5. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения

Save this PDF as:
Размер: px
Начинать показ со страницы:

Download "5. УРАВНЕНИЯ, НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения"

Транскрипт

1 УРАВНЕНИЯ НЕ РАЗРЕШЕННЫЕ ОТНОСИТЕЛЬНО ПРОИЗВОДНОЙ Способы решения Уравнениями первого порядка неразрешенными относительно производной называются уравнения вида F ( x ) () Уравнение () можно решать следующими методами: а) разрешить уравнение относительно те из уравнения () выразить через x и ; получается одно или несколько уравнений вида = f ( x ) каждое из которых надо решить; б) методом введения параметра позволяющим свести уравнение () к уравнению разрешенному относительно производной Метод введения параметра ( ) ( )dp x p Уравнения разрешенные относительно искомой функции Пусть уравнение () можно разрешить относительно искомой функции те записать в виде = f ( x ) d Введя параметр p = = получим = f ( x Взяв полный дифференциал от обеих частей последнего равенства dx d = f x p dx + f x p и заменив d через pdx получим уравнение вида M ( x dx + N( x dp () где M ( x = f x ( x p N( x = f p ( x А) Если решение этого уравнения будет найдено в виде p = p( x то подставляя его в равенство = f ( x сразу получаем = f ( x p( x ) - общее решение уравнения () 7

2 Б) Если решение этого уравнения найдено в виде x ϕ( p = то получим решение исходного уравнения в параметрической записи Исключив теперь пара- x = ϕ( p = f ( ϕ( p метр p получим общее решение уравнения () в явном виде Замечание Было бы ошибкой в левой части выражения p = p( x заменить p на и проинтегрировать уравнение = p( x тк решение последнего = p x dx + в ) ( ) общем случае не удовлетворяет уравнению = f ( x Уравнения разрешенные относительно аргумента Пусть теперь уравнение () можно разрешить относительно независимого переменного x те записать в виде x = f ( ) Аналогично вышерассмотренному случаю введя параметр p = = получим x = f ( Взяв полный d dx дифференциал от обеих частей последнего равенства d dx = f ( d + f p ( dp и заменив dx через получим p уравнение вида M p d + N p dp = () ( ) ( ) где M ( = f ( N( = f p ( p А) Если решение этого уравнения будет найдено в виде p = p( то подставляя его в равенство x = f ( сразу получаем x = f ( p( ) - общее решение уравнения () Б) Если решение этого уравнения найдено в виде = ψ ( p то получим решение исходного уравнения в параметриче- 8

3 ( p ( ψ ( p = ψ ской записи Исключив теперь параметр p получим общее решение уравнения () в явном x = f виде Замечание В некоторых задачах удобно вводить параметр dx p = = тогда dx = pd d Особые решения Задача Коши для уравнения () ставится следующим об- x p для которой разом: задана точка ( ) G F( x p ) = Требуется найти такое решение уравнения () которое удовлетворяет начальным условиям x x = p () ( ) ( ) Достаточные условия существования и единственности задачи Коши дает Теорема Пусть в области G функция F ( x непрерывно F( x p ) дифференцируема и пусть Тогда p найдется такое число δ > что при x x δ решение задачи Коши () () существует и единственно Особым решением уравнения () на множестве I называется его решение o = g( x) если x I через точку его графика ( x g( x )) проходит другое решение отличное от него в сколь угодно малой окрестности этой точки и имеющее ту же касательную Для существования особого решения необходимо чтобы в области G нарушались условия теоремы существования и 9

4 единственности задачи Коши те для непрерывно диффе- F x p необходимо ренцируемой функции ( ) F( x F( x p () Множество точек ( x G F( x ( ( x ) удовлетворяющее условию F называется p-дискриминантным множеством уравнения () p График особого решения уравнения () лежит в p-дискриминантном множестве Однако p-дискриминантное множество не всегда задает особое решение: а) p-дискриминантное множество не обязано быть гладкой кривой б) p-дискриминантное множество не обязано определять решение уравнения () Для нахождения особых решений требуется: найти решение (); найти p-дискриминантное множество исключив параметр p из системы F( x ; F( x p отобрать те из решений уравнения () которые лежат в p-дискриминантном множестве; для отобранных решений проверить выполнение определения особого решения те проверить выполнение при o ( x ) = ( x x I условий касания o ( x ) = ( x где ( x - o x семейство решений () не совпадающих с ( ) 7

5 Примеры решения задач предлагавшихся на экзаменационных контрольных работах Пример (-) Решить уравнение найти особые решения начертить интегральные кривые ( ) + 8x + x + d Вводим параметр p = Тогда dx p + 8xp + x + или p + 8xp + x = () Взяв полный дифференциал от обеих частей последнего равенства и заменив d через pdx получаем p = pp p xp x или p + pp = x p откуда x + p p + Возможны два случая: ) p = x Из () получаем что = x + x x x следовательно 9 = x + x x или = x ) p + Интегрируя находим p = x + R Подставляя p = x + в () определяем : ( x 8x + ) x( x + = x или 7

6 x x = x + + x x или = x + x Найдем p-дискриминантное множество исключив параметр p из уравнений p + 8xp + x + (*) и ( p + 8xp + x + ) () p Из второго уравнения системы следует что Так как = x - решение то это кандидат в особые ре- шения p = x поэтому p + 8xp + x p + 8x = x + Рис Докажем что это решение особое (проверяем касание): 7

7 x R x = x x + x = x + следовательно при 8 = x в тождество обращается второе уравнение и первое уравнение: x = x + x x = x 9 Через точку x x проходит решение 8 = x + x при = x касающееся решения = x в этой точке и не совпадающее с ним ни в какой окрестности этой точки при x x Интегральные кривые представлены на рис где особое решение отмечено жирной линией Пример (-) Решить уравнение найти особые решения начертить интегральные кривые x + Вводим параметр x + p или p p dx p = = Тогда d x = + p p () Взяв полный дифференциал от обеих частей последнего равенства и заменив dx через pd получаем 7

8 pd = ( d + ( p )dp или ( ) d ( p ) dp откуда ( p )( d d 7 p Возможны два случая: ) p = Из () получаем что x = + следо- вательно x = ) d dp или d = dp Интегрируя находим + = p R Подставляя p = + в () определяем x: x = + ( + ( + или x = или x = + + или x ( = ( + + Найдем p-дискриминантное множество исключив параметр p из уравнений x p + p (*) и x p + p () p Из второго уравнения системы x p + p сле- p + дует что p = поэтому Так как ния x = x = - решение то это кандидат в особые реше-

9 Рис Докажем что это решение особое (проверяем касание): = ( + + R следовательно при = + = в тождество обращается второе уравнение и первое уравнение: Через = точку x ( = ( + + при + + = + проходит решение = касающееся решения x = в этой точке и не совпадающее с ним ни в какой окрестности этой точки при Интегральные кривые представлены на рис где особое решение отмечено жирной линией 7

10 Пример (8-) Найти общее решение найти особые решения начертить интегральные кривые уравнения x + = + ( ) ( ) Вводим параметр d p = Тогда dx x + = p ( p + ) () Взяв полный дифференциал от обеих частей последнего равенства и заменив d через pdx получаем p + p p Возможны два случая: p ( + p ) = p p ( p + ) + p p или ( + ) p = p ( p + ) откуда ( ) ) p = Из () получаем = x ) p = p Это уравнение с разделяющимися переменными: p dp = R Подставляя dx Интегрируя находим p = x + p ( x + ( ) = в () определяем : = x + ( x + ( x + + или = + ( x + Найдем p-дискриминантное множество исключив параметр p из уравнений ( x + ) = p( p + ) (*) и ( x + ) p( p + ) ) () p 7

11 Из второго уравнения системы получаем ( p + )( p + ) ( x + ) = p( p + ) ( p + ) + p( p + ) ) p = = следовательно ) p = ) Если p = то согласно (*) = x - это не решение исходного дифференциального уравнения ) Если p = то согласно (*) = x Так как = x - решение то это единственный кандидат в особые решения Рис Докажем что это решение особое (проверяем касание): x = + ( x + x R = ( x + следовательно = x + те при = x в тождество обращается второе уравнение и первое уравнение 77

12 Через точку x x проходит решение = + ( x + при = x касающееся решения = x в этой точке и не совпадающее с ним ни в какой окрестности этой точки при x x Интегральные кривые представлены на рис где особое решение отмечено жирной линией Задачи для самостоятельного решения Решить уравнения найти особые решения начертить интегральные кривые: x + = + (8-) ( ) ( ) (8-) ( + ) + ( x + ) (8-) ( x) + ( ) (8-) ( ) ( ) = x x x + + = 8 7 (7-) ( ) + = ln x 8 (7-) ( ) x x x x ( ) + e + e + e 9 (7-) (7-) x x + ( ) (-) ( ) 8x + 8x (-) ( ) + 8x x (-) ( ) + 8x + 8x ( ) + 8x + x + (-) 7( ) x + x (-) 78

13 (-) ln x 7 (-) x + 8 (-) x + ln x ln = 9 (-) ( + ) x( ) (-) x( ) = + x (-) ( ) + e ( ) x + 8 (-) x (8-) x + ( ) (8-) ( ) x + x x x ln x x > + x x = (8-) ( ) + (8-) ( ) ( ) x 8 (8-) ln x + 7 (8-) ( ) ( ) + 9 (8-) ( ) ( ) + x x > ln x = (8-) ( ) = x = x Ответы: - особое решение; ( x = ( x + + = x + 79 x = x особое решение; ( ) ( ) - особое решение; ( x = x - особое решение; x = x = + ( x

14 7 ln x - особое решение; x = = ( x + ln x 8 = x - особое решение; ( x = ( x + x 9 e - особое решение; x x = + + e x = x + x = x + x + x = ( ) = - особое решение; ( ) x 8 x = - особое решение; ( ) = ( x x - особое решение; = x + x + = x - особое решение; ( x = ( x + x = = - особое решение; ( x ) x + x = - особое решение ( = 7 x x x = ln( ) < - особое решение x( = ln > 7 x = - особое решение x ( = ( = ln x + x > - особое решение x ln ( x = > 9 = x - особые решения ( ) ( x) x = 8

15 = ± x x - особое решение ( x x ±e x = = - особое решение ( x x = 7 x x ± = e + x - особые решения ( x ( x = - особое решение ( ) = - особые решения ( x ln x - особое решение = ( x x x = x = = x x = ln x = - особое решение ( ) 7 = x x = x = x + x - особое решение ( ) ; 8 + ln x - особое решение = ( x x ln = > ; 8

16 9 = x > - особое решение x ( x = x + > ; x x x - особое решение = ln ( x = x e ; 8


Уравнения первого порядка, не разрешенные относительно производной

Уравнения первого порядка, не разрешенные относительно производной Уравнения первого порядка, не разрешенные относительно производной Будем рассматривать уравнения первого порядка, не разрешенные относительно производной: F (x, y, y ) = 0, (1) где F заданная функция своих

Подробнее

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения.

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения. 4 Дифференциальные уравнения высших порядков Понижение порядка уравнения 4 Основные понятия и определения Дифференциальными уравнениями высшего порядка называют уравнения порядка выше первого В общем случае

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию у f х и производные искомой функции n n :

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или (

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или ( Глава 8 Уравнения в частных производных первого порядка Лекция 3 Общее уравнение в частных производных первого порядка имеет вид,,,, F x 0,, x z = или ( F x, z,gradz = 0 Проблема существования и единственности

Подробнее

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г.

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г. Дифференциальные уравнения Тема: Уравнения n-го порядка, допускающие понижение порядка Лектор Янущик О.В. 2012 г. Глава II. Дифференциальные уравнения высших порядков 12. Основные понятия и определения

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) В М Ипатова О А Пыркова В Н Седов ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МЕТОДЫ РЕШЕНИЙ второе

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение.

Лекция 1. Дифференциальные уравнения 1-го порядка. Основные виды дифференциальных уравнений 1-го порядка и их решение. Лекция Дифференциальные уравнения -го порядка Основные виды дифференциальных уравнений -го порядка и их решение Дифференциальные уравнения является одним из самых употребительных средств математического

Подробнее

22. Линейные уравнения с частными производными первого порядка

22. Линейные уравнения с частными производными первого порядка Линейные уравнения с частными производными первого порядка Понятие уравнения с частными производными и его интегрирование Уравнением с частными производными называется соотношение связывающее неизвестную

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

0, 2. Уравнения 1-порядка (повторение) Заметим, что x y. Преобразуем заданное уравнение следующим

0, 2. Уравнения 1-порядка (повторение) Заметим, что x y. Преобразуем заданное уравнение следующим [Ф] Филиппов А.В. Сборник задач по дифференциальным уравнениям. Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика». URL: htt://elibrar.bsu.az/kitablar/846.df [М] Матвеев Н.М. Сборник задач и упражнений

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОБЩАЯ ТЕОРИЯ

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОБЩАЯ ТЕОРИЯ 1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. ОБЩАЯ ТЕОРИЯ 1.1. Основные определения Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную, искомую функцию y (

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Лекция 1. Дифференциальные уравнения первого порядка

Лекция 1. Дифференциальные уравнения первого порядка Лекция 1 Дифференциальные уравнения первого порядка 1 Понятие дифференциального уравнения и его решения Обыкновенным дифференциальным уравнением 1-го порядка называется выражение вида F( x, y, y ) 0, где

Подробнее

dz dx получим линейное уравнение, решая которое найдем z и подставив вместо z выражение y -n+1 получим общий интеграл уравнения Бернулли.

dz dx получим линейное уравнение, решая которое найдем z и подставив вместо z выражение y -n+1 получим общий интеграл уравнения Бернулли. Уравнение Бернулли Уравнение вида: n + P( x) y Q( x) y, (3126) называется уравнением Бернулли Решение этого уравнения при n 0 и n 1 (в противном случае получается линейное уравнение) находится следующим

Подробнее

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ Основные понятия Нормальные Системой называется совокупность в каждое из которых входят независимая переменная искомые функции и их производные Всегда предполагается

Подробнее

Интегралы и дифференциальные уравнения. Лекция 22

Интегралы и дифференциальные уравнения. Лекция 22 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция Нормальные

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 43 Аннотация Нормальные системы ДУ Задача и теорема Коши Частные и общее решения Системы линейных ДУ первого

Подробнее

6. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА Решения линейного однородного уравнения в частных производных первого порядка

6. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА Решения линейного однородного уравнения в частных производных первого порядка 6 УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА 6 Решения линейного однородного уравнения в частных производных первого порядка Линейным однородным уравнением первого порядка в частных производных называется

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ В.В.Поддубный ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ 1. Введение и основные определения Многие задачи естествознания и техники связаны с решением уравнений, содержащих неизвестные функции некоторых независимых

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения ГЛАВА 4 Системы обыкновенных дифференциальных уравнений ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Основные определения Для описания некоторых процессов и явлений нередко требуется несколько функций Отыскание этих функций

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ) В М Ипатова О А Пыркова В Н Седов ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МЕТОДЫ РЕШЕНИЙ второе

Подробнее

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Часть 1. Основные понятия. 1.1. Введение 2 1.2. Начальные условия 4 1.3. Составление дифференциальных уравнений 5 1.4.

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

Обыкновенные дифференциальные уравнения. Лекционные наброски.

Обыкновенные дифференциальные уравнения. Лекционные наброски. Обыкновенные дифференциальные уравнения. Лекционные наброски. Содержание Конев В.В. 1. Рабочая программа (выписка) 2 2. Введение 3 3. Основные понятия 3 3.1. Начальные условия 5 3.2. Составление дифференциальных

Подробнее

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши)

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Лекция 7 Дифференциальные уравнения Дифференциальные уравнения -го порядка f (, ). Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Дифференциальным

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ТРЕТИЙ СЕМЕСТР ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ТРЕТИЙ СЕМЕСТР ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра математического

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

ОГЛАВЛЕНИЕ Предисловие 7 ЧАСТЬ I Обыкновенные дифференциальные уравнения Вводная глава Глава I Задача Коши для уравнения первого порядка.

ОГЛАВЛЕНИЕ Предисловие 7 ЧАСТЬ I Обыкновенные дифференциальные уравнения Вводная глава Глава I Задача Коши для уравнения первого порядка. ОГЛАВЛЕНИЕ Предисловие 7 ЧАСТЬ I Обыкновенные дифференциальные уравнения Вводная глава. 8 1.Понятие дифференциального уравнения.математические модели, описываемые дифференциальными уравнениями.11 3.Решение

Подробнее

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными.

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными. ЛЕКЦИЯ N9. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными..дифференциальные уравнения. Общие понятия.....дифференциальные уравнения

Подробнее

Дифференциальные уравнения высших порядков. Лекции 2-3

Дифференциальные уравнения высших порядков. Лекции 2-3 Дифференциальные уравнения высших порядков Лекции 2-3 Дифференциальным уравнением порядка n называется уравнение вида F( x, y, y,..., y() n ) 0, () в котором обязательно наличие n-ой производной. Будем

Подробнее

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Дифференциальные уравнения высших порядков, допускающие понижение порядка Занятие 13 Дифференциальные уравнения высших порядков, допускающие понижение порядка 13.1 Задача и теорема Коши Задачей Коши для дифференциального уравнения порядка n, разрешённого относительно старшей

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

4. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид

4. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид 4 Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид y p y g y f () (5) где p, g R Дифференциальное уравнение всегда

Подробнее

Лекция Дифференцирование сложной функции

Лекция Дифференцирование сложной функции Лекция 8 Дифференцирование сложной функции Рассмотрим сложную функцию t t t f где ϕ t t t t t t t f t t t t t t t t t Теорема Пусть функции дифференцируемы в некоторой точке N t t t а функция f дифференцируема

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

Лекция2. Дифференциальные уравнения первого порядка

Лекция2. Дифференциальные уравнения первого порядка Лекция. Дифференциальные уравнения первого порядка Уравнения с разделяющимися переменными... Однородные уравнения... 3 Линейные уравнения первого порядка.... 7 Линейные однородные дифференциальные уравнения....

Подробнее

Занятие 3. Уравнения в частных производных 1-го порядка. Построение общего решения методом характеристик.

Занятие 3. Уравнения в частных производных 1-го порядка. Построение общего решения методом характеристик. Уравнения математической физики: Сборник примеров и упражнений / Сост АА Рогов ЕЕ Семенова ВИ Чернецкий ЛВ Щеголева Петрозаводск: Изд-во ПетрГУ 00 00908 Занятие Уравнения в частных производных -го порядка

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Глава 2. Дифференциальные уравнения 1-го порядка

Глава 2. Дифференциальные уравнения 1-го порядка Глава Дифференциальные уравнения -го порядка Основные понятия Определение Дифференциальное уравнение вида ( n) F, ( ),,, 0 () называют обыкновенным дифференциальным уравнением Оно содержит известную функцию

Подробнее

3. ЗАДАЧА КОШИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ДОПУСКАЮЩИХ ПОНИЖЕНИЕ ПОРЯДКА Задача Коши

3. ЗАДАЧА КОШИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ДОПУСКАЮЩИХ ПОНИЖЕНИЕ ПОРЯДКА Задача Коши ЗАДАЧА КОШИ ДЛЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ, ДОПУСКАЮЩИХ ПОНИЖЕНИЕ ПОРЯДКА Задача Коши Обыкновенным дифференциальным уравнением n-го порядка называется уравнение ( n ) ( n) F (, y,,, y, y ) = 0, () где

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Л. Н. Феофанова ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: СТАНДАРТНЫЕ ЗАДАЧИ С ОСНОВНЫМИ ПОЛОЖЕНИЯМИ ТЕОРИИ Учебное пособие

Подробнее

Решением дифференциального уравнения называется функция y y(x)

Решением дифференциального уравнения называется функция y y(x) Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или нескольких

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИРЭА ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Работа посвящена моделированию динамических систем с использованием элементов

Подробнее

ЛЕКЦИЯ 1. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенных относительно производной

ЛЕКЦИЯ 1. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенных относительно производной ЛЕКЦИЯ. Общие понятия. Интегрируемые типы уравнений первого порядка, разрешенных относительно производной. Введение. Задача решения (интегрирования) дифференциальных уравнений это задача, обратная дифференцированию.

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ.

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. ЛЕКЦИЯ Вводные замечания Дифференциальные уравнения занимают в математике особое место. Математическое исследование разнообразных природных явлений

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФГОУ ВПО «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ В.Д. ГУНЬКО, Л.Ю. СУХОВЕЕВА, В.М. СМОЛЕНЦЕВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПРИМЕРЫ И ТИПОВЫЕ ЗАДАНИЯ Учебное пособие Краснодар

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

Дифференциальные уравнения (лекция 4)

Дифференциальные уравнения (лекция 4) Дифференциальные уравнения лекция 4 Уравнения в полных дифференциалах. Интегрирующий множитель Лектор Шерстнёва Анна Игоревна 9. Уравнения в полных дифференциалах Уравнение d + d = 14 называется уравнением

Подробнее

Тема: ДУ: основные понятия. Уравнения с разделенными и разделяющимися переменными

Тема: ДУ: основные понятия. Уравнения с разделенными и разделяющимися переменными Математический анализ Раздел: Дифференциальные уравнения Тема: ДУ: основные понятия. Уравнения с разделенными и разделяющимися переменными Лектор Рожкова С.В. 2013 г. Теория дифференциальных уравнений

Подробнее

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Интегралы и дифференциальные уравнения Раздел "Дифференциальные уравнения".

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Понятие об обыкновенном дифференциальном уравнении и его решении Обыкновенным дифференциальным уравнением называется уравнение содержащее независимую

Подробнее

Простейшие задачи вариационного исчисления

Простейшие задачи вариационного исчисления Глава VI. Простейшие задачи вариационного исчисления 1. Функционалы в линейном нормированном пространстве Опр. 6. 1. Функционалом J[y] в линейном нормированном пространстве E называется закон соответствия,

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

I. Дифференциальные уравнения 1-го порядка

I. Дифференциальные уравнения 1-го порядка Пособие предназначено для студентов - курсов МАТИ-РГТУ, изучающих в рамках курса высшей математики тему «Дифференциальные уравнения». В нем рассматриваются основные приемы решения обыкновенных дифференциальных

Подробнее

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Основные определения Нормальная система дифференциальных уравнений называется линейной если функции f f K f линейны относительно неизвестных функций Из этого

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

1 Дифференциальные уравнения 1 порядка

1 Дифференциальные уравнения 1 порядка 1 Дифференциальные уравнения 1 порядка Дифференциальным уравнением (ДУ) 1 порядка, разрешённым относительно производной, называется уравнение d dx = F (x, ), где = (x) искомая функция; функция F задана

Подробнее

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности. 5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

Подробнее

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ

ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА. Бабичева Т.А. Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ГАОУ ВПО ДАГЕСТАНСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ НАРОДНОГО ХОЗЯЙСТВА Бабичева ТА Кафедра высшей математики УЧЕБНОЕ ПОСОБИЕ ПО ДИСЦИПЛИНЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Махачкала УДК 5(75) ББК я 7 Учебное пособие

Подробнее

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.»

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Министерство образования Республики Беларусь Министерство образования Республики Беларусь Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Кафедра теоретичской и прикладной математики.

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Дифференциальные уравнения первого порядка

Дифференциальные уравнения первого порядка ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ Т Н Черняева, И П Медведева Дифференциальные уравнения первого порядка Методическое пособие для самостоятельной

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИРЭА ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Работа посвящена моделированию динамических систем с использованием

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

А.В. Чичурин О СУЩЕСТВОВАНИИ ОБЩИХ ИНТЕГРАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ У УРАВНЕНИЯ АБЕЛЯ ПЕРВОГО РОДА

А.В. Чичурин О СУЩЕСТВОВАНИИ ОБЩИХ ИНТЕГРАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ У УРАВНЕНИЯ АБЕЛЯ ПЕРВОГО РОДА МАТЭМАТЫКА 9 УДК 579 АВ Чичурин О СУЩЕСТВОВАНИИ ОБЩИХ ИНТЕГРАЛОВ СПЕЦИАЛЬНОЙ ФОРМЫ У УРАВНЕНИЯ АБЕЛЯ ПЕРВОГО РОДА Рассматривается метод построения общего интеграла специальной формы для нелинейного дифференциального

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ИВ Ребро, СЮ Кузьмин, НН Короткова, ДА Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ):

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ): Функции нескольких переменных Во многих вопросах геометрии естествознания и пр дисциплин приходится иметь дело с функциями двух трех и более переменных Примеры: Площадь треугольника S a h где a основание

Подробнее

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2) Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС ДИСЦИПЛИНЫ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Амурский государственный университет» Кафедра

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Н.В. НИГЕЙ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

Лекция 2.5. Производные основных элементарных функций

Лекция 2.5. Производные основных элементарных функций Лекция 5 Производные основных элементарных функций Аннотация: Даются физическая и геометрическая интерпретации производной функции одной переменной Рассматриваются примеры дифференцирования функции и правила

Подробнее