5. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "5. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения"

Транскрипт

1 УРАВНЕНИЯ НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения Уравнениями первого порядка неразрешенными относительно производной называются уравнения вида F ( x ) () Уравнение () можно решать следующими методами: а) разрешить уравнение относительно те из уравнения () выразить через x и ; получается одно или несколько уравнений вида = f ( x ) каждое из которых надо решить; б) методом введения параметра позволяющим свести уравнение () к уравнению разрешенному относительно производной Метод введения параметра ( ) ( )dp x p Уравнения разрешенные относительно искомой функции Пусть уравнение () можно разрешить относительно искомой функции те записать в виде = f ( x ) d Введя параметр p = = получим = f ( x Взяв полный дифференциал от обеих частей последнего равенства dx d = f x p dx + f x p и заменив d через pdx получим уравнение вида M ( x dx + N( x dp () где M ( x = f x ( x p N( x = f p ( x А) Если решение этого уравнения будет найдено в виде p = p( x то подставляя его в равенство = f ( x сразу получаем = f ( x p( x ) - общее решение уравнения () 7

2 Б) Если решение этого уравнения найдено в виде x ϕ( p = то получим решение исходного уравнения в параметрической записи Исключив теперь пара- x = ϕ( p = f ( ϕ( p метр p получим общее решение уравнения () в явном виде Замечание Было бы ошибкой в левой части выражения p = p( x заменить p на и проинтегрировать уравнение = p( x тк решение последнего = p x dx + в ) ( ) общем случае не удовлетворяет уравнению = f ( x Уравнения разрешенные относительно аргумента Пусть теперь уравнение () можно разрешить относительно независимого переменного x те записать в виде x = f ( ) Аналогично вышерассмотренному случаю введя параметр p = = получим x = f ( Взяв полный d dx дифференциал от обеих частей последнего равенства d dx = f ( d + f p ( dp и заменив dx через получим p уравнение вида M p d + N p dp = () ( ) ( ) где M ( = f ( N( = f p ( p А) Если решение этого уравнения будет найдено в виде p = p( то подставляя его в равенство x = f ( сразу получаем x = f ( p( ) - общее решение уравнения () Б) Если решение этого уравнения найдено в виде = ψ ( p то получим решение исходного уравнения в параметриче- 8

3 ( p ( ψ ( p = ψ ской записи Исключив теперь параметр p получим общее решение уравнения () в явном x = f виде Замечание В некоторых задачах удобно вводить параметр dx p = = тогда dx = pd d Особые решения Задача Коши для уравнения () ставится следующим об- x p для которой разом: задана точка ( ) G F( x p ) = Требуется найти такое решение уравнения () которое удовлетворяет начальным условиям x x = p () ( ) ( ) Достаточные условия существования и единственности задачи Коши дает Теорема Пусть в области G функция F ( x непрерывно F( x p ) дифференцируема и пусть Тогда p найдется такое число δ > что при x x δ решение задачи Коши () () существует и единственно Особым решением уравнения () на множестве I называется его решение o = g( x) если x I через точку его графика ( x g( x )) проходит другое решение отличное от него в сколь угодно малой окрестности этой точки и имеющее ту же касательную Для существования особого решения необходимо чтобы в области G нарушались условия теоремы существования и 9

4 единственности задачи Коши те для непрерывно диффе- F x p необходимо ренцируемой функции ( ) F( x F( x p () Множество точек ( x G F( x ( ( x ) удовлетворяющее условию F называется p-дискриминантным множеством уравнения () p График особого решения уравнения () лежит в p-дискриминантном множестве Однако p-дискриминантное множество не всегда задает особое решение: а) p-дискриминантное множество не обязано быть гладкой кривой б) p-дискриминантное множество не обязано определять решение уравнения () Для нахождения особых решений требуется: найти решение (); найти p-дискриминантное множество исключив параметр p из системы F( x ; F( x p отобрать те из решений уравнения () которые лежат в p-дискриминантном множестве; для отобранных решений проверить выполнение определения особого решения те проверить выполнение при o ( x ) = ( x x I условий касания o ( x ) = ( x где ( x - o x семейство решений () не совпадающих с ( ) 7

5 Примеры решения задач предлагавшихся на экзаменационных контрольных работах Пример (-) Решить уравнение найти особые решения начертить интегральные кривые ( ) + 8x + x + d Вводим параметр p = Тогда dx p + 8xp + x + или p + 8xp + x = () Взяв полный дифференциал от обеих частей последнего равенства и заменив d через pdx получаем p = pp p xp x или p + pp = x p откуда x + p p + Возможны два случая: ) p = x Из () получаем что = x + x x x следовательно 9 = x + x x или = x ) p + Интегрируя находим p = x + R Подставляя p = x + в () определяем : ( x 8x + ) x( x + = x или 7

