЕРЖНЕВОЙ СИСТЕМЫ ПРИ ПРОДОЛЬНОМ УДАРЕ А. А. Битюрин Ульяновский государственный

Подробнее

Статически неопределимые рамы

Статически неопределимые рамы МОСКОВСКИЙ АРХИТЕКТУРНЫЙ ИНСТИТУТ (государственная академия) Кафедра "Высшая математика и строительная механика" Статически неопределимые рамы Методическое пособие. Пример расчета статически неопределимой

Подробнее

НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ФОРМОИЗМЕНЕНИЯ НЕУПРУГИХ ПЛАСТИН И ПОЛОГИХ ОБОЛОЧЕК

НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ФОРМОИЗМЕНЕНИЯ НЕУПРУГИХ ПЛАСТИН И ПОЛОГИХ ОБОЛОЧЕК ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2005. Т. 46, N- 2 151 УДК 539.37 НЕКОТОРЫЕ ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ФОРМОИЗМЕНЕНИЯ НЕУПРУГИХ ПЛАСТИН И ПОЛОГИХ ОБОЛОЧЕК И. Ю. Цвелодуб Институт гидродинамики

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

Об усталостной прочности лопасти несущего винта вертолета при действии ветровых нагрузок

Об усталостной прочности лопасти несущего винта вертолета при действии ветровых нагрузок УД 5394 : 62972 Об усталостной прочности лопасти несущего винта вертолета при действии ветровых нагрузок АИ Братухина Статья посвящена рассмотрению вопроса о напряжениях в невращающейся лопасти и втулке

Подробнее

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета Г96 УДК 624.04 (075) ББК 38.112 Г 96 Методические указания к выполнению работы «Расчет стержневых систем с помощью полной системы уравнений строительной механики»/ Сост. С.В. Гусев, Казань: КГАСУ, 2012.

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

5. Теор. задача. Доказать, что среди явных многошаговых методов ( k=0

5. Теор. задача. Доказать, что среди явных многошаговых методов ( k=0 Прием заданий производится как правило в часы семинарских занятий ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА 3 курс 6 семестр 6 Жесткие ОДУ Участки решения характеризующиеся быстрым его изменением Понятие методов Гира

Подробнее

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб

Введение 1. Вводный раздел 2. Растяжение сжатие 3. Геометрические характеристики поперечных сечений стержня 4. Плоский прямой изгиб Введение Настоящая программа базируется на основных разделах следующих дисциплин: Математика; Физика; Теоретическая механика; Сопротивление материалов; Теория упругости и пластичности; Статика, динамика

Подробнее

I. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СИСТЕМЫ

I. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СИСТЕМЫ I. СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ СИСТЕМЫ Методы определения усилий от неподвижной нагрузки. Виды нагрузок. Методы определения усилий в статически определимых системах: а) метод сечений, б) метод замены связей.

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

Лекция 5 АНАЛИЗ ДИНАМИЧЕСКИХ ЦЕПЕЙ

Лекция 5 АНАЛИЗ ДИНАМИЧЕСКИХ ЦЕПЕЙ 4 Лекция 5 АНАЛИЗ ДИНАМИЧЕСКИХ ЦЕПЕЙ План Уравнения состояния электрических цепей Алгоритм формирования уравнений состояния 3 Примеры составления уравнений состояния 4 Выводы Уравнения состояния электрических

Подробнее

ЗАТУХАНИЕ КОЛЕБАНИЙ. ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ СИСТЕМ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ

ЗАТУХАНИЕ КОЛЕБАНИЙ. ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ СИСТЕМ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ Л е к ц и я 4 ЗАТУХАНИЕ КОЛЕБАНИЙ. ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ СИСТЕМ С ОДНОЙ СТЕПЕНЬЮ СВОБОДЫ δ T Рис. 4.1 Затухание колебаний При колебаниях реальных систем действуют силы сопротивления (силы сопротивления

Подробнее

К О Л Е Б А Н И Я МАТЕРИАЛЬНОЙ ТОЧКИ

К О Л Е Б А Н И Я МАТЕРИАЛЬНОЙ ТОЧКИ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра «МЕХАНИКА» К О

Подробнее

Теория расчета строительных конструкций

Теория расчета строительных конструкций УДК 624.042.8:534.1 ДИНАМИЧЕСКИЙ РАСЧЕТ МНОГОЭТАЖНОГО КАРКАСНОГО ЗДАНИЯ НА ДЕЙСТВИЕ ИМПУЛЬСОВ СИНУСОИДАЛЬНОЙ ФОРМЫ Л.М. Артемьева Проводится анализ колебаний многоэтажного каркасного здания, моделируемого

Подробнее

Метод решения задач на собственные значения механики деформирования оболочек и тонкостенных конструкций /597802

Метод решения задач на собственные значения механики деформирования оболочек и тонкостенных конструкций /597802 Метод решения задач на собственные значения механики деформирования оболочек и тонкостенных конструкций 77-48/5978 # 8, август 3 Виноградов Ю. И., Беляев А. В. УДК 59.7 Введение Россия, МГТУ им. Н.Э. Баумана

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы.

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Рассмотрим несколько вариантов разностной аппроксимации линейного уравнения колебаний:

Подробнее

О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки

О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки УДК 534.113 + 517.984.54 О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки по двум собственным частотам ее осесимметричных колебаний А. М.

Подробнее

РАСЧЕТ ЛИСТОВЫХ РЕССОР ПЕРЕМЕННОЙ ЖЕСТКОСТИ

РАСЧЕТ ЛИСТОВЫХ РЕССОР ПЕРЕМЕННОЙ ЖЕСТКОСТИ Труды Одесского политехнического университета, 9, вып. () 9 УДК 59.:64.7.4 Н.Г. Сурьянинов, канд. техн. наук, доц., А.Ю. Влазнева, специалист, Одес. нац. политехн. ун-т РАСЧЕТ ЛИСТОВЫХ РЕССОР ПЕРЕМЕННОЙ

Подробнее

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ УДК 539.3 АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ к.ф.-м.н. 1 Чигарев А.В., асп. 2 Покульницкий А.Р. 1 Белорусский национальный технический университет,

Подробнее

РАБОЧАЯ ПРОГРАММА дисциплины

РАБОЧАЯ ПРОГРАММА дисциплины ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

Подробнее

4, 2008 Технические науки. Машиностроение и машиноведение

4, 2008 Технические науки. Машиностроение и машиноведение 4, 2008 Технические науки. Машиностроение и машиноведение УДК 539.3:534.1 С. В. Шлычков, С. П. Иванов, С. Г. Кузовков, Ю. В. Лоскутов РАСЧЕТ ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫХ КОНСТРУКЦИЙ МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Подробнее

ДИНАМИКА МАШИННОГО АГРЕГАТА С УПРУГИМ ВАЛОМ И КВАДРАТИЧЕСКОЙ ХАРАКТЕРИСТИКОЙ ИСПОЛНИТЕЛЬНОГО МЕХАНИЗМА (часть ІІ) 1

ДИНАМИКА МАШИННОГО АГРЕГАТА С УПРУГИМ ВАЛОМ И КВАДРАТИЧЕСКОЙ ХАРАКТЕРИСТИКОЙ ИСПОЛНИТЕЛЬНОГО МЕХАНИЗМА (часть ІІ) 1 УДК : СТН БЪЧВАРОВ ВД ЗЛАТАНОВ СГ ДЕЛЧЕВА-АТАНАСОВА ДИНАМИКА МАШИННОГО АГРЕГАТА С УПРУГИМ ВАЛОМ И КВАДРАТИЧЕСКОЙ ХАРАКТЕРИСТИКОЙ ИСПОЛНИТЕЛЬНОГО МЕХАНИЗМА (часть ІІ 7 Дифференциальные уравнения движения

Подробнее

Развитие библиотеки конечных

Развитие библиотеки конечных Развитие библиотеки конечных элементов ПК ЛИРА 1 Евзеров И. Д. lira-soft.com Стержень переменного сечения Размеры сечения линейно изменяются по длине стержня. При построении матрицы жесткости используются

Подробнее

ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ПОСЛЕ ПОТЕРИ УСТОЙЧИВОСТИ д.т.н. И. Д. Евзеров

ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ПОСЛЕ ПОТЕРИ УСТОЙЧИВОСТИ д.т.н. И. Д. Евзеров УДК 59 ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНЫЕ ЗАДАЧИ ПОСЛЕ ПОТЕРИ УСТОЙЧИВОСТИ д.т.н. И. Д. Евзеров Аннотация Рассматриваются геометрически нелинейные задачи в трехмерной вариационной постановке и шаговый метод для

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. К. Манжосов РАСЧЕТ СТАТИЧЕСКИ

Подробнее

ВЯЗКОУПРУГИЕ КОЛЕБАНИЯ ТРЕУГОЛЬНОЙ ПЛАСТИНЫ

ВЯЗКОУПРУГИЕ КОЛЕБАНИЯ ТРЕУГОЛЬНОЙ ПЛАСТИНЫ 152 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 3 УДК 534.121/122 ВЯЗКОУПРУГИЕ КОЛЕБАНИЯ ТРЕУГОЛЬНОЙ ПЛАСТИНЫ Н. А. Чернышов, А. Д. Чернышов Воронежская государственная технологическая академия,

Подробнее

Уравнения в частных производных первого порядка

Уравнения в частных производных первого порядка Уравнения в частных производных первого порядка Некоторые задачи классической механики, механики сплошных сред, акустики, оптики, гидродинамики, переноса излучения сводятся к уравнениям в частных производных

Подробнее

9.3. Энергетический метод исследования устойчивости стержней

9.3. Энергетический метод исследования устойчивости стержней 9.3. Энергетический метод исследования устойчивости стержней 251 9.3. Энергетический метод исследования устойчивости стержней Постановка задачи. Прямолинейный упругий стержень переменного сечения сжимается

Подробнее

Способы учета граничных условий I рода при решении задач методом конечных элементов

Способы учета граничных условий I рода при решении задач методом конечных элементов УДК 519.624.1 Способы учета граничных условий I рода при решении задач методом конечных элементов Введение Корчагова В.Н., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана кафедра «Прикладная математика»

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

КУРСОВАЯ РАБОТА ПО ПРОГРАММИРОВАНИЮ СТУДЕНТА 218 ГРУППЫ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М. В.

КУРСОВАЯ РАБОТА ПО ПРОГРАММИРОВАНИЮ СТУДЕНТА 218 ГРУППЫ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М. В. КУРСОВАЯ РАБОТА ПО ПРОГРАММИРОВАНИЮ СТУДЕНТА 218 ГРУППЫ ФИЗИЧЕСКОГО ФАКУЛЬТЕТА МОСКОВСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ИМЕНИ М. В. ЛОМОНОСОВА ГАМОВА АРТЕМИЯ ЛЬВОВИЧА. ТЕМА: Задача Коши для системы Лоренца.

Подробнее

МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ

МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ Методические указания и варианты заданий по выполнению

Подробнее

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ОДИНАКОВЫМИ КОРНЯМИ ХАРАКТЕРИСТИЧЕСКОГО ПОЛИНОМА

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ОДИНАКОВЫМИ КОРНЯМИ ХАРАКТЕРИСТИЧЕСКОГО ПОЛИНОМА 212 УДК 517926 АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ЛИНЕЙНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ С ОДИНАКОВЫМИ КОРНЯМИ ХАРАКТЕРИСТИЧЕСКОГО ПОЛИНОМА БТ Поляк Институт проблем управления им ВА Трапезникова РАН Россия, 117997,

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

КРИТИЧЕСКИЕ СЛУЧАИ УСТОЙЧИВОСТИ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ТРЕХВИДОВОЙ ПОПУЛЯЦИИ

КРИТИЧЕСКИЕ СЛУЧАИ УСТОЙЧИВОСТИ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ТРЕХВИДОВОЙ ПОПУЛЯЦИИ УДК 517.958:57 П. А. С а д о в с к и й КРИТИЧЕСКИЕ СЛУЧАИ УСТОЙЧИВОСТИ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ТРЕХВИДОВОЙ ПОПУЛЯЦИИ Исследована устойчивость системы уравнений, описывающих математическую модель Лотки Вольтерра

Подробнее

РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК. Ю. М. Волчков,, Д. В. Важева

РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК. Ю. М. Волчков,, Д. В. Важева ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 28. Т. 49, N- 5 69 УДК 539.3 РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК Ю. М. Волчков,, Д. В. Важева Институт гидродинамики им. М.

Подробнее

b + a + l + (Рис. 1) (8.2)

b + a + l + (Рис. 1) (8.2) Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

Подробнее

Лекция 3 АНАЛИЗ ЛИНЕЙНЫХ ЦЕПЕЙ В УСТАНОВИВШЕМСЯ РЕЖИМЕ

Лекция 3 АНАЛИЗ ЛИНЕЙНЫХ ЦЕПЕЙ В УСТАНОВИВШЕМСЯ РЕЖИМЕ Лекция АНАЛИЗ ЛИНЕЙНЫХ ЦЕПЕЙ В УСТАНОВИВШЕМСЯ РЕЖИМЕ План Введение Решение систем линейных уравнений методом исключения Гаусса Метод LU- разложения 4 Анализ линейных цепей в установившемся синусоидальном

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 3

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 3 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 3 УРАВНЕНИЯ ЛАГРАНЖА ПЕРВОГО РОДА ПРИНЦИП ДАЛАМБЕРА-ЛАГРАНЖА (ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ) ПРИНЦИП ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ РАБОТА СИЛ ИНЕРЦИИ ТВЁРДОГО ТЕЛА Лектор:

Подробнее

краткого курса, представленные в иллюстрированном виде. растрачивается в значительной мере лектором и студентами на

краткого курса, представленные в иллюстрированном виде. растрачивается в значительной мере лектором и студентами на РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ ОПОРНОГО КОНСПЕКТА 1. Конспект содержит узловые принципиальные положения краткого курса, представленные в иллюстрированном виде. 2. Конспект нацелен на экономию лекционного

Подробнее

МАТЕМАТИЧЕСКАЯ ФИЗИКА

МАТЕМАТИЧЕСКАЯ ФИЗИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Математика и теоретическая механика» Методические рекомендации

Подробнее

1. Применение метода конечных элементов в расчете конструкций

1. Применение метода конечных элементов в расчете конструкций 1 Применение метода конечных элементов в расчете конструкций Посмотрим вначале как метод конечных элементов соотносится с другими методами инженерного анализа которые могут быть разделены на две категории

Подробнее

АВТОМАТИЗИРОВАННОЕ ПОСТРОЕНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ СИСТЕМ, ЗАДАННЫХ ЭКВИВАЛЕНТНЫМИ СХЕМАМИ

АВТОМАТИЗИРОВАННОЕ ПОСТРОЕНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ СИСТЕМ, ЗАДАННЫХ ЭКВИВАЛЕНТНЫМИ СХЕМАМИ УДК 681.5 АВТОМАТИЗИРОВАННОЕ ПОСТРОЕНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ СИСТЕМ, ЗАДАННЫХ ЭКВИВАЛЕНТНЫМИ СХЕМАМИ В.В. Бодров, Н.В. Плотникова, М.Н. Устюгов, З.А. Фельк Системы автоматизации построения математических

Подробнее

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ

РАСЧЕТ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ЭЛЕМЕНТОВ ОБОЛОЧЕК СПЛАЙНОВЫМ ВАРИАНТОМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ УДК 59. Х.Г. Киямов кандидат технических наук доцент кафедры прикладной математики Н.М. Якупов доктор технических наук профессор кафедры строительной механики заведующий лабораторией ИММ КазНЦ РАН И.Х.

Подробнее

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 5 193 УДК 539.3 ОБ УРАВНЕНИЯХ КОНЕЧНОГО ИЗГИБА ТОНКОСТЕННЫХ КРИВОЛИНЕЙНЫХ ТРУБ С. В. Левяков Сибирский научно-исследовательский институт авиации

Подробнее

Колебания системы с одной степепью свободы

Колебания системы с одной степепью свободы Методическое руководство Задание 8 Работа 8 Колебания системы с одной степепью свободы На двух балках двутаврового сечения установлен двигатель весом, делающий n оборотов в минуту (Рис.8). Центробежная

Подробнее

Московский государственный технический университет Имени Н.Э. Баумана Учебное пособие Григорьев Ю.В., Бородулина Т.П.

Московский государственный технический университет Имени Н.Э. Баумана Учебное пособие Григорьев Ю.В., Бородулина Т.П. Московский государственный технический университет Имени Н.Э. Баумана Учебное пособие Григорьев Ю.В., Бородулина Т.П. Методические указания по выполнению домашнего задания на тему Вынужденные колебания

Подробнее

Колебания упругих стержней. Часть 1

Колебания упругих стержней. Часть 1 Н С Анофрикова Колебания упругих стержней Часть Учебное пособие для студентов механико-математического факультета Саратовского государственного университета Саратов 4 Анофрикова Н С Колебания упругих стержней

Подробнее

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНЫ, ЗАЩЕМЛЕННОЙ ПО ДВУМ ПРОТИВОПОЛОЖНЫМ КРАЯМ

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНЫ, ЗАЩЕМЛЕННОЙ ПО ДВУМ ПРОТИВОПОЛОЖНЫМ КРАЯМ ТЕХНИКА УДК.. (.) (0) АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ ПРЯМОУГОЛЬНОЙ ПЛАСТИНЫ ЗАЩЕМЛЕННОЙ ПО ДВУМ ПРОТИВОПОЛОЖНЫМ КРАЯМ В.Э. Еремьянц докт. техн. наук профессор Л.Т. Панова канд. техн. наук доцент

Подробнее

Электронный учебно-методический комплекс «Статика и динамика плоских стержневых систем» по курсу «Сопротивление материалов»

Электронный учебно-методический комплекс «Статика и динамика плоских стержневых систем» по курсу «Сопротивление материалов» З.Н. Соколовский, С.А. Макеев Омский государственный технический университет Электронный учебно-методический комплекс «Статика и динамика плоских стержневых систем» по курсу «Сопротивление материалов»

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Метод конечных элементов

Метод конечных элементов Метод конечных элементов 1. Область применения МКЭ. 2. Основная концепция МКЭ. 3. Преимущества МКЭ. 4. Разбиение расчётной области на конечные элементы. 5. Способ аппроксимации искомой функции в конечном

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

ИССЛЕДОВАНИЕ ПРОДОЛЬНО-СЖАТЫХ СТЕРЖНЕЙ ПЕРЕМЕННОЙ ЖЕСТКОСТИ

ИССЛЕДОВАНИЕ ПРОДОЛЬНО-СЖАТЫХ СТЕРЖНЕЙ ПЕРЕМЕННОЙ ЖЕСТКОСТИ 5 УДК 69.7..44 В.Е. Приходько ИССЛЕДОВАНИЕ ПРОДОЛЬНО-СЖАТЫХ СТЕРЖНЕЙ ПЕРЕМЕННОЙ ЖЕСТКОСТИ Оценивание несущей способности конструкции помимо прочностного расчета должна включать вопросы устойчивости всей

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее