Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции"

Транскрипт

1 Лабораторная работа Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Постановка задачи: Требуется найти безусловный минимум функции одной переменной ( те такую точку U, что = min Значение точки ( ( минимума вычислить приближенно с заданной точностью ε В лабораторной работе были рассмотрены прямые методы решения этой задачи В данной работе рассматриваются методы, в которых используются значения производных целевой функции Пусть на предварительно выбранном интервале неопределенности U = [ a; b] целевая функция ( является выпуклой дифференцируемой функцией Тогда для ( необходимым и достаточным условием глобального минимума является условие ( =, U = [ a; ] ( b Метод средней точки Стратегия поиска: Если определение производной ( в ( не представляет затруднений, то в процедуре исключения отрезков методом дихотомии вычисление двух значений ( вблизи середины очередного отрезка можно заменить вычислением одного значения ( в его средней точке U a + b = Сравнивая ( с нулем, делим отрезок поиска точки ровно вдвое, причем на каждой итерации вычисляется только одно значение ( Алгоритм: Выбрать начальный интервал неопределенности U = [ a; ] и точность ε Положить a + b = Вычислить ( b 3 Проверка на окончание поиска: если ( ε, то положить =, = ( и завершить поиск, иначе перейти к шагу 4 4 Сравнить ( с нулем Если ( >, то продолжить поиск на отрезке [ a; ], положив ; b, положив a = Перейти к шагу b =, иначе перейти к отрезку [ ] Метод хорд Стратегия поиска: Пусть на концах отрезка [ b] a; производная ( имеет разные знаки, те ( a ( b < Тогда на интервале ( a ; b найдется точка, в которой ( обращается в нуль В этом случае поиск точки минимума ( на отрезке [ a; b] эквивалентен решению уравнения ( = на интервале ( a; b Сущность метода хорд приближенного решения уравнения ( = на отрезке [ a; b] при ( a ( b < состоит в исключении отрезков путем определения точки - точки пересечения с осью O хорды графика функции ( на [ a; b] Координата точки равна:

2 ( a = a ( a b ( a ( b ( Отрезок дальнейшего поиска точки (отрезок [ a ; ] или [ ; b] выбирается в зависимости от знака ( так же, как в методе средней точки На каждой итерации, кроме первой, необходимо вычислять только одно новое значение ( Алгоритм: Выбрать начальный интервал неопределенности U = [ a; b] и точность ε Найти по формуле ( Вычислить ( Перейти к шагу 3 3 Проверка на окончание поиска: если ( ε, то положить =, = ( и завершить поиск, иначе перейти к шагу 4 4 Переход к новому отрезку Если ( >, то положить b =, ( b = (, иначе положить a =, ( a = ( Перейти к шагу Метод Ньютона Стратегия поиска: Для приближенного решения уравнения ( используется метод касательных Пусть [ a; b] - нулевое, или начальное приближение к искомой точке Линеаризуем функцию F ( = ( в окрестности начальной точки, приближенно заменив дугу графика этой функции касательной в точке (, ( : F F( + F ( ( (3 ( Выберем в качестве следующего приближения к точку пересечения касательной с осью абсцисс Приравнивая к нулю правую часть в (3, получим первый элемент F( F ( = итерационной последовательности { }, =, В очередной точке строится линейная аппроксимация функции F( и точка, в которой эта аппроксимирующая функция обращается в нуль, используется в качестве следующего приближения + Уравнение касательной к графику F( в точке = имеет вид y = F( + F ( (, поэтому точка = +, найденная из условия y =, определяется формулой F( F ( + = Возвращаясь к обозначению ( ( F =, получим, что для решения уравнения ( = необходимо построить последовательность ( (, + = = где - точка, выбранная в качестве начального приближения Вычисления по формуле (4 производятся до тех пор, пока не выполнится неравенство ε, после чего полагают (,,, ( (4

3 Возможные модификации метода Ньютона Метод Ньютона-Рафсона: При переходе к новой итерации новая точка + рассчитывается по формуле: ( + = τ, < τ ( В простейшем варианте метода τ = τ = const (значение τ = соответствует исходному методу Ньютона Оптимальный набор параметров τ может быть найден из решения задачи минимизации: ( ϕ ( τ = min ( τ На практике для параметров τ обычно используется приближенное решение последней задачи: ( ( τ =, где ( ( ( ( ( = + ( Метод Марквардта: При переходе к новой итерации новая точка + рассчитывается по формуле: ( + =, μ > ( + μ Значение параметра μ выбирается как минимум на порядок больше значения ( При переходе к новой итерации новое значение μ + полагают равным μ + = μ /, если ( + < (, либо μ + = μ в противном случае Метод перебора (минимизации многомодальных функций Стратегия поиска: Применение этого метода строго обосновано лишь для унимодальной на [ a; b] функции ( Однако, если вместо унимодальности потребовать, чтобы функция ( удовлетворяла на a; b условию Липшица ( [ ] ( L, для всех [ a; ], (5, b то можно гарантировать определение минимального значения методом перебора с любой заданной точностью Сформулируем утверждение более строго Пусть функция ( удовлетворяет на отрезке a; b условию Липшица (5 с [ ] константой L и приближенные значения m, ( m найдены методом перебора с разбиением отрезка a; на n частей Тогда для погрешности [ b] определения минимального значения Замечание Если функция b a δ n = ( m L n ( справедлива оценка (6 многомодальна, то погрешность определения ее точки минимума может быть значительной, несмотря на то, что сам минимум найден достаточно точно Однако во многих случаях практический интерес представляют те значения аргумента (возможно, далекие от, при которых целевая функция принимает δ n

4 значения, достаточно близкие к минимальному Это позволяет использовать метод перебора для многомодальных функций Метод ломаных (минимизации многомодальных функций Ознакомиться со стратегией и алгоритмом метода ломаных по главе 3 пособия на электронном носителе или по дополнительной литературе Задания Написать в среде MATLAB функции, реализующие метод средней точки, метод хорд и метод Ньютона Выбрать для выполнения работы тестовую функцию, номер которой соответствует номеру Вашего компьютера Например, для компьютера 3 это будет функция 3, для компьютера 3 функция 4: 3-9=4; для компьютера 3 это будет функция 5: 3-9 =5 3 ( = 3sin min, [, ] 4 ( = min, [, ] 3 ( = e + min, [,5,,5] 4 ( = + e min, [,,5 ] 5 ( = sin + cos min, [ 6, 4] 6 ( = + min, [, ] 7 ( = ln min, [,, ] 3 8 ( = e + min, 3 [,5, ] 9 ( = cos min, [,5, ] 3 Для выбранной функции и для каждого рассмотренного выше метода изучить зависимость скорости работы (числа вычислений функции N от заданного значения точности ε Провести сравнение методов друг с другом Объяснить полученные результаты 4 Определить, сколько вычислений функции потребуется каждому методу для того, чтобы разность между численным решением и аналитическим решением, найденным в задании для численной реализации гл, была меньше ε = 4 5 Сравнить полученные результаты с результатами выполнения задания для численной реализации гл Сформулировать достоинства и недостатки прямых методов и методов, использующих производную целевой функции 6 С помощью метода Ньютона решить задачу минимизации функции ( = arctg ln( + Определить диапазон начальных приближений, для которых применим метод Ньютона Объяснить полученный результат 7 Решить задачу предыдущего пункта с помощью одной из описанных выше модификаций метода Ньютона (метода Марквардта или метода Ньютона-Рафсона

5 Определить диапазон начальных приближений, для которых применима выбранная модификация метода Ньютона Сравнить полученные результаты с результатами выполнения предыдущего пункта 8 Составить программу нахождения глобального минимума многомодальных функций методом перебора и методом ломаных С ее помощью решить один из следующих наборов задач: cos а ( = min, [,]; ( = + sin 4 min, [, 4]; cos ( б ( = min, [, 5] ; ( = 3cos + sin(4 min, [, 4] e Сравнить найденные значения точек минимума с точными значениями, найденными аналитически Сделать выводы о сравнительных достоинствах и недостатках метода перебора и метода ломаных 9 Сдать лабораторную работу преподавателю, ответив предварительно на все следующие контрольные вопросы Контрольные вопросы к лабораторной работе Пусть ( - выпуклая дифференцируемая функция и ( ε Можно ли указать погрешности определения точки минимума и минимального значения по формулам =, = (? Ответ пояснить рисунком Является ли условие ( = достаточным для того, чтобы число было точкой минимума унимодальной, но не выпуклой функции (? Ответ сопроводить примером 3 Указать класс функций, для которых точное определение точки минимума гарантировано в результате всего одной итерации метода Ньютона 4 Сформулировать достаточные условия сходимости метода Ньютона 5 Сформулировать достаточные условия монотонной сходимости метода Ньютона Всегда ли в этом случае скорость сходимости будет квадратичной? 6 Для каких выпуклых дважды дифференцируемых функций метод золотого сечения приводит к цели за меньшее количество итераций, чем метод Ньютона? 8 7 Минимизировать функцию ( = ( min, [;] с помощью методов Ньютона и золотого сечения Сравнить эти методы 8 Сформулировать оценку погрешности определения минимума многомодальной функции методом перебора

6 9 Увеличение используемого значения константы Липшица L при реализации метода ломаных приводит к замедлению сходимости метода Объяснить этот факт с помощью геометрической иллюстрации Показать с помощью рисунка, что если в методе ломаных используется ошибочно заниженное значение константы Липшица L, то задача минимизации может быть решена неверно

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных исследований

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Т. М. Попова МЕТОДЫ БЕЗУСЛОВНОЙ ОПТИМИЗАЦИИ

Т. М. Попова МЕТОДЫ БЕЗУСЛОВНОЙ ОПТИМИЗАЦИИ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

Решение уравнения с одним неизвестным

Решение уравнения с одним неизвестным 1 Решение уравнения с одним неизвестным Дано уравнение в виде f(x)=0, где f(x) некоторая функция переменной x. Число x * называется корнем или решением данного уравнения, если при подстановке x=x * в уравнение

Подробнее

К. В. Григорьева. Методические указания Тема 3. Методы решения задачи минимизации квадратичной функции. Факультет ПМ-ПУ СПбГУ 2007 г.

К. В. Григорьева. Методические указания Тема 3. Методы решения задачи минимизации квадратичной функции. Факультет ПМ-ПУ СПбГУ 2007 г. К. В. Григорьева Методические указания Тема. Методы решения задачи минимизации квадратичной функции Факультет ПМ-ПУ СПбГУ 7 г. ОГЛАВЛЕНИЕ. ПОСТАНОВКА ЗАДАЧИ. ВСПОМОГАТЕЛЬНЫЕ СВЕДЕНИЯ.... МЕТОДЫ СПУСКА

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл

Интегрируемость функции (по Риману) и определенный интеграл Интегрируемость функции (по Риману) и определенный интеграл Примеры решения задач 1. Постоянная функция f(x) = C интегрируема на [a, b], так как для любых разбиений и любого выбора точек ξ i интегральные

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Численные методы интегрирования и решения дифференциальных уравнений

Численные методы интегрирования и решения дифференциальных уравнений Краевой конкурс учебно-исследовательских и проектных работ учащихся «Прикладные вопросы математики» Математический анализ Численные методы интегрирования и решения дифференциальных уравнений Новопоселенких

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Костромской государственный технологический университет ЧИСЛЕННЫЕ МЕТОДЫ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Костромской государственный технологический университет ЧИСЛЕННЫЕ МЕТОДЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Костромской государственный технологический университет И.В. Землякова, О.Б. Садовская, А.С. Илюхина ЧИСЛЕННЫЕ МЕТОДЫ Рекомендовано редакционно-издательским

Подробнее

Глава 7. Определенный интеграл

Глава 7. Определенный интеграл 68 Глава 7 Определенный интеграл 7 Определение и свойства К понятию определенного интеграла приводят разнообразные задачи вычисления площадей, объемов, работы, объема производства, денежных потоков и тп

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Тема6. «Определенный интеграл»

Тема6. «Определенный интеграл» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема6. «Определенный интеграл» Кафедра теоретической и прикладной математики. разработана доц. Е.Б.Дуниной

Подробнее

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА)

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Постановка задачи. Рассматривается задача о вычислении однократного интеграла J(F ) = F (x) dx. ()

Подробнее

Б.Ф. Харчистов МЕТОДЫ ОПТИМИЗАЦИИ

Б.Ф. Харчистов МЕТОДЫ ОПТИМИЗАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ТАГАНРОГСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Б.Ф. Харчистов МЕТОДЫ

Подробнее

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Расчетные задания Варианты

Подробнее

Ш87(03) Береславский Э. Н., Далингер Я. М., Павлов В. Д., Соловьева Т. В. Численные методы. Учебное пособие/университет ГА. С.-Петербург, 2014.

Ш87(03) Береславский Э. Н., Далингер Я. М., Павлов В. Д., Соловьева Т. В. Численные методы. Учебное пособие/университет ГА. С.-Петербург, 2014. Министерство транспорта Российской Федерации (Минтранс России) Федеральное агентство воздушного транспорта (Росавиация) ФГБОУ ВПО «Санкт-Петербургский государственный университет гражданской авиации» Э.

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim Òåîðåìû î ïðåäåëàõ Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Основные теоремы о пределах. Предел числовой последовательности. Первый замечательный предел. Второй замечательный предел. Экспонента. Натуральный логарифм.

Подробнее

10. Определенный интеграл

10. Определенный интеграл 1. Определенный интеграл 1.1. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x 1,..., x n 1, x n } [, b], что = x < x 1 < < x n 1

Подробнее

3. Ряды Числовые ряды

3. Ряды Числовые ряды . Ряды Числовые ряды Определение. Числовым рядом называется выражение вида u u u... u..., где числа u, u, u,... называются членами ряда u называется общим членом ряда. Определение. -ой частичной суммой

Подробнее

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ Министерство образования и науки Украины Севастопольский национальный технический университет ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ для студентов всех специальностей очной формы

Подробнее

В. А. ФЕОФАНОВА, В. И. ВОРОТНИКОВ, Ю. Г. МАРТЫШЕНКО ЧИСЛЕННЫЕ МЕТОДЫ

В. А. ФЕОФАНОВА, В. И. ВОРОТНИКОВ, Ю. Г. МАРТЫШЕНКО ЧИСЛЕННЫЕ МЕТОДЫ Министерство образования и науки РФ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого Президента России

Подробнее

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» М.П. Дымков ВЫСШАЯ МАТЕМАТИКА Второй семестр Курс лекций для студентов экономических специальностей

Подробнее

Цель: закрепить пройденный теоретический материал посредством рассмотрения I соответствующих примеров и решения задач.

Цель: закрепить пройденный теоретический материал посредством рассмотрения I соответствующих примеров и решения задач. Предмет: алгебра и начала анализа Класе: 11 Дата проведения урока: 21.12.2015 Учитель: С.М. Криштоп Тема урока: Касательная к графику функции (урок 2) Цель: закрепить пройденный теоретический материал

Подробнее

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ Министерство образования и науки Российской Федерации Ярославский государственный университет им ПГ Демидова Кафедра дискретного анализа СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

Практическое занятие 6 Численное интегрирование Продолжительность работы- 2 часа Цель работы: закрепление знаний о численном интегрировании по

Практическое занятие 6 Численное интегрирование Продолжительность работы- 2 часа Цель работы: закрепление знаний о численном интегрировании по 46 Практическое занятие 6 Численное интегрирование Продолжительность работы- 2 часа Цель работы: закрепление знаний о численном интегрировании по обобщенным формулам средних прямоугольников, трапеций,

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

Примеры задач, приводящих к решению систем нелинейных уравнений

Примеры задач, приводящих к решению систем нелинейных уравнений 1 Примеры задач, приводящих к решению систем нелинейных уравнений Двухточечные краевые задачи u = f(x, u), 0 x 1; u(0) = α; u(1) = β а) разностный метод, в котором производная аппроксимируется разностью

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

ГЛАВА: Введение в численные методы. Лекция 3: Численное интегрирование (15 слайдов)

ГЛАВА: Введение в численные методы. Лекция 3: Численное интегрирование (15 слайдов) ГЛАВА: Введение в численные методы. Лекция 3: Численное интегрирование (15 слайдов) Слайд 1: Методы численного интегрирования. Требуется вычислить определенный интеграл: Методы решения такой задачи: 1.

Подробнее

Глава 3. Несобственные интегралы и интегралы, зависящие от параметра.

Глава 3. Несобственные интегралы и интегралы, зависящие от параметра. Глава. Несобственные интегралы и интегралы, зависящие от параметра. Определенный интеграл f ( d ) в главе был введен для случая ко нечного промежутка [, ] и ограниченной функции f (). Теперь это понятие

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

8. Численное решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядка

8. Численное решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядка Варианты задания 8. Численное решение задачи Коши для обыкновенного дифференциального уравнения -го порядка 8.. Постановка задачи Рассмотрим задачу Коши для обыкновеннго дифференциального уравнения y =

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Казанский государственный университет Р.Ф. Марданов ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие Издательство Казанского государственного университета 2007 УДК 517.9

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Министерство образования РФ Сибирская государственная автомобильно-дорожная академия (СибАДИ) ЛН Романова ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Курс лекций Омск Издательство СибАДИ ЛН РОМАНОВА ФУНКЦИИ НЕСКОЛЬКИХ

Подробнее

Выпуклые функции и их свойства Учебно-методическое пособие по курсу "Методы Оптимизации"

Выпуклые функции и их свойства Учебно-методическое пособие по курсу Методы Оптимизации Государственный комитет Российской Федерации по высшему образованию Дальневосточный государственный университет Выпуклые функции и их свойства Учебно-методическое пособие по курсу "Методы Оптимизации"

Подробнее

Геометрические приложения определенного интеграла

Геометрические приложения определенного интеграла Геометрические приложения определенного интеграла Кривая L на плоскости задается своей параметризацией x = x(t), y = y(t), t [t, T ]. (1) Заметим, что изменяется единственный параметр t. Часто говорят,

Подробнее

0(z z c ) 2 /2 +..., также для удобства разделим уравнение Орра-Зоммерфельда на u 0: d 4 w 2. d (z z dz 2 α2 u 0. ((z z c ) + u 0

0(z z c ) 2 /2 +..., также для удобства разделим уравнение Орра-Зоммерфельда на u 0: d 4 w 2. d (z z dz 2 α2 u 0. ((z z c ) + u 0 На прошлой лекции было показано, что при больших R два решения уравнения Орра-Зоммерфельда близки к решениям уравнения Рэлея, два других являются ВКБ-решениями. С последними имеются две проблемы. Во-первых,

Подробнее

для выполнения лабораторной работы 4

для выполнения лабораторной работы 4 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ПРИБЛИЖЕННОЕ

Подробнее

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 007. Т. 48, N- 5 УДК 539.3 ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ Ю. В. Захаров, К. Г. Охоткин,

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

Московский государственный технический университет. имени Н.Э.Баумана. Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ.

Московский государственный технический университет. имени Н.Э.Баумана. Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Московский государственный технический университет имени Н.Э.Баумана Ф.Х. Ахметова, С.Н. Ефремова, Т.А. Ласковая ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Часть Методические указания к выполнению домашнего задания

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ)

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ) Кафедра "Прикладная математика-1" Ю.С.Семёнов Кафедра "Прикладная математика-1"

Подробнее

Методические рекомендации по выполнению контрольной работы по дисциплине «Элементы высшей математики».

Методические рекомендации по выполнению контрольной работы по дисциплине «Элементы высшей математики». МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ РОСТОВСКОЙ ОБЛАСТИ «ДОНСКОЙ БАНКОВСКИЙ КОЛЛЕДЖ» Методические

Подробнее

ЭЛЕМЕНТЫ ФУНКЦИОНАЛЬНОГО АНАЛИЗА

ЭЛЕМЕНТЫ ФУНКЦИОНАЛЬНОГО АНАЛИЗА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Математика и теоретическая механика» Методические рекомендации

Подробнее

8. Определенный интеграл

8. Определенный интеграл 8. Определенный интеграл 8.. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x,..., x n, x n } [, b], что = x < x < < x n < x n =

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ Кафедра высшей математики МЕТОДИЧЕСКИЕ УКАЗАНИЯ и контрольные задания по курсу «Прикладная математика» для студентов заочников направлений 8.6 - Агроинженерия 96.6 - Эксплуатация транспортно-технологических

Подробнее

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Работа переменной силы. Масса и заряд материальной кривой. Статические моменты и центр тяжести материальной кривой и плоской

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

Введение. Правило Декарта. Число положительных корней многочлена P (x) = a k x m k a1 x m 1

Введение. Правило Декарта. Число положительных корней многочлена P (x) = a k x m k a1 x m 1 Введение В курсе математического анализа первого семестра одно из центральных мест занимает теорема Ролля. Теорема Ролля. Пусть функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (a,

Подробнее

Определение деформации балки, закреплённой на обоих концах и нагруженной распределённой нагрузкой

Определение деформации балки, закреплённой на обоих концах и нагруженной распределённой нагрузкой Определение деформации балки, закреплённой на обоих концах и нагруженной распределённой нагрузкой Дана балка, жёстко закреплённая на обоих концах. Деформацию балки под действием заданной системы сил можно

Подробнее

ТЕОРИЯ ИГР ТЕОРИЯ ИГР И.В. ПИВОВАРОВА. Пивоварова Ирина Викторовна. Министерство образования и науки Российской Федерации

ТЕОРИЯ ИГР ТЕОРИЯ ИГР И.В. ПИВОВАРОВА. Пивоварова Ирина Викторовна. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Владивостокский государственный университет экономики и сервиса Учебное издание Пивоварова Ирина Викторовна ТЕОРИЯ ИГР Практикум ИВ ПИВОВАРОВА ТЕОРИЯ

Подробнее

Лекция 5. Лекция 6. Лекция 7. Лекция 8.

Лекция 5. Лекция 6. Лекция 7. Лекция 8. Очная форма обучения. Бакалавры. I курс, I семестр. Направление 220700- «Автоматизация технологических процессов и производств» Дисциплина - «Математика». Лекции Лекция 1. Векторные и скалярные величины.

Подробнее

Московский Государственный Университет Геодезии и Картографии. Кафедра высшей математики

Московский Государственный Университет Геодезии и Картографии. Кафедра высшей математики Московский Государственный Университет Геодезии и Картографии Кафедра высшей математики Высшая математика ( семестр Разделы Функции. Пределы. Дифференцирование. Интегрирование. Основные формулы по темам

Подробнее

Казанский государственный университет Кафедра радиоастрономии. Тептин Г.М., Хуторова О.Г., Журавлёв А.А. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Казанский государственный университет Кафедра радиоастрономии. Тептин Г.М., Хуторова О.Г., Журавлёв А.А. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ Казанский государственный университет Кафедра радиоастрономии Тептин Г.М., Хуторова О.Г., Журавлёв А.А. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ Казань 009 Печатается по решению Редакционно-издательского совета физического

Подробнее

7. Общие понятия. U n (x),n N, определены в области D. Выра-

7. Общие понятия. U n (x),n N, определены в области D. Выра- Глава Функциональные ряды 7 Общие понятия U (), N, определены в области D Выра- Определение 7 Пусть функции жение () U() U() U(), D U (5) называется функциональным рядом Каждому значению D соответствует

Подробнее

Дифференциальные уравнения: конспект лекций

Дифференциальные уравнения: конспект лекций [DEshrt.te, 09.01.09] Дифференциальные уравнения: конспект лекций В 006 году студент -го курса Д.В. Кальянов набрал в LaTeX'е конспект моих лекций по курсу "Дифференциальные уравнения". Я переписал его

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э.Баумана. Кафедра «Высшая математика» Блюмин А.Г., Федотов А.А., Храпов П.В.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э.Баумана. Кафедра «Высшая математика» Блюмин А.Г., Федотов А.А., Храпов П.В. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э.Баумана Кафедра «Высшая математика» Блюмин А.Г., Федотов А.А., Храпов П.В. ЧИСЛЕННЫЕ МЕТОДЫ ВЫЧИСЛЕНИЯ ИНТЕГРАЛОВ И РЕШЕНИЯ ЗАДАЧ ДЛЯ ОБЫКНОВЕННЫХ

Подробнее

Статистическая обработка результатов измерений в лабораторном практикуме

Статистическая обработка результатов измерений в лабораторном практикуме Нижегородский Государственный Технический университет имени Р.Е. Алексеева Кафедра ФТОС Статистическая обработка результатов измерений в лабораторном практикуме Попов Е.А., Успенская Г.И. Нижний Новгород

Подробнее

Федерaльное aгентство по обрaзовaнию

Федерaльное aгентство по обрaзовaнию Федерaльное aгентство по обрaзовaнию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

1. Погрешность результата численного решения задачи

1. Погрешность результата численного решения задачи Оглавление. Погрешность результата численного решения задачи.... Причины возникновения и классификация погрешности.... Прямая задача теории погрешностей.... Обратная задача теории погрешности.... Задачи....

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

3A = A = A = 1 7 A + B = A = c ij = a i1 b 1j + a i2 b 2j + + a ik b kj = a is b sj

3A = A = A = 1 7 A + B = A = c ij = a i1 b 1j + a i2 b 2j + + a ik b kj = a is b sj Высшая математика Лекции по курсу Список литературы [] Высшая математика для экономистов Под редакцией НШ Кремера [] СА Минюк, ЕА Ровба Высшая математика [] Сборник задач по высшей математике для экономистов

Подробнее

Лемешко Борис Юрьевич Методы оптимизации

Лемешко Борис Юрьевич Методы оптимизации Новосибирский государственный технический университет Лемешко Борис Юрьевич Методы оптимизации Утверждено Редакционно-издательским советом университета в качестве коспекта лекций 9 УДК 59.6(75.8) Л Рецензенты:

Подробнее

ПРОГРАММА ПО МАТЕМАТИКЕ

ПРОГРАММА ПО МАТЕМАТИКЕ МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ДЕПАРТАМЕНТ НАУЧНО-ТЕХНОЛОГИЧЕСКОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ ФГБОУ ВПО «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ПРОГРАММА ПО МАТЕМАТИКЕ Персиановский

Подробнее

Рабочая программа Заочной математической школы. 11 класс. Продвинутая группа. Занятие 1. Текстовые задачи и задачи на целые решения.

Рабочая программа Заочной математической школы. 11 класс. Продвинутая группа. Занятие 1. Текстовые задачи и задачи на целые решения. Рабочая программа Заочной математической школы 11 класс. Продвинутая группа Занятие 1. Текстовые задачи и задачи на целые решения. 1. Постулат Оккама. Принцип минимальности при составлении систем уравнений

Подробнее

Лекция 2. Инварианты плоских кривых

Лекция 2. Инварианты плоских кривых Лекция 2. Инварианты плоских кривых План лекции. Гладкие кривые на плоскости, число вращения, классификация кривых с точностью до гладкой гомотопии, точки самопересечения, число Уитни, теорема Уитни..1

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ В УрФУ В 2012г. ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФАКТЫ

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ В УрФУ В 2012г. ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФАКТЫ ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО МАТЕМАТИКЕ ДЛЯ ПОСТУПАЮЩИХ В УрФУ В 2012г. ОСНОВНЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФАКТЫ 1. Числовые множества. Арифметические действия над числами. Натуральные числа (N).

Подробнее

Лекция 14. Неопределенности и правило Лопиталя

Лекция 14. Неопределенности и правило Лопиталя СА Лавренченко 1 wwwlawrencenkoru Лекция 14 Неопределенности и правило Лопиталя Правило Лопитáля применяется при вычислении пределов для раскрытия неопределенностей типа или Раскрытие неопределенности

Подробнее

«Сосновоборский политехнический колледж» Н. И. Запивахина Методическое пособие для выполнения практических работ по дисциплине «Математика»

«Сосновоборский политехнический колледж» Н. И. Запивахина Методическое пособие для выполнения практических работ по дисциплине «Математика» Государственное автономное образовательное учреждение среднего профессионального образования Ленинградской области «Сосновоборский политехнический колледж» Н. И. Запивахина Методическое пособие для выполнения

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Т А Матвеева В Б Светличная С А Зотова ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Методические указания и контрольные задания по математике для обучающихся 2 курса СПО

Методические указания и контрольные задания по математике для обучающихся 2 курса СПО ГАОУ СПО ЛО Киришский политехнический техникум Методические указания и контрольные задания по математике для обучающихся курса СПО Методическая разработка по дисциплине «Математика» Разработала преподаватель

Подробнее

МАТЕМАТИКА ЕГЭ Функция и параметр. (типовые задания С5)

МАТЕМАТИКА ЕГЭ Функция и параметр. (типовые задания С5) ФДП МАТЕМАТИКА ЕГЭ Функция и параметр (типовые задания С5) Прокофьев АА Корянов АГ Прокофьев АА доктор педагогических наук, заведующий кафедрой высшей математики НИУ МИЭТ, учитель математики ГОУ лицей

Подробнее

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8.

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8. 01 1. Найдите общее и базисное решения системы уравнений: 16x 10x + 2x = 8, 40x + 25x 5x = 20. Ответ: Если в качестве базисной переменной выбрать x, то общее решение: x = 1 2 + 5 8 x 1 8 x, x, x R; базисное

Подробнее

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А.

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А. РЯДЫ ФУРЬЕ Автор-составитель: доцент каф ВМ Цапаева СА Великий Новгород ПОНЯТИЕ И СВОЙСТВА ГАРМОНИК Определение Гармониками называются комплекснозначные функции вида iω ( ) e, где действительная переменная,

Подробнее

Конспект лекций по высшей математике

Конспект лекций по высшей математике Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра высшей математики Конспект лекций по высшей математике для студентов экономических

Подробнее

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа ВВ Колыбасова, НЧ Крутицкая В В Колыбасова, Н Ч Крутицкая Достаточные условия существования решения задачи об условном

Подробнее

О конструировании вычислительного алгоритма для решения некорректной задачи с использованием визуализации на вычислительном комплексе МВС-1000

О конструировании вычислительного алгоритма для решения некорректной задачи с использованием визуализации на вычислительном комплексе МВС-1000 О конструировании вычислительного алгоритма для решения некорректной задачи с использованием визуализации на вычислительном комплексе МВС-1000 ИММ УрО РАН В работе изложен опыт, полученный в процессе восстановления

Подробнее

Рабочая программа по математике 5-6 класс ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ МАТЕМАТИКИ В 5-6 КЛАССАХ

Рабочая программа по математике 5-6 класс ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ МАТЕМАТИКИ В 5-6 КЛАССАХ Рабочая программа по математике 5-6 класс ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ИЗУЧЕНИЯ МАТЕМАТИКИ Рациональные числа Ученик научится: В 5-6 КЛАССАХ 1) понимать особенности десятичной системы счисления; 2) владеть понятиями,

Подробнее

КЛЕТОЧНЫЙ АСИНХРОННЫЙ МЕТОД РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ НА ГПУ

КЛЕТОЧНЫЙ АСИНХРОННЫЙ МЕТОД РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ НА ГПУ КЛЕТОЧНЫЙ АСИНХРОННЫЙ МЕТОД РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ НА ГПУ А.П. Карпенко, М.П. Погосский Введение. Численное решение краевых задач для уравнений в частных производных (ДУЧП)

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ И ЕГО ПРИЛОЖЕНИЯ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новгородский государственный университет имени

Подробнее

ТЕСТЫ. Математика. Варианты, решения и ответы

ТЕСТЫ. Математика. Варианты, решения и ответы Министерство образования и науки Российской Федерации Федеральное агентство по образованию Алтайский государственный технический университет им. И. И. Ползунова Е. В. Мартынова, И. П. Мурзина, Т. М. Степанюк,

Подробнее

Э.В. Денисова А.В. Кучер. ОСНОВЫ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ Учебно-методическое пособие

Э.В. Денисова А.В. Кучер. ОСНОВЫ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ Учебно-методическое пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ МЕХАНИКИ И ОПТИКИ Э.В. Денисова А.В. Кучер ОСНОВЫ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ УТВЕРЖДАЮ Декан ФПМК Горцев А.М. "8" августа 014 г. Рабочая программа

Подробнее

x 2 10x > x 2 10x = x(x 10) > x2 x x 2 /2 = 2 x. x 2 10x < x+ x 2 10x = 0. x 0. > 0k N : 0 < x k < и f(x k ) A = A > 0,

x 2 10x > x 2 10x = x(x 10) > x2 x x 2 /2 = 2 x. x 2 10x < x+ x 2 10x = 0. x 0. > 0k N : 0 < x k < и f(x k ) A = A > 0, Пределы Предел функции Определение предела Пусть a точка числовой прямой, a b c) Пусть функция f) опре- делена на множестве E : { b c)\{a}} Число a называется пределом функции f) при, стремящемся к a обо-

Подробнее

Тема 3. Симплекс-метод решения задачи линейного программирования

Тема 3. Симплекс-метод решения задачи линейного программирования Тема 3. Симплекс-метод решения задачи линейного программирования Цель: познакомить читателя с симплекс-методом решения задачи линейного программирования и основными понятиями и теоремами теории двойственности

Подробнее

П О В Ы С Ш Е Й М А Т Е М А Т И К Е

П О В Ы С Ш Е Й М А Т Е М А Т И К Е Санкт-Петербургский государственный университет А. В. О С И П О В К О Н С П Е К Т Л Е К Ц И Й П О В Ы С Ш Е Й М А Т Е М А Т И К Е Часть II (-й курс, -й семестр) Санкт-Петеpбуpг 0 0 Конспект лекций по высшей

Подробнее

Т.Л. Сурин Ж.В. Иванова С.В. Шерегов Методические рекомендации и задания к контрольным работам 1 и 2 по математическому анализу

Т.Л. Сурин Ж.В. Иванова С.В. Шерегов Методические рекомендации и задания к контрольным работам 1 и 2 по математическому анализу Т.Л. Сурин Ж.В. Иванова С.В. Шерегов Методические рекомендации и задания к контрольным работам и по математическому анализу (для студентов I курса математического факультета заочного отделения ) Витебск

Подробнее

Т е м а 5 Определенный интеграл

Т е м а 5 Определенный интеграл 8 Т е м а 5 Определенный интеграл Понятие определенного интеграла используют при решении практических задач, в частности, в задачах по вычислению площадей плоских фигур, расчету работы, производимой переменной

Подробнее

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) АА ЗЛЕНКО ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К САМОСТОЯТЕЛЬНОЙ РАБОТЕ ПО МАТЕМАТИКЕ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ

Подробнее

Математика. Программа вступительного испытания

Математика. Программа вступительного испытания МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВПО «СОЧИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» «Университетский экономико-технологический колледж» Математика Программа вступительного испытания

Подробнее

24 4. Интегрирование некоторых тригонометрических функций Универсальная тригонометрическая подстановка

24 4. Интегрирование некоторых тригонометрических функций Универсальная тригонометрическая подстановка СОДЕРЖАНИЕ Глава Неопределенный интеграл Первообразная и неопределенный интеграл Понятие первообразной функции и неопределённого интеграла Свойства неопределённого интеграла Таблица основных неопределённых

Подробнее

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ Министерство образования и науки РФ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого Президента России

Подробнее

Практикум по дифференциальному исчислению

Практикум по дифференциальному исчислению Федеральное агентство по образованию Томский государственный университет систем управления и радиоэлектроники Л.И. Магазинников А.Л. Магазинников Практикум по дифференциальному исчислению Учебное пособие

Подробнее

Министерство образования Республики Беларусь КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Министерство образования Республики Беларусь КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования Республики Беларусь "Высший государственный колледж связи" Кафедра Математики и физики КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть Минск 5 г РАЗДЕЛ 4 Функции нескольких переменных

Подробнее