6 x x = x + + x x или = x + x Найдем p-дискриминантное множество исключив параметр p из уравнений p + 8xp + x + (*) и ( p + 8xp + x + ) () p Из второго уравнения системы следует что Так как = x - решение то это кандидат в особые ре- шения p = x поэтому p + 8xp + x p + 8x = x + Рис Докажем что это решение особое (проверяем касание): 7

7 x R x = x x + x = x + следовательно при 8 = x в тождество обращается второе уравнение и первое уравнение: x = x + x x = x 9 Через точку x x проходит решение 8 = x + x при = x касающееся решения = x в этой точке и не совпадающее с ним ни в какой окрестности этой точки при x x Интегральные кривые представлены на рис где особое решение отмечено жирной линией Пример (-) Решить уравнение найти особые решения начертить интегральные кривые x + Вводим параметр x + p или p p dx p = = Тогда d x = + p p () Взяв полный дифференциал от обеих частей последнего равенства и заменив dx через pd получаем 7

8 pd = ( d + ( p )dp или ( ) d ( p ) dp откуда ( p )( d d 7 p Возможны два случая: ) p = Из () получаем что x = + следо- вательно x = ) d dp или d = dp Интегрируя находим + = p R Подставляя p = + в () определяем x: x = + ( + ( + или x = или x = + + или x ( = ( + + Найдем p-дискриминантное множество исключив параметр p из уравнений x p + p (*) и x p + p () p Из второго уравнения системы x p + p сле- p + дует что p = поэтому Так как ния x = x = - решение то это кандидат в особые реше-

9 Рис Докажем что это решение особое (проверяем касание): = ( + + R следовательно при = + = в тождество обращается второе уравнение и первое уравнение: Через = точку x ( = ( + + при + + = + проходит решение = касающееся решения x = в этой точке и не совпадающее с ним ни в какой окрестности этой точки при Интегральные кривые представлены на рис где особое решение отмечено жирной линией 7

10 Пример (8-) Найти общее решение найти особые решения начертить интегральные кривые уравнения x + = + ( ) ( ) Вводим параметр d p = Тогда dx x + = p ( p + ) () Взяв полный дифференциал от обеих частей последнего равенства и заменив d через pdx получаем p + p p Возможны два случая: p ( + p ) = p p ( p + ) + p p или ( + ) p = p ( p + ) откуда ( ) ) p = Из () получаем = x ) p = p Это уравнение с разделяющимися переменными: p dp = R Подставляя dx Интегрируя находим p = x + p ( x + ( ) = в () определяем : = x + ( x + ( x + + или = + ( x + Найдем p-дискриминантное множество исключив параметр p из уравнений ( x + ) = p( p + ) (*) и ( x + ) p( p + ) ) () p 7

11 Из второго уравнения системы получаем ( p + )( p + ) ( x + ) = p( p + ) ( p + ) + p( p + ) ) p = = следовательно ) p = ) Если p = то согласно (*) = x - это не решение исходного дифференциального уравнения ) Если p = то согласно (*) = x Так как = x - решение то это единственный кандидат в особые решения Рис Докажем что это решение особое (проверяем касание): x = + ( x + x R = ( x + следовательно = x + те при = x в тождество обращается второе уравнение и первое уравнение 77

12 Через точку x x проходит решение = + ( x + при = x касающееся решения = x в этой точке и не совпадающее с ним ни в какой окрестности этой точки при x x Интегральные кривые представлены на рис где особое решение отмечено жирной линией Задачи для самостоятельного решения Решить уравнения найти особые решения начертить интегральные кривые: x + = + (8-) ( ) ( ) (8-) ( + ) + ( x + ) (8-) ( x) + ( ) (8-) ( ) ( ) = x x x + + = 8 7 (7-) ( ) + = ln x 8 (7-) ( ) x x x x ( ) + e + e + e 9 (7-) (7-) x x + ( ) (-) ( ) 8x + 8x (-) ( ) + 8x x (-) ( ) + 8x + 8x ( ) + 8x + x + (-) 7( ) x + x (-) 78

13 (-) ln x 7 (-) x + 8 (-) x + ln x ln = 9 (-) ( + ) x( ) (-) x( ) = + x (-) ( ) + e ( ) x + 8 (-) x (8-) x + ( ) (8-) ( ) x + x x x ln x x > + x x = (8-) ( ) + (8-) ( ) ( ) x 8 (8-) ln x + 7 (8-) ( ) ( ) + 9 (8-) ( ) ( ) + x x > ln x = (8-) ( ) = x = x Ответы: - особое решение; ( x = ( x + + = x + 79 x = x особое решение; ( ) ( ) - особое решение; ( x = x - особое решение; x = x = + ( x

14 7 ln x - особое решение; x = = ( x + ln x 8 = x - особое решение; ( x = ( x + x 9 e - особое решение; x x = + + e x = x + x = x + x + x = ( ) = - особое решение; ( ) x 8 x = - особое решение; ( ) = ( x x - особое решение; = x + x + = x - особое решение; ( x = ( x + x = = - особое решение; ( x ) x + x = - особое решение ( = 7 x x x = ln( ) < - особое решение x( = ln > 7 x = - особое решение x ( = ( = ln x + x > - особое решение x ln ( x = > 9 = x - особые решения ( ) ( x) x = 8

15 = ± x x - особое решение ( x x ±e x = = - особое решение ( x x = 7 x x ± = e + x - особые решения ( x ( x = - особое решение ( ) = - особые решения ( x ln x - особое решение = ( x x x = x = = x x = ln x = - особое решение ( ) 7 = x x = x = x + x - особое решение ( ) ; 8 + ln x - особое решение = ( x x ln = > ; 8

16 9 = x > - особое решение x ( x = x + > ; x x x - особое решение = ln ( x = x e ; 8

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) В М Ипатова О А Пыркова В Н Седов ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МЕТОДЫ РЕШЕНИЙ второе

Подробнее

Тема 9. Обыкновенные дифференциальные уравнения

Тема 9. Обыкновенные дифференциальные уравнения Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный морской технический университет» (СПбГМТУ) Кафедра

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

5. ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА (РЯДЫ И ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ)

5. ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА (РЯДЫ И ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ) 5 ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА РЯДЫ И ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 5 Программа курса «Ряды и обыкновенные дифференциальные уравнения» Аннотация: Изучаются числовые и степенные ряды а также

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОСНОВЫ ТЕОРИИ, МЕТОДЫ РЕШЕНИЯ ЗАДАЧ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОСНОВЫ ТЕОРИИ, МЕТОДЫ РЕШЕНИЯ ЗАДАЧ КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Киясов С. Н., Шурыгин В. В. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОСНОВЫ ТЕОРИИ, МЕТОДЫ РЕШЕНИЯ ЗАДАЧ Казань 2011 УДК 517.9 Печатается по решению Редакционно-издательского

Подробнее

Линейные однородные дифференциальные уравнения с. Линейные неоднородные дифференциальные уравнения с

Линейные однородные дифференциальные уравнения с. Линейные неоднородные дифференциальные уравнения с Обыкновенные дифференциальные уравнения. Основные определения. Свойства общего решения. Теорема Коши. Интегральные кривые. Особое решение. Дифференциальные уравнения первого порядка. Уравнения вида у fх.

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Часть 1

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Часть 1 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В.ЛОМОНОСОВА ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ А.М. ДЕНИСОВ, А.В. РАЗГУЛИН ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Часть 1 МОСКВА 2009 г. Пособие

Подробнее

Задачи Штурма-Лиувилля в простейшем случае

Задачи Штурма-Лиувилля в простейшем случае Задачи Штурма-Лиувилля в простейшем случае 1 I рода слева I рода справа Решить задачу Штурма-Лиувилля с краевыми условиями I-го рода: { X x + Xx, X X 11 Общее решение уравнения X x + Xx имеет вид Xx c

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

ОСНОВЫ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ОСНОВЫ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) А. Е. Умнов, Е. А. Умнов ОСНОВЫ ТЕОРИИ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Подробнее

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению.

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению. ТЕМА 7 Задача Штурма-Лиувилля Собственные значения и собственные функции Сведение задачи Штурма-Лиувилля к интегральному уравнению Основные определения и теоремы Оператором Штурма-Лиувилля называется дифференциальный

Подробнее

Дифференциальные уравнения: конспект лекций

Дифференциальные уравнения: конспект лекций [DEshrt.te, 09.01.09] Дифференциальные уравнения: конспект лекций В 006 году студент -го курса Д.В. Кальянов набрал в LaTeX'е конспект моих лекций по курсу "Дифференциальные уравнения". Я переписал его

Подробнее

dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений

dx dt ОБЩИЙ ВИД РЕШЕНИЯ ЛИНЕЙНОЙ НЕСТАЦИОНАРНОЙ СИСТЕМЫ ФУНКЦИОНАЛЬНО-РАЗНОСТНЫХ УРАВНЕНИЙ Теория обыкновенных дифференциальных уравнений dx d ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ПРОЦЕССЫ УПРАВЛЕНИЯ N 2, 2004 Электронный журнал, рег. N П23275 от 07.03.97 hp://www.neva.ru/journal e-mail: diff@osipenko.su.neva.ru Теория обыкновенных дифференциальных

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Введение. Правило Декарта. Число положительных корней многочлена P (x) = a k x m k a1 x m 1

Введение. Правило Декарта. Число положительных корней многочлена P (x) = a k x m k a1 x m 1 Введение В курсе математического анализа первого семестра одно из центральных мест занимает теорема Ролля. Теорема Ролля. Пусть функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (a,

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия 35 Глава 2 Дифференциальное и интегральное исчисление функции одной переменной 1 Основные понятия Пусть D некоторое множество чисел Если задан закон, по которому каждому числу из множества D ставится в

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл

Интегрируемость функции (по Риману) и определенный интеграл Интегрируемость функции (по Риману) и определенный интеграл Примеры решения задач 1. Постоянная функция f(x) = C интегрируема на [a, b], так как для любых разбиений и любого выбора точек ξ i интегральные

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

arxiv: v1 [math.ca] 29 Dec 2012

arxiv: v1 [math.ca] 29 Dec 2012 Оценка снизу скорости блуждания решения линейного дифференциального уравнения третьего порядка через частоту нулей Тихомирова А.В. arxiv:11.6657v1 [math.ca] 9 Dec 1 В работе сравниваются две характеристики

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова.

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова. 8 Устойчивость решений систем обыкновенных дифференциальных уравнений Прямой метод Ляпунова ВДНогин 1 о Введение Для того чтобы можно было поставить задачу об устойчивости, необходимо располагать объектом,

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет» ВИ Фомин ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа ВВ Колыбасова, НЧ Крутицкая В В Колыбасова, Н Ч Крутицкая Достаточные условия существования решения задачи об условном

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Министерство образования РФ Сибирская государственная автомобильно-дорожная академия (СибАДИ) ЛН Романова ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Курс лекций Омск Издательство СибАДИ ЛН РОМАНОВА ФУНКЦИИ НЕСКОЛЬКИХ

Подробнее

Необходимое и достаточное условие экстремума функции многих переменных

Необходимое и достаточное условие экстремума функции многих переменных Необходимое и достаточное условие экстремума функции многих переменных Рассмотрим задачу на нахождение условного экстремума для случае функции двух переменных. Необходимое условие экстремума. Пусть имеется

Подробнее

4 Основные свойства определенного интеграла

4 Основные свойства определенного интеграла 178 4 Основные свойства определенного интеграла Рассмотрим основные свойства определенного интеграла. 1) Если нижний и верхний пределы интегрирования равны (=), то интеграл равен нулю f ( ) d = 0 Данное

Подробнее

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» М.П. Дымков ВЫСШАЯ МАТЕМАТИКА Второй семестр Курс лекций для студентов экономических специальностей

Подробнее

Лекция 2. Инварианты плоских кривых

Лекция 2. Инварианты плоских кривых Лекция 2. Инварианты плоских кривых План лекции. Гладкие кривые на плоскости, число вращения, классификация кривых с точностью до гладкой гомотопии, точки самопересечения, число Уитни, теорема Уитни..1

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

Решения задач по математике «Плехановской олимпиады школьников» (очный тур 10 класс)

Решения задач по математике «Плехановской олимпиады школьников» (очный тур 10 класс) Задача 1 Решения задач по математике «Плехановской олимпиады школьников» (очный тур 10 класс) Найдите все простые числа p и q такие, что выражение целого числа является квадратом 1 Очевидно, что при q

Подробнее

ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Министерство образования Российской Федерации САРАПУЛЬСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ филиал Государственного образовательного учреждения высшего профессионального образования «ИЖЕВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики

Министерство образования и науки Российской Федерации. Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ Обозначим через значение некоторого выражения при подстановке в него целого числа Тогда зависимость члена последовательности от членов последовательности F F со значениями

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

С.А. Лавренченко. Лекция 10. Исследование функции при помощи производных

С.А. Лавренченко. Лекция 10. Исследование функции при помощи производных 1 СА Лавренченко Лекция 10 Исследование функции при помощи производных 1 Исследование функции при помощи первой производной Под интервалом мы будем подразумевать или конечный интервал, или один из следующих

Подробнее

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ О В Афонасенков Т А Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ И ИНТЕГРАЛ ФУРЬЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

Тема 4. Определенные интегралы, зависящие от параметра

Тема 4. Определенные интегралы, зависящие от параметра Тема 4. Определенные интегралы, зависящие от параметра На этом занятии рассматриваются различные примеры вычисления интегралов с помощью метода дифференцирования и интегрирования по параметру, от которого

Подробнее

3 Решение задачи Коши для операторно-дифференциальных уравнений методом полугрупп

3 Решение задачи Коши для операторно-дифференциальных уравнений методом полугрупп 3 Решение задачи Коши для операторно-дифференциальных уравнений методом полугрупп Пусть A линейный оператор, действующий в банаховом пространстве X, рассмотрим задачу du dt Au + f ( < t < T ), () u() ϕ,

Подробнее

Старков ВН Материалы к установочной лекции Вопрос 17 1 Аналитические функции Условия аналитичности Понятие аналитической функции [3,4] является основным понятием теории функций комплексного переменного

Подробнее

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва. 2013 гг.

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. А.В. Колесников Вариационное исчисление Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Необходимые и достаточные условия второго порядка в простейшей вариационной задаче Необходимые

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

1. Устойчивые решения ОДУ. Устойчивые многочлены

1. Устойчивые решения ОДУ. Устойчивые многочлены Глава III. Теория устойчивости 1. Устойчивые решения ОДУ. Устойчивые многочлены III.1.1. Устойчивые решения линейных ОДУ Существенную роль в исследовании различных процессов, поведение которых описывается

Подробнее

СБОРНИК ЗАДАЧ И УПРАЖНЕНИЙ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

СБОРНИК ЗАДАЧ И УПРАЖНЕНИЙ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Б.П.Демидович СБОРНИК ЗАДАЧ И УПРАЖНЕНИЙ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ В сборник (11-е изд. 1995 г.) включено свыше 4000 задач и упражнений по важнейшим разделам математического анализа: введение в анализ:

Подробнее

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ]

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ] 8 Барроу Исаак (Brrow Is) -77 английский математик, филолог, богослов. Профессор Кембриджского университета. Автор труда лекции по оптике и геометрии (9-7). Из теоремы следует, что определенный интеграл

Подробнее

Конспект курса «Обыкновенные дифференциальные уравнения», часть I

Конспект курса «Обыкновенные дифференциальные уравнения», часть I МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА Механико-математический факультет Конспект курса «Обыкновенные дифференциальные уравнения», часть I А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко

Подробнее

Лекция 14. Неопределенности и правило Лопиталя

Лекция 14. Неопределенности и правило Лопиталя СА Лавренченко 1 wwwlawrencenkoru Лекция 14 Неопределенности и правило Лопиталя Правило Лопитáля применяется при вычислении пределов для раскрытия неопределенностей типа или Раскрытие неопределенности

Подробнее

ПРОГРАММА И ЗАДАНИЯ. занятия: нет 2 часа в неделю ВСЕГО АУДИТОРНЫХ ЧАСОВ 132

ПРОГРАММА И ЗАДАНИЯ. занятия: нет 2 часа в неделю ВСЕГО АУДИТОРНЫХ ЧАСОВ 132 УТВЕРЖДАЮ Проректор по учебной работе Ю.А. Самарский 10 июня 2010 г. ПРОГРАММА И ЗАДАНИЯ по дисциплине: ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ по направлению подготовки: 010600 факультет: для всех факультетов (кроме

Подробнее

Министерство образования Республики Беларусь КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Министерство образования Республики Беларусь КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования Республики Беларусь "Высший государственный колледж связи" Кафедра Математики и физики КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть Минск 5 г РАЗДЕЛ 4 Функции нескольких переменных

Подробнее

Глава 7. Определенный интеграл

Глава 7. Определенный интеграл 68 Глава 7 Определенный интеграл 7 Определение и свойства К понятию определенного интеграла приводят разнообразные задачи вычисления площадей, объемов, работы, объема производства, денежных потоков и тп

Подробнее

7. Общие понятия. U n (x),n N, определены в области D. Выра-

7. Общие понятия. U n (x),n N, определены в области D. Выра- Глава Функциональные ряды 7 Общие понятия U (), N, определены в области D Выра- Определение 7 Пусть функции жение () U() U() U(), D U (5) называется функциональным рядом Каждому значению D соответствует

Подробнее

15 Степень отображения. Определение Говорят, что на многообразии М n задана ориентация, если оно разбито на области действия локальных координат

15 Степень отображения. Определение Говорят, что на многообразии М n задана ориентация, если оно разбито на области действия локальных координат 87 Теорема Фундаментальная группа окружности S является бесконечной циклической группой с образующей α, где α - гомотопический класс петли l: I S, где l () t = ( os πt,sin π t ), t [ 0 ; ] 5 Степень отображения

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Министерство образования Российской Федерации Московский физико-технический институт Кафедра высшей математики РАЦИОНАЛЬНЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Методические указания и оптимальные

Подробнее

16. Криволинейные координаты. Замена переменных в дифференциальных выражениях

16. Криволинейные координаты. Замена переменных в дифференциальных выражениях 16. Криволинейные координаты. Замена переменных в дифференциальных выражениях 16.1. Математическое описание какого-либо процесса нередко сопровождается выделением набора числовых его характеристик и заданием

Подробнее

10. Определенный интеграл

10. Определенный интеграл 1. Определенный интеграл 1.1. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x 1,..., x n 1, x n } [, b], что = x < x 1 < < x n 1

Подробнее

2 Дифференцируемость функций многих переменных. точке. Достаточные условия дифференцируемости

2 Дифференцируемость функций многих переменных. точке. Достаточные условия дифференцируемости В.В. Жук, А.М. Камачкин Дифференцируемость функций многих переменных. Дифференцируемость функции в точке. Достаточные условия дифференцируемости в терминах частных производных. Дифференцирование сложной

Подробнее

Методические рекомендации по выполнению контрольной работы по дисциплине «Элементы высшей математики».

Методические рекомендации по выполнению контрольной работы по дисциплине «Элементы высшей математики». МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ РОСТОВСКОЙ ОБЛАСТИ «ДОНСКОЙ БАНКОВСКИЙ КОЛЛЕДЖ» Методические

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА ЛАБОРАТОРНАЯ РАБОТА 5 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение. Интегральным уравнением Фредгольма рода называется уравнение x ( s, ds f (.

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных исследований

Подробнее

С. А. Бутерин. обратная спектральная задача восстановления одномерного возмущения

С. А. Бутерин. обратная спектральная задача восстановления одномерного возмущения С А Бутерин обратная спектральная задача восстановления одномерного возмущения МАТЕМАТИКА УДК 517984 ОБРАТНАЯ СПЕКТРАЛЬНАЯ ЗАДАЧА ВОССТАНОВЛЕНИЯ ОДНОМЕРНОГО ВОЗМУЩЕНИЯ ИНТЕГРАЛЬНОГО ВОЛЬТЕРРОВА ОПЕРАТОРА

Подробнее

1.Свойства определенного интеграла. 1.Если подынтегральная функция равна единице, то

1.Свойства определенного интеграла. 1.Если подынтегральная функция равна единице, то ЛЕКЦИЯ N4. Свойства определенного интеграла. Формула Ньютона-Лейбница. Теорема о среднем..свойства определенного интеграла.....теорема о среднем значении.....производная интеграла по переменной верхней

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

Преобразуем уравнение. Обозначим Тогда

Преобразуем уравнение. Обозначим Тогда Задача 1 Решения задач по математике «Плехановской олимпиады школьников» (очный тур 11 класс) Если двухзначное число разделить на некоторое целое число, то в частном получится 3 и в остатке 8 Если в делимом

Подробнее

4. Понятие числового ряда. Критерий Коши сходимости числового ряда.

4. Понятие числового ряда. Критерий Коши сходимости числового ряда. 4. Понятие числового ряда. Критерий Коши сходимости числового ряда. Под словом "ряд"в математическом анализе понимают сумму бесконечного числа слагаемых. Рассмотрим произвольную числовую последовательность

Подробнее

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А.

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А. РЯДЫ ФУРЬЕ Автор-составитель: доцент каф ВМ Цапаева СА Великий Новгород ПОНЯТИЕ И СВОЙСТВА ГАРМОНИК Определение Гармониками называются комплекснозначные функции вида iω ( ) e, где действительная переменная,

Подробнее

ПРОГРАММА ЭКЗАМЕНА по курсу "ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ" 2 семестр группы АК1,2,4-11 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ПРОГРАММА ЭКЗАМЕНА по курсу ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 2 семестр группы АК1,2,4-11 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ ПРОГРАММА ЭКЗАМЕНА по курсу "ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ" 2 семестр группы АК,2,4- ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Неопределенный интеграл. Первообразная функции. Таблица первообразных.

Подробнее

Московский государственный технический университет. имени Н.Э.Баумана. Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ.

Московский государственный технический университет. имени Н.Э.Баумана. Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Московский государственный технический университет имени Н.Э.Баумана Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Часть Методические указания к выполнению домашнего задания

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

РЕШЕНИЕ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ДЛЯ ОПРЕДЕЛЕННОГО КЛАССА ЗАДАЧ. где - текущая угловая координата,,, - сечения ЛП на входе и

РЕШЕНИЕ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ДЛЯ ОПРЕДЕЛЕННОГО КЛАССА ЗАДАЧ. где - текущая угловая координата,,, - сечения ЛП на входе и Труды III международной межвузовской научно-практической конференции "Инновационные технологии и передовые решения". - 2015 - С. 43-47 РЕШЕНИЕ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ДЛЯ ОПРЕДЕЛЕННОГО КЛАССА ЗАДАЧ

Подробнее

Глава 3. Несобственные интегралы и интегралы, зависящие от параметра.

Глава 3. Несобственные интегралы и интегралы, зависящие от параметра. Глава. Несобственные интегралы и интегралы, зависящие от параметра. Определенный интеграл f ( d ) в главе был введен для случая ко нечного промежутка [, ] и ограниченной функции f (). Теперь это понятие

Подробнее

8. Определенный интеграл

8. Определенный интеграл 8. Определенный интеграл 8.. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x,..., x n, x n } [, b], что = x < x < < x n < x n =

Подробнее

системы линейных уравнений Б.М.Верников Лекция 3: Однородные и неоднородные системы

системы линейных уравнений Б.М.Верников Лекция 3: Однородные и неоднородные системы Лекция 3: Однородные и неоднородные системы линейных уравнений Система линейных уравнений Определение Линейным уравнением (или уравнением первого порядка) с n неизвестными x 1, x 2,..., x n называется

Подробнее

П О В Ы С Ш Е Й М А Т Е М А Т И К Е

П О В Ы С Ш Е Й М А Т Е М А Т И К Е Санкт-Петербургский государственный университет А. В. О С И П О В К О Н С П Е К Т Л Е К Ц И Й П О В Ы С Ш Е Й М А Т Е М А Т И К Е Часть II (-й курс, -й семестр) Санкт-Петеpбуpг 0 0 Конспект лекций по высшей

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА)

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Постановка задачи. Рассматривается задача о вычислении однократного интеграла J(F ) = F (x) dx. ()

Подробнее

x a x 18. Вычисление пределов lim, lim, lim.

x a x 18. Вычисление пределов lim, lim, lim. Перечень экзаменационных вопросов: 1 семестр 1. Множества и операции над ними. 2. Декартово произведение множеств. 3. Предельные точки. 4. Предел последовательности. 5. Предел функции. 6. Бесконечно малые.

Подробнее

Основы функционального анализа и теории функций

Основы функционального анализа и теории функций Основы функционального анализа и теории функций Лектор Сергей Андреевич Тресков 3 семестр. Ряды Фурье. Постановка задачи о разложении периодической функции по простейшим гармоникам. Коэффициенты Фурье

Подробнее

Конспект курса «Обыкновенные дифференциальные уравнения»

Конспект курса «Обыкновенные дифференциальные уравнения» Конспект курса «Обыкновенные дифференциальные уравнения» А. И. Буфетов, Н. Б. Гончарук, Ю. С. Ильяшенко 8 апреля 2015 г. 2 Оглавление 1 Первый семестр 7 1.1 Дифференциальные уравнения в механике..........................

Подробнее

НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ ЭЛЛИПТИКО-ГИПЕРБОЛИЧЕСКОГО ТИПА

НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ ЭЛЛИПТИКО-ГИПЕРБОЛИЧЕСКОГО ТИПА Современная математика и ее приложения. Том 68 (211). С. 4 5 УДК 517.95 НЕЛОКАЛЬНАЯ ОБРАТНАЯ ЗАДАЧА ДЛЯ УРАВНЕНИЯ ЭЛЛИПТИКО-ГИПЕРБОЛИЧЕСКОГО ТИПА c 211 г. К. Б. САБИТОВ, Н. В. МАРТЕМЬЯНОВА АННОТАЦИЯ. Доказывается

Подробнее

О ВОЗМОЖНОСТИ ОБОБЩЕННО АНАЛИТИЧЕСКОГО ПРОДОЛЖЕНИЯ В ОБЛАСТЬ ФУНКЦИЙ, ЗАДАННЫХ НА КУСКЕ ЕЕ ГРАНИЦЫ Т. Ишанкулов

О ВОЗМОЖНОСТИ ОБОБЩЕННО АНАЛИТИЧЕСКОГО ПРОДОЛЖЕНИЯ В ОБЛАСТЬ ФУНКЦИЙ, ЗАДАННЫХ НА КУСКЕ ЕЕ ГРАНИЦЫ Т. Ишанкулов Сибирский математический журнал Ноябрь декабрь, 2000. Том 4, 6 УДК 57.5 О ВОЗМОЖНОСТИ ОБОБЩЕННО АНАЛИТИЧЕСКОГО ПРОДОЛЖЕНИЯ В ОБЛАСТЬ ФУНКЦИЙ, ЗАДАННЫХ НА КУСКЕ ЕЕ ГРАНИЦЫ Т. Ишанкулов Аннотация: Рассматривается

Подробнее

ОГЛАВЛЕНИЕ. Приложение 1. Некоторые «неберущиеся» интегралы... 331 Приложение 2. Примеры некоторых кривых... 332. Литература...

ОГЛАВЛЕНИЕ. Приложение 1. Некоторые «неберущиеся» интегралы... 331 Приложение 2. Примеры некоторых кривых... 332. Литература... ОГЛАВЛЕНИЕ Введение................................................ 3 Глава. Неопределенный интеграл.......................... 6.. Понятие первообразной функции и неопределенного интеграла........................

Подробнее

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. КОНСПЕКТ ЧАСТИ КУРСА АЛГЕБРЫ (ФКТИ, 3-Й СЕМЕСТР)

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. КОНСПЕКТ ЧАСТИ КУРСА АЛГЕБРЫ (ФКТИ, 3-Й СЕМЕСТР) ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. КОНСПЕКТ ЧАСТИ КУРСА АЛГЕБРЫ (ФКТИ, 3-Й СЕМЕСТР) А.В.СТЕПАНОВ Введение Эти заметки не заменяют курс лекций, но для сильных студентов могут

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Государственное образовательное учреждение высшего профессионального образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики

Подробнее

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы.

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы. ЛАБОРАТОРНАЯ РАБОТА 6 ПРЕОБРАЗОВАНИЕ ФУРЬЕ I О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение Преобразованием Фурье функции из L называется функция определяемая равенством d Оператор F : называется

Подробнее

Московский государственный университет имени М. В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ. «Математический анализ»

Московский государственный университет имени М. В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ. «Математический анализ» Московский государственный университет имени М. В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Математический анализ» Направление 080100 Экономика для подготовки студентов бакалавров

Подробнее

Теоретический материал.

Теоретический материал. 0.5 Логарифмические уравнения и неравенства. Используемая литература:. Алгебра и начала анализа 0- под редакцией А.Н.Колмогорова. Самостоятельные и контрольные работы по алгебре 0- под редакцией Е.П.Ершова

Подробнее

вид 1, 1/2, 1/3,..., 1/n,... ).

вид 1, 1/2, 1/3,..., 1/n,... ). Казанское математическое общество В.Б. Живетин Вводные лекции по курсу Высшая математика Г Р А Ф Казань 998 3 УДК 57 ББК.6 Ж 66 Вводные лекции по курсу Высшая математика /В.Б.Живетин; Казанское математическое

Подробнее

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (1 СЕМЕСТР)

ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (1 СЕМЕСТР) ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ( СЕМЕСТР) А. А. Пожарский Занятие. Принцип математической индукции. Задачи по []: 0. Задачи по [2]: 27. Занятие 2. Основные понятия комбинаторики: факториал,

Подробнее

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ ООО «Резольвента» www.resolventa.ru resolventa@list.ru (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

Геодезические в двумерной псевдоримановой метрике и контроль точности численного интегрирования уравнения геодезических

Геодезические в двумерной псевдоримановой метрике и контроль точности численного интегрирования уравнения геодезических Геодезические в двумерной псевдоримановой метрике и контроль точности численного интегрирования уравнения геодезических Э. Р. РОЗЕНДОРН Московский государственный университет им.м.в.ломоносова УДК 513.81

Подробнее

f(x 1,..., x k + h,..., x n ) f(x 1,..., x k,..., x n ),

f(x 1,..., x k + h,..., x n ) f(x 1,..., x k,..., x n ), 13. Дифференцирование функций многих переменных 13.1. Одним из самых распространенных средств локального изучения функций многих переменных является характеристика ее поведения вдоль координатных прямых

Подробнее

Задача Трикоми и ее сопряженная для уpавнения Лавpентьева-Бицадзе в случае контуров одного класса

Задача Трикоми и ее сопряженная для уpавнения Лавpентьева-Бицадзе в случае контуров одного класса А.В. Роговой Задача Трикоми и ее сопряженная для уpавнения Лавpентьева... 38 Задача Трикоми и ее сопряженная для уpавнения Лавpентьева-Бицадзе в случае контуров одного класса А.В. Роговой Южно-Казахстанский

Подробнее

Ю. В. Сидоров МНОГОЗНАЧНЫЕ АНАЛИТИЧЕСКИЕ ФУНКЦИИ

Ю. В. Сидоров МНОГОЗНАЧНЫЕ АНАЛИТИЧЕСКИЕ ФУНКЦИИ Ю. В. Сидоров МНОГОЗНАЧНЫЕ АНАЛИТИЧЕСКИЕ ФУНКЦИИ Ю. В. Сидоров. Лекции по теории функций комплексного переменного. Многозначные аналитические функции. Настоящее учебное пособие предназначено для студентов

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее