Тема: Кривые второго порядка

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Тема: Кривые второго порядка"

Транскрипт

1 Линейная алгебра и аналитическая геометрия Тема: Кривые второго порядка Лектор Пахомова Е.Г. 01 г.

2 15. Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и ) невырожденные Вырожденные кривые второго порядка это прямые и точки, которые задаются уравнением второй степени. Если уравнению второго порядка не удовлетворяет ни одна точка плоскости, то тоже говорят, что уравнение определяет вырожденную кривую (мнимую кривую второго порядка). Невырожденными кривыми второго порядка являются эллипс, окружность, гипербола и парабола.

3 1. Эллипс и окружность ОПРЕДЕЛЕНИЕ. Эллипсом называется геометрическое место точек плоскости, сумма расстояний от которых до двух фиксированных точек плоскости F 1 и F есть величина постоянная и равная (> F 1 F ). Точки F 1 и F называют фокусами эллипса. Выберем декартову прямоугольную систему координат так, чтобы фокусы F 1 и F лежали на оси O на одинаковом расстоянии от O. В такой системе координат: F 1 ( c;0) и F (c;0), где OF 1 = OF =c. O F F1 M

4 Уравнение (1): + b y = 1 называется каноническим уравнением эллипса. Система координат, в которой эллипс имеет такое уравнение, называется его канонической системой координат.

5 ИССЛЕДОВАНИЕ КАНОНИЧЕСКОГО УРАВНЕНИЯ ЭЛЛИПСА 1) Эллипс лежит внутри прямоугольника, ограниченного =±, y=±b. ) Эллипс имеет центр симметрии (начало координат) и две оси симметрии (оси O и Oy). Центр симметрии эллипса называют центром эллипса. Ось симметрии эллипса, проходящую через фокусы (ось O) называют большой (или фокальной) осью симметрии, а вторую ось (ось Oy) малой осью. 3) Из уравнения эллипса получаем: y = ± b b Исследуем кривую y = в математическом анализе: методами, разработанными

6 а) D(y)=[ ; ], y(±)=0; б) y = b функция возрастает при ( ; 0) (y >0), убывает при (0; ) (y <0), экстремум (максимум) в точке = 0, y(0) = b ; в) b y = < 0 3 ( ) кривая всюду выпуклая.

7 y B A 1 A F F 1 B 1 Точки A 1, A, B 1, B называются вершинами эллипса. Отрезок A 1 A и его длина называются большой (фокальной) осью, отрезок B 1 B и его длина b малой осью. Величины и b называются большой и малой полуосью соответственно. Длина отрезка F 1 F (равная c) называется фокусным расстоянием. Если M произвольная точка эллипса, то отрезки MF 1, MF иих длины r 1, r называются фокальными радиусами точки M

8 ОПРЕДЕЛЕНИЕ. Величина ε, равная отношению фокусного расстояния эллипса к его большой оси, называется эксцентриситетом эллипса, т.е. c c ε = = Так как c = b <, то 0<ε <1. Величина ε характеризует форму эллипса. Зная ε эллипса легко найти фокальные радиусы точки M(;y): r 1 = MF 1 = + ε, r = MF = ε. Замечания. 1) Пусть в уравнении эллипса = b = r. Для этой кривой c c = b = 0 F 1 = F = O, ε = = 0 Геометрически, это означает, что точки кривой равноудалены (на расстояние r) от ее центра O, т.е. кривая является окружностью. Каноническое уравнение окружности принято записывать в виде + y = r, где r расстояние от любой точки окружности до ее центра; r называют радиусом окружности.

9 ) Если выбрать систему координат так, чтобы фокусы F 1 и F были на оси Oy на одинаковом расстоянии от начала координат, то уравнение эллипса будет иметь вид y + = 1 b Для этого эллипса большая ось ось Oy, малая ось ось O, фокусы имеют координаты F 1 (0; c) и F (0;c),где c = b Фокальные радиусы точки M(;y) находятся по формулам r 1 = MF 1 = + εy, r = MF = εy. y A F B1 B F 1 A 1

10 . Гипербола ОПРЕДЕЛЕНИЕ. Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от которых до двух фиксированных точек плоскости F 1 и F есть величина постоянная и равная ( < F 1 F ). Точки F 1 и F называют фокусами гиперболы. Выберем декартову прямоугольную систему координат так, чтобы фокусы F 1 и F лежали на оси O на одинаковом расстоянии от O. В такой системе координат: F 1 ( c;0) и F (c;0), где OF 1 = OF =c. O F F1 M

11 Уравнение (): b y = 1 называется каноническим уравнением гиперболы. Система координат, в которой гипербола имеет такое уравнение, называется ее канонической системой координат.

12 ИССЛЕДОВАНИЕ КАНОНИЧЕСКОГО УРАВНЕНИЯ ГИПЕРБОЛЫ 1) Точек гиперболы нет в полосе, ограниченной прямыми =±. ) Гипербола имеет центр симметрии (начало координат) идве оси симметрии (оси O и Oy). Центр симметрии гиперболы называют центром гиперболы. Ось симметрии гиперболы, проходящую через фокусы (ось O) называют действительной (или фокальной) осью симметрии, а вторую ось (ось Oy) мнимой осью. 3) Из уравнения гиперболы получаем: b y = ± методами, разработан- b Исследуем кривую y = ными в математическом анализе:

13 а) D(y)=( ; ] [;+ ), y(±)=0; b b б) линия y = имеет асимптоты y = ± Напомним: Прямая l называется асимптотой кривой, если расстояние от точки M кривой до прямой l стремится к нулю при удалении точки M от начала координат. Существуют два вида асимптот вертикальные и наклонные. Вертикальные асимптоты кривая y=f() имеет в тех точках разрыва II рода функции y=f(), в которых хотя бы один из односторонних пределов функции равен бесконечности. Наклонные асимптоты кривой y=f() имеют уравнение y=k 1, +b 1,, где k 1, f ( ) = lim, b [ f k ] 1, = lim ( ) 1,. ± ±

14 в) y = b функция возрастает при (;+ ) (y >0), убывает при ( ; ) (y <0), экстремумов нет (критические точки =0 D(y) и = ± граничные); г) y = ( b < 0 кривая всюду выпуклая. ) 3

15 y b B F A 1 A 1 b B1 F Точки A 1, A называются вершинами гиперболы. Отрезок A 1 A и его длина называются действительной (фокальной) осью, отрезок B 1 B и его длина b мнимой осью. Величины и b называются действительной и мнимой полуосью соответственно. Длина отрезка F 1 F (равная c) называется фокусным расстоянием. Если M точка гиперболы, то отрезки MF 1, MF иихдлиныr 1, r называются фокальными радиусами точки M

16 ОПРЕДЕЛЕНИЕ. Величина ε, равная отношению фокусного расстояния гиперболы к ее действительной оси, называется эксцентриситетом гиперболы, т.е. c c ε = = Так как c = + b >, то ε >1. Величина ε характеризует форму гиперболы. Зная эксцентриситет гиперболы легко найти фокальные радиусы точки M(;y). Если точка M лежит на правой ветке гиперболы (т.е. > 0), то r 1 = MF 1 = + ε, r = MF = + ε. Если M лежит на левой ветке гиперболы (т.е. < 0), то r 1 = MF 1 = ( + ε), r = MF = ( + ε).

17 Замечания. 1) Если в уравнении гиперболы =b, то гипербола называется равнобочной. Асимптоты равнобочной гиперболы, перпендикулярны. можно выбрать систему координат так, чтобы координатные оси совпали с асимптотами. Тогда уравнение гиперболы будет y=0,5. (3) Уравнение (3) называют уравнением равнобочной гиперболы, отнесенной к асимптотам.

18 ) Если выбрать систему координат так, чтобы фокусы F 1 и F были на одинаковом расстоянии от O(0;0), но лежали на Oy, то уравнение гиперболы будет иметь вид y y + = 1 b F Для этой гиперболы: A действительная ось ось Oy, мнимая ось ось O, b F 1 (0; c) и F (0;c) (где c = + b ) b асимптоты: y = ± b A 1 фокальные радиусы точки M(;y) находятся по формулам 1 F а) при y > 0: r 1 = MF 1 =+εy, r = MF = +εy; б) при y < 0: r 1 = MF 1 = (+εy), r = MF = ( +εy).

19 3. Парабола Пусть l некоторая прямая на плоскости, F некоторая точка плоскости, не лежащая на прямой l. ОПРЕДЕЛЕНИЕ. Параболой называется геометрическое место точек плоскости, расстояние от которых до фиксированной прямой l и до фиксированной точки F (не лежащей на прямой l) одинаково. Точку F называют фокусом параболы, прямую l директрисой. Выберем декартову прямоугольную систему координат так, чтобы директриса параболы l была перпендикулярна оси O, фокус F лежал на положительной части O и расстояние от O до F идоl было одинаковым. В такой системе координат: F (0,5p;0) и l: + 0,5p =0, где p расстояние от F до l. M l O F

20 Уравнение (4): y = p называется каноническим уравнением параболы. Система координат, в которой парабола имеет такое уравнение, называется ее канонической системой координат.

21 ИССЛЕДОВАНИЕ КАНОНИЧЕСКОГО УРАВНЕНИЯ ПАРАБОЛЫ 1) Парабола лежит в полуплоскости 0. ) Парабола имеет ось симметрии (ось O). Ось симметрии параболы называют осью параболы. 3) Из уравнения параболы получаем: y = ± p Исследуем кривую y = p методами, разработанными в математическом анализе: а) D(y)=[0;+ ), y(0) = 0 ; б) асимптот нет (проверить самим); p в) y = > 0 функция всюду возрастает; г) = p y < 0 кривая всюду выпуклая. 3 4

22 l y F p Точка, в которой парабола пересекает свою ось, называется вершиной параболы, Число p называется параметром параболы. Если M произвольная точка параболы, то отрезок MF и его длина называются фокальными радиусами точки M.

23 Замечание. Введем систему координат так, чтобы фокус F параболы лежал на отрицательной части оси O, директриса была перпендикулярна O, и расстояние от O до F идо директрисы было одинаково. y l p F Тогда получим для параболы уравнение y = p, (5) а для директрисы и фокуса: F( 0,5p;0) и l : 0,5p = 0.

24 Выберем систему координат так, чтобы директриса была перпендикулярна Oy, фокус лежал на положительной (отрицательной) части оси Oy и O была на одинаковом расстоянии от F иотдиректрисы(рис. ирис. 3): p y = py F l рис. рис. 3 Тогда уравнение параболы будет иметь вид = ±py, (6) а для директрисы и фокуса получим: F(0; ± 0,5p) и l : y ± 0,5p = 0. Уравнения (5) и (6) тоже называются каноническими уравнениями параболы, а соответствующие им системы координат каноническими системами координат. p y F l = py


Тема: Кривые второго порядка

Тема: Кривые второго порядка Линейная алгебра и аналитическая геометрия Тема: Кривые второго порядка Лектор Рожкова С.В. 01 г. 15. Кривые второго порядка Кривые второго порядка делятся на 1) вырожденные и ) невырожденные Вырожденные

Подробнее

Окружность радиуса R с центром в точке. Пример. Нарисуйте кривую. Решение. Выделив полные квадраты, получим.

Окружность радиуса R с центром в точке. Пример. Нарисуйте кривую. Решение. Выделив полные квадраты, получим. Кривые второго порядка Окружность Эллипс Гипербола Парабола Пусть на плоскости задана прямоугольная декартова система координат. Кривой второго порядка называется множество точек, координаты которых удовлетворяют

Подробнее

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве

Аналитическая геометрия Модуль 2. Аналитическая геометрия на плоскости и в пространстве Аналитическая геометрия Модуль. Аналитическая геометрия на плоскости и в пространстве Лекция 7 Аннотация Линии второго порядка на плоскости: эллипс, гипербола, парабола. Определение, общие характеристики.

Подробнее

Прямая линия и плоскость в пространстве. Линейная алгебра (лекция 11) / 37

Прямая линия и плоскость в пространстве. Линейная алгебра (лекция 11) / 37 Прямая линия и плоскость в пространстве Линейная алгебра (лекция 11) 24.11.2012 2 / 37 Прямая линия и плоскость в пространстве Расстояние между двумя точками M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 )

Подробнее

8. Кривые второго порядка Окружность

8. Кривые второго порядка Окружность 8 Кривые второго порядка 81 Окружность Множество точек плоскости, равноудаленных от одной точки, называемой центром, на расстояние, называемое радиусом, называется окружностью Пусть центр окружности находится

Подробнее

ЛЕКЦИЯ N15. Кривые второго порядка. 1.Окружность. 2.Эллипс. 1.Окружность Эллипс Гипербола Парабола... 4

ЛЕКЦИЯ N15. Кривые второго порядка. 1.Окружность. 2.Эллипс. 1.Окружность Эллипс Гипербола Парабола... 4 ЛЕКЦИЯ N15. Кривые второго порядка. 1.Окружность... 1.Эллипс... 1 3.Гипербола.... 4.Парабола.... 4 1.Окружность Кривой второго порядка называется линия, определяемая уравнением второй степени относительно

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я кривые второго порядка

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я кривые второго порядка А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я кривые второго порядка ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов

Подробнее

Асимптотами гиперболы называются прямые, к которым неограниченно приближается гипербола при неограниченном возрастании абсцисс ее точек.

Асимптотами гиперболы называются прямые, к которым неограниченно приближается гипербола при неограниченном возрастании абсцисс ее точек. Практическое занятие 1 Тема: Гипербола План 1 Определение и каноническое уравнение гиперболы Геометрические свойства гиперболы Взаимное расположение гиперболы и прямой, проходящей через ее центр Асимптоты

Подробнее

3. Гипербола и её свойства

3. Гипербола и её свойства 3. Гипербола и её свойства Определение 3.. Гиперболой называется кривая определяемая в некоторой прямоугольной декартовой системе координат уравнением 0. (3.) а Равенство (3.) называется каноническим уравнением

Подробнее

= 2a. x + y = r - каноническое уравнение окружности с

= 2a. x + y = r - каноническое уравнение окружности с ЛИНЕЙНАЯ АЛГЕБРА Лекция Уравнения кривых второго порядка Окружность Определение Окружность это геометрическое место точек, равноудаленных от одной точки, называемой центром окружности, на расстоянии r

Подробнее

Лекция 13. Тема: Кривые второго порядка. Кривые второго порядка на плоскости: эллипс, гипербола, парабола.

Лекция 13. Тема: Кривые второго порядка. Кривые второго порядка на плоскости: эллипс, гипербола, парабола. Лекция 13 Тема: Кривые второго порядка Кривые второго порядка на плоскости: эллипс, гипербола, парабола. Вывод уравнений кривых второго порядка исходя из их геометрических свойств. Исследование формы эллипса,

Подробнее

Тема: Кривые второго порядка (продолжение)

Тема: Кривые второго порядка (продолжение) Линейная алгебра и аналитическая геометрия Тема: Кривые второго порядка (продолжение) Лектор Пахомова Е.Г. 01 г. 4. Общее определение эллипса, гиперболы и параболы ОПРЕДЕЛЕНИЕ. Прямые a m называются дирек-

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я кривые второго порядка

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я кривые второго порядка А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я кривые второго порядка ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов

Подробнее

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Тема ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Лекция.. Прямые на плоскости П л а н. Метод координат на плоскости.. Прямая в декартовых координатах.. Условие параллельности и перпендикулярности

Подробнее

ЛЕКЦИЯ 11. Линии второго порядка. В качестве примера найдем уравнения задающие окружность, параболу, эллипс и. Окружность.

ЛЕКЦИЯ 11. Линии второго порядка. В качестве примера найдем уравнения задающие окружность, параболу, эллипс и. Окружность. ЛЕКЦИЯ Линии второго порядка гиперболу В качестве примера найдем уравнения задающие окружность, параболу, эллипс и Окружность Окружностью называется множество точек плоскости, равноудалённых от заданной

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Кривые второго порядка.

Кривые второго порядка. Кривые второго порядка. Определение : Линией кривой) второго порядка называется множество {М} точек плоскости, декартовы координаты X, Y) которых удовлетворяют алгебраическому уравнению второй степени:,

Подробнее

Курс лекций подготовлен доц. Мусиной М.В. Аналитическая геометрия на плоскости.

Курс лекций подготовлен доц. Мусиной М.В. Аналитическая геометрия на плоскости. Аналитическая геометрия на плоскости. Аналитическая геометрия решение геометрических задач с помощью алгебры, для чего используется метод координат. Под системой координат на плоскости понимают способ,

Подробнее

i OF 1, эллипс имеет уравнение: МОДУЛЬ 1. ЭЛЛИПС. ГИПЕРБОЛА. ПАРАБОЛА Практическое занятие 12 Тема: Эллипс

i OF 1, эллипс имеет уравнение: МОДУЛЬ 1. ЭЛЛИПС. ГИПЕРБОЛА. ПАРАБОЛА Практическое занятие 12 Тема: Эллипс МОДУЛЬ ЭЛЛИПС ГИПЕРБОЛА ПАРАБОЛА Практическое занятие Тема: Эллипс План Определение и каноническое уравнение эллипса Геометрические свойства эллипса Эксцентриситет Зависимость формы эллипса от эксцентриситета

Подробнее

r = (x, y) r 1 = (x 1,,y 1 ) M 1 (x 1,,y 1 ) L M(x, y) L D = Ax 1 By 1 ; M 1 (x 1, y 1 ) L; N=(A,B) L y=0 x=a x=0 y=b a = ; A

r = (x, y) r 1 = (x 1,,y 1 ) M 1 (x 1,,y 1 ) L M(x, y) L D = Ax 1 By 1 ; M 1 (x 1, y 1 ) L; N=(A,B) L y=0 x=a x=0 y=b a = ; A Уравнения прямой на плоскости в R - - Уравнение прямой проходящей через точку перпендикулярно вектору Общее уравнение прямой k Уравнение прямой с угловым коэффициентом ГЕОМЕТРИЯ ПРЯМЫХ И ПЛОСКОСТЕЙ В ТАБЛИЦАХ

Подробнее

ε = <1, ε эксцентриситет эллипса;

ε = <1, ε эксцентриситет эллипса; эллипса КРИВЫЕ ВТОРОГО ПОРЯДКА Эллипсом называется множество всех точек плоскости, для которых сумма расстояний от двух данных точек этой плоскости, называемых фокусами эллипса, есть величина постоянная,

Подробнее

ВТОРОЕ ЗАДАНИЕ. 4. В прямоугольной системе координат точка А лежит на прямой 2x 3y+ 4= 0.

ВТОРОЕ ЗАДАНИЕ. 4. В прямоугольной системе координат точка А лежит на прямой 2x 3y+ 4= 0. ВТОРОЕ ЗАДАНИЕ 1. Прямая на плоскости. 1. Две прямые заданы векторными уравнениями (, rn ) = D и r= r + a, причем ( an, ) 0. Найти радиус-вектор точки пересечения прямых. 0 t. Даны точка М 0 с радиус-вектором

Подробнее

Лекция 9 M L G K M C. AL 2 = r 2 + x 2 + y 2. Отложим на прямой AC отрезок AM = AL.

Лекция 9 M L G K M C. AL 2 = r 2 + x 2 + y 2. Отложим на прямой AC отрезок AM = AL. Лекция 9 1. КОНИЧЕСКИЕ СЕЧЕНИЯ 1.1. Определение. Рассмотрим сечение прямого кругового конуса плоскостью, перпендикулярной к образующей этого конуса. При различных значениях угла α при вершине в осевом

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия Аналитическая геометрия на плоскости. Аналитическая геометрия решение геометрических задач с помощью алгебры, для чего используется метод координат. Под системой координат на плоскости

Подробнее

3. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

3. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ЗАНЯТИЕ ПЛОСКОСТЬ В ТРЕХМЕРНОМ ПРОСТРАНСТВЕ Написать векторное уравнение плоскости и объяснить смысл величин, входящих в это уравнение Написать общее уравнение плоскости

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

x 2 a 2 + y2 b 2 = 1, (1 k) y = b a a 2 x 2, 0 x a.

x 2 a 2 + y2 b 2 = 1, (1 k) y = b a a 2 x 2, 0 x a. Занятие 12 Эллипс, гипербола и парабола. Канонические уравнения. Эллипсом называется геометрическое место точек M на плоскости, для которых сумма расстояний от двух фиксированных точек F 1 и F 2, называемых

Подробнее

10. АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ

10. АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ . АЛГЕБРАИЧЕСКИЕ ЛИНИИ НА ПЛОСКОСТИ.. ЛИНИИ ПЕРВОГО ПОРЯДКА (ПРЯМЫЕ НА ПЛОСКОСТИ... ОСНОВНЫЕ ТИПЫ УРАВНЕНИЙ ПРЯМЫХ НА ПЛОСКОСТИ Ненулевой вектор n перпендикулярный заданной прямой называется нормальным

Подробнее

Лекция 11 M L G K M C

Лекция 11 M L G K M C Лекция 11 1. КОНИЧЕСКИЕ СЕЧЕНИЯ 1.1. Определение. Рассмотрим сечение прямого кругового конуса плоскостью, перпендикулярной к образующей этого конуса. При различных значениях угла α при вершине в осевом

Подробнее

15. Поверхности второго порядка

15. Поверхности второго порядка 15 Поверхности второго порядка Поверхностью второго порядка называется геометрическое место точек в пространстве, декартовы координаты которых удовлетворяют уравнению F(,,) = 0, где F(,,) многочлен степени

Подробнее

x2 a 2) ( x + x 2 a 2) x 2 a 2 =

x2 a 2) ( x + x 2 a 2) x 2 a 2 = 44. Гипербола Определение. Гиперболой называется множество всех точек на плоскости, координаты которых в подходящей системе координат удовлетворяют уравнению 2 2 y2 = 1, (1) b2 где, b > 0. Это уравнение

Подробнее

Конспект лекции 13 ЭЛЛИПС, ГИПЕРБОЛА И ПАРАБОЛА

Конспект лекции 13 ЭЛЛИПС, ГИПЕРБОЛА И ПАРАБОЛА Конспект лекции 13 ЭЛЛИПС, ГИПЕРБОЛА И ПАРАБОЛА 0. План лекции Лекция Эллипс, Гипербола и Парабола. 1. Эллипс. 1.1. Определение эллипса; 1.2. Определение канонической системы координат; 1.3. Вывод уравнения

Подробнее

Кривые второго порядка

Кривые второго порядка Министерство образования и науки Российской Федерации Ярославский государственный университет им. П. Г. Демидова Кафедра алгебры и математической логики Кривые второго порядка Часть I Методические указания

Подробнее

Задачи для отработки пропущенных занятий

Задачи для отработки пропущенных занятий Задачи для отработки пропущенных занятий Оглавление Тема: Матрицы, действия над ними. Вычисление определителей.... 2 Тема: Обратная матрица. Решение систем уравнений с помощью обратной матрицы. Формулы

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 9 ЭЛЛИПС, ГИПЕРБОЛА И ПАРАБОЛА 1. Каноническое уравнение эллипса Определение 1. Эллипсом называется геометрическое место точек M на плоскости, сумма расстояний от каждой

Подробнее

2. Эллипс и его свойства

2. Эллипс и его свойства . Эллипс и его свойства Определение.. Эллипсом называется кривая второго порядка, определяемая в некоторой прямоугольной декартовой системе координат уравнением b, b 0. (.) Равенство (.) называется каноническим

Подробнее

ЛИНИИ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ

ЛИНИИ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ Глава ЛИНИИ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ.1. Эллипс, гипербола, парабола Определение. Эллипсом называется множество всех точек плоскости, для которых сумма расстояний до двух данных точек F 1 и F есть постоянная

Подробнее

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА. ЭЛЕМЕНТЫ

Подробнее

Лекция 1.4. Кривые и поверхности второго порядка

Лекция 1.4. Кривые и поверхности второго порядка 1 Лекция 1.4. Кривые и поверхности второго порядка Аннотация: Из определений выводятся канонические уравнения кривых: эллипса, гиперболы и параболы. Даются параметрические уравнения эллипса и гиперболы.

Подробнее

Практическое занятие 14 Тема: Парабола

Практическое занятие 14 Тема: Парабола Практическое занятие 14 Тема: Парабола План 1. Определение и каноническое уравнение параболы.. Геометрические свойства параболы. Взаимное расположение параболы и прямой, проходящей через ее центр. Основные

Подробнее

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости Лекция 9,30 Глава Аналитическая геометрия на плоскости Системы координат на плоскости Прямоугольная и полярная системы координат Системой координат на плоскости называется способ, позволяющий определять

Подробнее

Лекция 11: Гипербола

Лекция 11: Гипербола Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции изучается еще одна кривая второго порядка гипербола.

Подробнее

Глава 9 Кривые на плоскости. Кривые второго порядка

Глава 9 Кривые на плоскости. Кривые второго порядка Глава 9 Кривые на плоскости. Кривые второго порядка 9. Основные понятия Говорят, что кривая Г в прямоугольной системе координат Оху имеет уравнение F (, )=0, если точка М(х, у) принадлежит кривой в том

Подробнее

Лекция 10: Эллипс. Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики. Б.М.

Лекция 10: Эллипс. Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики. Б.М. Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В трех предыдущих лекциях изучались прямые и плоскости, т.е.

Подробнее

Контрольная 1 Геометрия-1. Матфак ВШЭ, осень 2014

Контрольная 1 Геометрия-1. Матфак ВШЭ, осень 2014 Вариант 1 Задача 1. Дать геометрическое определение эллипса. Задача 2. Доказать с помощью шаров Данделена, что эллипс возникает как коническое сечение. Задача 3. Доказать, что множество точек P, из которых

Подробнее

ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ.

ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ. Прямая линия 1. Вычислите периметр треугольника, вершинами которого служат точки A(6; 7), B(3; 3), C( 1; 5). 2. Найдите точку, равноудаленную от точек A(7;

Подробнее

= 1 е) f(9) = 27; f(1) = 3

= 1 е) f(9) = 27; f(1) = 3 Глава 8 ФУНКЦИИ И ГРАФИКИ Алгоритмы А- Задание стандартных функций А- Понятие функции. График функции А-3 Каноническая запись зависимостей А- Задание стандартных функций. К стандартным функциям отнесем

Подробнее

ВВЕДЕНИЕ В АНАЛИТИЧЕСКУЮ ГЕОМЕТРИЮ НА ПЛОСКОСТИ

ВВЕДЕНИЕ В АНАЛИТИЧЕСКУЮ ГЕОМЕТРИЮ НА ПЛОСКОСТИ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» ВВЕДЕНИЕ В АНАЛИТИЧЕСКУЮ ГЕОМЕТРИЮ НА ПЛОСКОСТИ НС Анофрикова, ОВ Сорокина Учебное пособие для студентов нематематических специальностей

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия 5.. Прямая на плоскости Различные способы задания прямой на плоскости. Общее уравнение прямой на плоскости. Расположение прямой относительно системы координат. Геометрический смысл

Подробнее

Задачи по аналитической геометрии

Задачи по аналитической геометрии I. Векторная алгебра Задачи по аналитической геометрии I.1. Скалярное, векторное и смешанное произведение 1. Длины векторов ā и b равны 1, скалярное произведение (ā + b, 2ā + 3 b) = 3 2. Найти скалярное

Подробнее

Глава I. Векторная алгебра.

Глава I. Векторная алгебра. Глава I Векторная алгебра Линейные операции над векторами Основные обозначения: - вектор; АВ - вектор с началом в точке и концом в точке B ; B -длина вектора АВ, те расстояние между точками и B ; b - коллинеарные

Подробнее

Тема. Кривые и поверхности второго порядка... 2 Лекция 1. Кривые второго порядка Каноническое уравнение окружности

Тема. Кривые и поверхности второго порядка... 2 Лекция 1. Кривые второго порядка Каноническое уравнение окружности Тема. Кривые и поверхности второго порядка... Лекция 1. Кривые второго порядка... 1. Каноническое уравнение окружности.... Каноническое уравнение эллипса... 3 3. Каноническое уравнение гиперболы... 6 4.

Подробнее

Диаметр кривой второго порядка и сопряжённые направления

Диаметр кривой второго порядка и сопряжённые направления Диаметр кривой второго порядка и сопряжённые направления Напомним известные свойства окружности. Угол, опирающийся на диаметр прямой. Касательная и диаметр, проведённый через точку касания перпендикулярны.

Подробнее

Поверхности второго порядка

Поверхности второго порядка Поверхности второго порядка Поверхностью второго порядка называется геометрическая фигура, которая в некоторой декартовой системе координат описывается уравнением 2 2 2 (1) 0. При этом предполагается,

Подробнее

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к зачету по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им. М.В.Ломоносова Кафедра математики Вопросы к зачету по математике семестр для студентов курса ИСиА, -6 гр. направление

Подробнее

, и в этом случае линия является графиком функции f( x ). Пример 5.1. На оси Ox найти точку, одинаково удаленную от двух точек

, и в этом случае линия является графиком функции f( x ). Пример 5.1. На оси Ox найти точку, одинаково удаленную от двух точек ГЛАВА 5. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 5.. Уравнение линии на плоскости Уравнение вида F( x, y) 0 называется уравнением линии, если этому уравнению удовлетворяют координаты любой точки, лежащей на данной плоской

Подробнее

Тексты лекций «Теория кривых второго порядка»

Тексты лекций «Теория кривых второго порядка» ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ КАФЕДРА Математика и финансовые приложения Е.С. Волкова Тексты лекций «Теория кривых второго порядка» Москва 00 Аннотация Курс лекций содержит

Подробнее

РТУ-МИРЭА ГОРШУНОВА Т.А. Поверхности второго порядка. Поверхность в трехмерном пространстве описывается уравнением. или

РТУ-МИРЭА ГОРШУНОВА Т.А. Поверхности второго порядка. Поверхность в трехмерном пространстве описывается уравнением. или Поверхности второго порядка. Поверхность в трехмерном пространстве описывается уравнением вида F(x; y; z) = 0 или z = f(x; y). Пересечение двух поверхностей задает линию в пространстве, т.е. линия в пространстве

Подробнее

Кривые второго порядка

Кривые второго порядка Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Образцы базовых задач по ЛА

Образцы базовых задач по ЛА Образцы базовых задач по ЛА Метод Гаусса Определенные системы линейных уравнений Решите систему линейных уравнений методом Гаусса x 6 y 6 8, 6 x 6 y 6 Решите систему линейных уравнений методом Гаусса 6

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

МОДУЛЬ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ» ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ «ПРЯМАЯ НА ПЛОСКОСТИ» «КРИВЫЕ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ»

МОДУЛЬ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ» ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ «ПРЯМАЯ НА ПЛОСКОСТИ» «КРИВЫЕ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ» МОДУЛЬ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ» ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ «ПРЯМАЯ НА ПЛОСКОСТИ» «КРИВЫЕ ВТОРОГО ПОРЯДКА НА ПЛОСКОСТИ» Составитель кпн Пекельник НМ НМ Пекельник - 1 - Указания по выполнению

Подробнее

ВАРИАНТ 16 M Доказать, что прямые

ВАРИАНТ 16 M Доказать, что прямые ВАРИАНТ 16 1 Через точки M 1 (3 4) и M (6 ) проведена прямая Найти точки пересечения этой прямой с осями координат Составить уравнения сторон треугольника для которого точки A ( 1 ) B ( 3 1) C (0 4) являются

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

ВАРИАНТ 1. на плоскость. 6. Найти уравнение проекции прямой

ВАРИАНТ 1. на плоскость. 6. Найти уравнение проекции прямой ВАРИАНТ 1 1 Найти угловой коэффициент k прямой проходящей через точки M 1 (18) и M ( 14); записать уравнение прямой в параметрическом виде Составить уравнения сторон и медиан треугольника с вершинами A()

Подробнее

Основные задачи аналитической геометрии. 1. Способы задания линии на плоскости.

Основные задачи аналитической геометрии. 1. Способы задания линии на плоскости. Основные задачи аналитической геометрии Аналитическая геометрия раздел математики, в котором изучаются геометрические объекты с помощью алгебраических методов. Основным методом аналитической геометрии

Подробнее

Зачетное задание по аналитической геометрии. Семестр 2. Вариант 1

Зачетное задание по аналитической геометрии. Семестр 2. Вариант 1 Зачетное задание по аналитической геометрии. Семестр 2. Вариант 1 1. Найдите уравнения касательных к окружности (x + 3) 2 + (y + 1) 2 = 4, параллельных прямой 5x 12y + 1 = 0. 2. Напишите уравнение касательной

Подробнее

КРИВЫЕ ВТОРОГО ПОРЯДКА

КРИВЫЕ ВТОРОГО ПОРЯДКА Федеральное агентство по образованию Архангельский государственный технический университет КРИВЫЕ ВТОРОГО ПОРЯДКА Методические указания к выполнению расчетно-графической (контрольной) работы Архангельск

Подробнее

Кривые второго порядка

Кривые второго порядка Министерство образования и науки Российской Федерации Ярославский государственный университет им. П. Г. Демидова Кафедра алгебры и математической логики С. И. Яблокова Кривые второго порядка Часть Практикум

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

Алгебра, геометрия, математический анализ. В. Т. Фоменко КЛАССИФИКАЦИЯ БИССЕКТОРОВ ДВУХ ОКРУЖНОСТЕЙ НА ПЛОСКОСТИ

Алгебра, геометрия, математический анализ. В. Т. Фоменко КЛАССИФИКАЦИЯ БИССЕКТОРОВ ДВУХ ОКРУЖНОСТЕЙ НА ПЛОСКОСТИ УДК 51475/77 ББК 22151 В Т Фоменко КЛАССИФИКАЦИЯ БИССЕКТОРОВ ДВУХ ОКРУЖНОСТЕЙ НА ПЛОСКОСТИ Аннотация Автор дает полную классификацию множеств точек, равноудаленных от двух окружностей на плоскости Ключевые

Подробнее

Ответы. Ответы к задаче 1

Ответы. Ответы к задаче 1 Ответы Ответы к задаче Три Три x, x, x ; ; ; свободные члены системы не содержат неизвестных и записываются обычно в правых частях уравнений 5 Уравнения называют линейными, если они представляют собой

Подробнее

ВЫСШАЯ МАТЕМАТИКА. МАТЕМАТИКА

ВЫСШАЯ МАТЕМАТИКА. МАТЕМАТИКА ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА. МАТЕМАТИКА Методические рекомендации к практическим занятиям

Подробнее

Часть 1. Линейная алгебра. Аналитическая геометрия

Часть 1. Линейная алгебра. Аналитическая геометрия Часть Линейная алгебра Аналитическая геометрия Задача Вычислить определитель 6 5 5 6 79 4 8 6 0 0 6 7 6 8 0 5 9 4 0 4 0 5 6 0 6 9 7 9 7 9 8 8 5 8 6 8 6 4 8 5 9 5 9 7 9 7 7 7 4 8 6 8 6 6 8 9 5 4 6 6 9 7

Подробнее

Кривые второго порядка

Кривые второго порядка Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кривые второго порядка Индивидуальные

Подробнее

Поверхности второго порядка. Общее уравнение поверхности второго порядка имеет вид: =0,

Поверхности второго порядка. Общее уравнение поверхности второго порядка имеет вид: =0, Поверхности второго порядка. Общее уравнение поверхности второго порядка имеет вид: + + +2 +2 +2 + +2 +2 +2 + =0, где произвольно заданные числа, коэффициенты. Рассмотрим основные виды поверхностей второго

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

ВАРИАНТ 11. Вычислить его площадь; найти уравнение высоты и медианы, проведенных

ВАРИАНТ 11. Вычислить его площадь; найти уравнение высоты и медианы, проведенных ВАРИАНТ 11 1 Точка M() является основанием перпендикуляра опущенного из точки N(1-1) на прямую l Написать уравнение прямой l; найти расстояние от точки N до прямой l Составить уравнения прямых проходящих

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ 2. 5 B D F K M A C G. Вписываем эти буквы в первую строку табл. 2 и выбираем строку, соответствующую четырнадцатому варианту:

ДОМАШНЕЕ ЗАДАНИЕ 2. 5 B D F K M A C G. Вписываем эти буквы в первую строку табл. 2 и выбираем строку, соответствующую четырнадцатому варианту: ДОМАШНЕЕ ЗАДАНИЕ. Для выполнения домашнего задания Вам необходимо, пользуясь табл. 1, заполнить первую строку табл., затем выписать соответствующие Вашему номеру варианта данные из табл.. Например, Вы

Подробнее

1. Поверхности второго порядка

1. Поверхности второго порядка 1 1. Поверхности второго порядка Здесь мы познакомимся с некоторыми вопросами теории поверхностей второго порядка, уравнения которых будут иметь вид A + B + Cz 2 + Dxy + Eyz + F yz + Gx + Hy + Kz + L =

Подробнее

Практическая работа 4 Составление уравнений прямых и кривых второго порядка

Практическая работа 4 Составление уравнений прямых и кривых второго порядка Практическая работа Составление уравнений прямых и кривых второго порядка Цель работы: закрепить умения составлять уравнения прямых и кривых второго порядка Содержание работы. Основные понятия. B C 0 вектор

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРО- СТРАНСТВЕ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРО- СТРАНСТВЕ Балаковский инженерно-технологический институт - филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Подробнее

Лекция 12: Парабола. Б.М.Верников. Уральский федеральный университет,

Лекция 12: Парабола. Б.М.Верников. Уральский федеральный университет, Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции изучается третья кривая второго порядка парабола.

Подробнее

Глава 3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. 1. Простейшие задачи аналитической геометрии в пространстве

Глава 3. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. 1. Простейшие задачи аналитической геометрии в пространстве Глава 3 АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 1 Простейшие задачи аналитической геометрии в пространстве Положение точки в пространстве обычно определяется заданием тройки чисел координат точки в декартовом базисе 1)

Подробнее

Сборник тестовых заданий

Сборник тестовых заданий федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» КАФЕДРА «МАТЕМАТИКА» М. В. ИШХАНЯН, А.И.

Подробнее

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ АВТОМОБИЛЬНО ДОРОЖНЫЙ ИНСТИТУТ

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ АВТОМОБИЛЬНО ДОРОЖНЫЙ ИНСТИТУТ МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ АВТОМОБИЛЬНО ДОРОЖНЫЙ ИНСТИТУТ Кафедра: Высшая математика Тема: Кривые второго порядка Реферат Выполнил: Студент

Подробнее

Задачи по аналитической геометрии

Задачи по аналитической геометрии МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ" Кафедра алгебры и геометрии

Подробнее

НЕКОТОРЫЕ СВОЙСТВА ЭЛЛИПСА. А.В. Баяндин

НЕКОТОРЫЕ СВОЙСТВА ЭЛЛИПСА. А.В. Баяндин 1 НЕКОТОРЫЕ СВОЙСТВА ЭЛЛИПСА А.В. Баяндин В этой небольшой работе мы остановимся на некоторых свойствах эллипса, слабо или совсем не освещаемых в современной математической литературе. Интересно, что все

Подробнее

РАЗДЕЛ 2. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

РАЗДЕЛ 2. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ РАЗДЕЛ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Часть I Аналитическая геометрия на плоскости Уравнение линии на плоскости Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат

Подробнее

3. Выпуклость и вогнутость кривой. Точки перегиба

3. Выпуклость и вогнутость кривой. Точки перегиба 3. Выпуклость и вогнутость кривой. Точки перегиба ОПРЕДЕЛЕНИЕ. Пусть l кривая, M 0 точка кривой, причем в M 0 существует невертикальная касательная к l. Кривую l называют выпуклой в точке M 0, если в некоторой

Подробнее

МАТЕМАТИКА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

МАТЕМАТИКА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ООО «Резольвента», wwwesolventau, esolventa@listu, (495) 59-8- Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу АНАЛИТИЧЕСКАЯ

Подробнее

1. Определители. 2. Действия над матрицами. Обратная матрица Определитель второго порядка задается равенством

1. Определители. 2. Действия над матрицами. Обратная матрица Определитель второго порядка задается равенством Определители Определитель второго порядка задается равенством Определитель третьего порядка задается равенством Свойства определителей Определитель равен нулю если он содержит две одинаковые или пропорциональные

Подробнее

Задания для аудиторной и самостоятельной работы

Задания для аудиторной и самостоятельной работы Задания для аудиторной и самостоятельной работы Решите системы линейных уравнений методом Крамера (если это возможно) и методом Гаусса ( ):,,,, 4,, 4 5 7 5 5 4 4 6 6 4 5,, 6 4 4 4,, 8, 9,, 4 4 5 Контрольный

Подробнее

Контрольная работа T=3. Задание 1. [1, стр. 2]

Контрольная работа T=3. Задание 1. [1, стр. 2] Дана матрица Контрольная работа A 0 T= Задание [, стр ] Определите ее размерность Выпишите характеристики этой матрицы: прямоугольная, квадратная, симметричная, единичная, нулевая, треугольная, диагональная,

Подробнее

1. Перечень компетенций с указанием этапов (уровней) их формирования.

1. Перечень компетенций с указанием этапов (уровней) их формирования. 1. Перечень компетенций с указанием этапов (уровней) их формирования. Компетенция ОК-10: способностью и готовностью к письменной и устной коммуникации на родном языке Знать: Уровень 1 Основные понятия

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА. МАТЕМАТИКА Методические указания к практическим занятиям

Подробнее

Аналитическая геометрия. 27 ноября 2015 г.

Аналитическая геометрия. 27 ноября 2015 г. Аналитическая геометрия 27 ноября 2015 г. Глава 1. Кривые и поверхности Понятие алгебраической кривой и алгебраической поверхности Моном от двух переменных M(x, y) = def x m y n, m, n 0 Тогда многочленом

Подробнее