Рассмотрим в качестве функциональной зависимости многочлен., тогда

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Рассмотрим в качестве функциональной зависимости многочлен., тогда"

Транскрипт

1 Лекция 5. Аппроксимация функций по методу наименьших квадратов. В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично или в виде набора точек (, ), где =,...,. Как правило, эти табличные данные получены экспериментально и имеют погрешности. При аппроксимации желательно получить относительно простую функциональную зависимость (например, многочлен), которая позволила бы «сгладить» экспериментальные погрешности, вычислять значения функции в точках не содержащихся в исходной таблице. Эта функциональная зависимость должна с достаточной точностью соответствовать исходной табличной зависимости. В качестве критерия точности чаще всего используют критерий наименьших квадратов, т.е. определяют такую функциональную зависимость (), при которой R ) ( обращается в минимум. Рассмотрим в качестве функциональной зависимости многочлен. P, тогда P R ) (. Условия минимума нулевые частные производные по всем переменным,,,. Т.е. R, или, =,,,,. Собираем коэффициенты при неизвестных,,,, получаем систему уравнений:, =,,,,. Можно ввести обозначения:, и переписать систему в развернутом виде.... Матрица данной системы называется матрицей Грамма. Решая эту систему линейных уравнений, получаем коэффициенты,,,, которые являются искомыми параметрами эмпирической формулы. Рассмотрим два частных случая = и =.

2 . Линейная аппроксимация ( = ). P () = +,,,, Таким образом наша система уравнений имеет вид: Решаем ее методом Крамера.,, И получаем искомую функцию = +.. Квадратичная аппроксимация ( = ). P () = + + Кроме,,,, рассчитываются, 4 4,. Расширенная матрица системы уравнений: 4, решив которую получим искомые коэффициенты,,. Пример. Получить эмпирическую формулу для функции (), заданной таблицей, используя метод наименьших квадратов.,75,5,5,75 (),,,, 4, Табличные данные изобразим на графике, из которого видно, что в качестве эмпирической функции можно взять параболу.,5,5,5,5 4 4,5,5,5,5,5 4

3 Найдем коэффициенты системы уравнений из таблицы. 4,75,,565,4875,646,75,975,5,,5,75 5,65,95,95,5 5,65,96 5,689,5 5,65, ,6 9,8 4,75 4, 4,65 5,748 97,759 5,75 59,65,5,975 94,988 9,767 8,75 88,475 5, 5, 94, 5, 94 94, 9 8, 7, 94 94, 9 9, , Решение этой системы = 4,54; = -,66; =,95, и зависимость описывается формулой = 4,54,66 +,95. Погрешность приближения многочленом по методу наименьших квадратов: P В случае нашего примера погрешность составит ε =,. Если экспериментальные точки располагаются вдоль некоторой линии, сходной по форме, например, с графиком гиперболической, показательной, логарифмической или других функций с неизвестными параметрами выбирается в качестве аппроксимирующей. Затем проводится линеаризация этой функции с помощью замены переменных и задача сводится к аппроксимации зависимости многочлена первой степени. Например: а). Показательная зависимость:, приводится к линейному виду путем логарифмирования l l l. б) Степенная, аналогично l l l. в) Гиперболическая, приводится к линейному виду введением новой переменной Y=/. Пример. Результаты десяти наблюдений представлены в таблице. Установить вид зависимости между этими величинами и найти параметры эмпирической формулы ,4 6, 5,6 5, 4,,4,,5,,9 Точечная диаграмма позволяет предположить, что зависимость между и экспоненциальная = e. Вводим новые переменные Y =l, X =, = l, сводим зависимость к линейной Y = X +.

4 Перестраиваем табличную зависимость l,8,85,7,69,45,84,,96,7,64 По этим данным методом наименьших квадратов подберем аппроксимирующую линейную функцию. = +. После решения системы получим =,, = -, =. Так как = = l, то = e = e, = 8,5. Таким образом, полученная зависимость = 8,5 e -,. Численное интегрирование. К вычислению определенного интеграла сводятся многие практические инженерные и научные задачи. Например, вычисление площадей фигур, объемов тел, работы силы и др. Постановка задачи: Вычислить определенный интеграл ( )d, где () некоторая заданная на отрезке [, ] функция. Далеко не всегда можно вычислить интеграл в аналитическом виде по известной из курса математического анализа формуле Ньютона Лейбница. Иногда даже при известной первообразной ее вид может оказаться очень сложным для вычислений. Также формулу Ньютона Лейбница нельзя применить, если функция получена экспериментально в виде таблицы. Во всех этих случаях применяют численное интегрирование. На практике наиболее широко используют квадратурные формулы: ( )d A где точки из отрезка [, ] (узлы квадратурной формулы), А числовые коэффициенты (веса) квадратурной формулы. сумму. За приближенное значение интеграла принимаем A - квадратурную R ( )d A - погрешность квадратурной формулы.

5 Для вывода квадратурной формулы отрезок интегрирования [, ] разбивается на равных частичных отрезков [ -, ], =,, длиной = ( ) /, а интеграл ( )d заменяется суммой частичных интегралов ( ) d d. Затем подынтегральная функция () на частичном отрезке [ -, ] заменяется некоторым интерполяционным многочленом невысокой степени L, (), и вычисляется интеграл d L, d и приближенное значение интеграла будет получено в виде: ( )d A. В зависимости от вида интерполяционного многочлена будут получаться различные квадратурные формулы. Если будет использоваться интерполяционный многочлен нулевой степени, то будет получена формула прямоугольников, если на отрезке [ -, ] используется линейная интерполяция, то получается формула трапеций, если квадратичная формула Симпсона. Но можно вывести простейшие квадратурные формулы исходя из геометрического смысла определенного интеграла, а именно находя приближенную площадь криволинейной трапеции. S s Формула прямоугольников. Можно приближенно заменить площадь криволинейной трапеции площадью ступенчатой фигуры, состоящей из прямоугольников. Площадь того прямоугольника находится как произведение длины отрезка основания [ -, ] на значение функции в s середине отрезка. Суммируя площади всех элементарных трапеций, получим квадратурную формулу средних прямоугольников.

6 ... )d ( s Иногда используют формулы правых и левых прямоугольников:... )d (... )d ( Геометрическая иллюстрация этих формул. Формула трапеций. Формулу трапеций можно также получить из геометрических соображений. Отрезок интегрирования [, ] разбивается на частей длины. ( - шаг разбиения.),, - абсциссы точек деления и соответствующие ординаты кривой,,, соединяются ломаной линией. В результате построения криволинейная трапеция разбивается на ряд вертикальных полосок одной и той же ширины, каждую из которых приближенно можно принять за трапецию. Площадь элементарной трапеции: s Суммируя площади этих трапеций, получаем формулу: d ) ( (Формула трапеций.) Пример. Вычислить приближенно I d. Разобьем промежуток интегрирования на частей ( ), следовательно,. Абсциссы точек деления и соответствующие им ординаты, запишем в таблице. Причем для удобства в начальной и конечной точке умножим значение на.,,5*,,5,,98,,44 4,4,77

7 5,5,8 6,6,66 7,7,7 8,8,86 9,9,454,,77* Находим,488. И по формуле трапеций имеем I, 48. Точное значение этого же интеграла, полученное по формуле Ньютона-Лейбница I l( ),479. Формула Симпсона. Более точную формулу можно получить, если профиль криволинейной полоски считать параболой (используя многочлен Лагранжа второй степени), а не прямой линией как в формуле трапеций. В этом случае можно получить формулу Симпсона: ( ) d ( ) ( ) ( ( ) ) ( ) ( ( ) ( ) 4, Пример. Вычислить приближенно. d I. Промежуток интегрирования разбиваем на частей ( ),,. В таблицу запишем абсциссы точек деления и соответствующие им ординаты.,,,,99,,965,,974 4,4,866 5,5,8 6,6,759 7,7,674 8,8,6975 9,9,5549,,5

8 I Отдельно суммируем значения, стоящие на четных местах (четн),965,866,759,6975, 686 и на нечетных местах (нечетн),99,97,8,674,5549, 96,,686 4,96,5, 7857 Точное значение интеграла d, Погрешности квадратурных формул. Для практической оценки погрешности интеграла используется правило Рунге. Для этого проводят вычисления с шагом и / и получают приближенные значения интегралов I и I /. За погрешность приближенного значения интеграла принимают величину: I I / - для формулы прямоугольников и трапеций, I I / 5 - по формуле Симпсона. В адаптивных алгоритмах автоматически определяют величину шага, таким образом, чтобы результат удовлетворял заданной точности. За окончательные значения интеграла принимают: I I I / - по формуле прямоугольников, I I I / - формуле трапеций, I I I / 5 - формуле Симпсона.


Таким образом, точка А является точкой глобального максимума, а точка М- точкой глобального минимума данной функции в замкнутой области D.

Таким образом, точка А является точкой глобального максимума, а точка М- точкой глобального минимума данной функции в замкнутой области D. 66 Таким образом точка А является точкой глобального максимума а точка М- точкой глобального минимума данной функции в замкнутой области D 5 Эмпирические формулы Определение параметров эмпирических формул

Подробнее

Квадратурные формулы прямоугольников. Пусть требуется найти значение интеграла I Римана. I f ( x )dx для некоторой заданной на отрезке [ a,b ] функции

Квадратурные формулы прямоугольников. Пусть требуется найти значение интеграла I Римана. I f ( x )dx для некоторой заданной на отрезке [ a,b ] функции Численное интегрирование Квадратурные формулы прямоугольников Пусть требуется найти значение интеграла I Римана I d для некоторой заданной на отрезке, функции а Хорошо известно, что для функций, допускающих

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Численное интегрирование

Численное интегрирование ) Постановка задачи ) Квадратурная формула Ньютона-Котеса ) Формула трапеции и её погрешность ) Формула Симпсона (формула парабол) ) Формула трёх восьмых Лейбница: ) Постановка задачи, ]. А Пусть на отрезке

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Рис. 12. точке. Рассмотрим вопрос о длине дуги l кривой, заданной y f (x), a x b. Впишем в данную гладкую кривую ломаную линию A M

Рис. 12. точке. Рассмотрим вопрос о длине дуги l кривой, заданной y f (x), a x b. Впишем в данную гладкую кривую ломаную линию A M Лекция подготовлена доц Мусиной МВ Приложения определенного интеграла Длина дуги кривой Определение Под длиной дуги АВ понимается предел, к которому стремиться длина ломаной линии, вписанной в эту дугу,

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

6. Поиск эмпирических формул. Аппроксимация

6. Поиск эмпирических формул. Аппроксимация 6. Поиск эмпирических формул. Аппроксимация 6.. Понятие регрессии и корреляции При изучении различных явлений приходится сталкиваться с функциональными связями между двумя и более переменными. Когда эти

Подробнее

Министерство образования и науки РФ. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК)

Министерство образования и науки РФ. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) Министерство образования и науки РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) Факультет дистанционных форм обучения Заочное отделение ГПЕмгушева, МДУлымжиев ВЫЧИСЛИТЕЛЬНАЯ

Подробнее

3 1 на отрезке 3;3. на отрезке 4. Проверить найденное решение с помощью надстройки MS Excel Поиск решения (1 балл). y x x

3 1 на отрезке 3;3. на отрезке 4. Проверить найденное решение с помощью надстройки MS Excel Поиск решения (1 балл). y x x ОБРАЗЕЦ БИЛЕТА К ЗАЧЁТУ ПО ИНФОРМАТИКЕ С РЕШЕНИЕМ (ДЛЯ ЗАЧЁТА MIN БАЛЛОВ!) СамГТУ ИТФ 5/6 Задание Построить график функции y на отрезке ; с шагом h, (,5 балла) С точностью, найти корень нелинейного уравнения

Подробнее

«Численные методы» КОНСПЕКТ ЛЕКЦИЙ. Направление Прикладная информатика Профиль Прикладная информатика в образовании.

«Численные методы» КОНСПЕКТ ЛЕКЦИЙ. Направление Прикладная информатика Профиль Прикладная информатика в образовании. ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра информатики и методики

Подробнее

Численное интегрирование

Численное интегрирование Численное интегрирование - - Численное интегрирование. Постановка задачи Задача вычисления интегралов возникает во многих областях прикладной математики. Требуется вычислить определенный интеграл I d.

Подробнее

МЕТОДЫ ПРИБЛИЖЁННОГО ВЫЧИСЛЕНИЯ ОПРЕДЕЛЁННЫХ ИНТЕГРАЛОВ

МЕТОДЫ ПРИБЛИЖЁННОГО ВЫЧИСЛЕНИЯ ОПРЕДЕЛЁННЫХ ИНТЕГРАЛОВ МЕТОДЫ ПРИБЛИЖЁННОГО ВЫЧИСЛЕНИЯ ОПРЕДЕЛЁННЫХ ИНТЕГРАЛОВ Формула Ньютона - Лейбница f C a b b a ; f d F b F a F f b a f d Точные методы Приближённые методы Первообразная известна, формула Ньютона- Лейбница

Подробнее

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ Кременчугский национальный университет имени Михаила Остроградского МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ Математические методы вычислений на ЭВМ А.П. Черный, д.т.н., профессор http:\\sue.kdu.edu.u 2 ЛЕКЦИЯ

Подробнее

Практическое занятие 6 Численное интегрирование Продолжительность работы- 2 часа Цель работы: закрепление знаний о численном интегрировании по

Практическое занятие 6 Численное интегрирование Продолжительность работы- 2 часа Цель работы: закрепление знаний о численном интегрировании по 46 Практическое занятие 6 Численное интегрирование Продолжительность работы- 2 часа Цель работы: закрепление знаний о численном интегрировании по обобщенным формулам средних прямоугольников, трапеций,

Подробнее

Тема7. «Численное интегрирование.»

Тема7. «Численное интегрирование.» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема7. «Численное интегрирование.» Кафедра теоретичской и прикладной математики. разработана доц.

Подробнее

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика»

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика» Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники ТУСУР Кафедра

Подробнее

Лекция МЕТОДЫ ПРИБЛИЖЕНИЯ ФУНКЦИЙ ПОСТАНОВКА ЗАДАЧИ [ ]

Лекция МЕТОДЫ ПРИБЛИЖЕНИЯ ФУНКЦИЙ ПОСТАНОВКА ЗАДАЧИ [ ] Лекция 3 5. МЕТОДЫ ПРИБЛИЖЕНИЯ ФУНКЦИЙ ПОСТАНОВКА ЗАДАЧИ Рассматриваются сеточные табличные функции [ a b] y 5. определенные в узлах сетки Ω. Каждая сетка характеризуется шагами h неравномерного или h

Подробнее

Интерполяция сеточных функций

Интерполяция сеточных функций стр. Интерполяция - изменение (лат.) Аппроксимация - приближение (лат.) Интерполяция сеточных функций Дана сеточная функция, заданная таблицей: Лекция = f () Будем считать данную функцию f () и некоторую

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ, ПРОГРАММА И КОНТРОЛЬНАЯ РАБОТА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ, ПРОГРАММА И КОНТРОЛЬНАЯ РАБОТА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный университет геодезии и картографии (МИИГАиК) Факультет дистанционных форм обучения Заочное отделение `` МЕТОДИЧЕСКИЕ УКАЗАНИЯ,

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ, ПРОГРАММА И КОНТРОЛЬНАЯ РАБОТА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ, ПРОГРАММА И КОНТРОЛЬНАЯ РАБОТА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный университет геодезии и картографии (МИИГАиК) Факультет дистанционных форм обучения Заочное отделение `` МЕТОДИЧЕСКИЕ УКАЗАНИЯ,

Подробнее

Эта система эквивалентна векторной (матричной) записи системы, - вектор столбец неизвестных, - вектор столбец свободных членов.

Эта система эквивалентна векторной (матричной) записи системы, - вектор столбец неизвестных, - вектор столбец свободных членов. Лекция 4. Решение систем линейных уравнений методом простых итераций. Если система имеет большую размерность ( 6 уравнений) или матрица системы разрежена, более эффективны для решения непрямые итерационные

Подробнее

Построение ММ статики технологических объектов

Построение ММ статики технологических объектов Построение ММ статики технологических объектов При исследовании статики технологических объектов наиболее часто встречаются объекты со следующими типами структурных схем (рис : О с одной входной х и одной

Подробнее

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ Кременчугский национальный университет имени Михаила Остроградского МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ Математические методы вычислений на ЭВМ А.П. Черный, д.т.н., профессор http:\\saue.kdu.edu.ua 2 ЛЕКЦИЯ

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ В ГОРНОМ ПРОИЗВОДСТВЕ. Математические модели и численные методы

ЧИСЛЕННЫЕ МЕТОДЫ В ГОРНОМ ПРОИЗВОДСТВЕ. Математические модели и численные методы ЧИСЛЕННЫЕ МЕТОДЫ В ГОРНОМ ПРОИЗВОДСТВЕ Математические модели и численные методы Математические модели содержат соотношения, составленные на основе теоретического анализа изучаемых процессов или полученные

Подробнее

x i Эта сумма выражает площадь ступенчатой фигуры, состоящей из прямоугольников, и приближенно заменяет криволинейную трапецию.

x i Эта сумма выражает площадь ступенчатой фигуры, состоящей из прямоугольников, и приближенно заменяет криволинейную трапецию. Задача о площади криволинейной трапеции =f() B A f(ξ i ) ξ 1 ξ 2 ξ 3 ξ i ξ 1 2 i-1 i S k 1 f ( ) k Эта сумма выражает площадь ступенчатой фигуры, состоящей из прямоугольников, и приближенно заменяет криволинейную

Подробнее

МЕТОДЫ ИНТЕРПОЛЯЦИИ И АППРОКСИМАЦИИ

МЕТОДЫ ИНТЕРПОЛЯЦИИ И АППРОКСИМАЦИИ МЕТОДЫ ИНТЕРПОЛЯЦИИ И АППРОКСИМАЦИИ Интерполяция Интерполяция способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений Пусть в ходе эксперимента при изменении

Подробнее

( ) S -1. Решение Если α 1, то. Следовательно. В случае α = 1 имеем. сходится при α > 1 и расходится при α 1. Итак, интеграл

( ) S -1. Решение Если α 1, то. Следовательно. В случае α = 1 имеем. сходится при α > 1 и расходится при α 1. Итак, интеграл 89 Решение Если, то Следовательно В случае имеем Итак, интеграл d d lim ( ) lim lim d > < d liml lim l d сходится при > и расходится при Пример Исследовать на сходимость интеграл По формуле (), полагая

Подробнее

8 Методы численного интегрирования.

8 Методы численного интегрирования. интеграла. 8 Методы численного интегрирования. В данной главе будут рассмотрены методы вычисления определенного Методы численного интегрирования находят широкое применение при автоматизации решения научных

Подробнее

ЛЕКЦИЯ 3. Методы обработки экспериментальных данных

ЛЕКЦИЯ 3. Методы обработки экспериментальных данных ЛЕКЦИЯ 3 Методы обработки экспериментальных данных Интерполирование В инженерных расчетах часто требуется установить функцию f(x) для всех значений х отрезка [a,b], если известны ее значения в некотором

Подробнее

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ. 1.Физические задачи, приводящие к интегрированию.

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ. 1.Физические задачи, приводящие к интегрированию. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ..Физические задачи приводящие к интегрированию. Интегрирование функций является составной частью многих научных и технических задач. Поскольку аналитическое интегрирование не всегда

Подробнее

Численные методы решения прикладных задач. Учебно-методические указания к выполнению лабораторных работ по курсу Информатика.

Численные методы решения прикладных задач. Учебно-методические указания к выполнению лабораторных работ по курсу Информатика. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ

Подробнее

Тема 3. Численные методы решения задачи аппроксимации

Тема 3. Численные методы решения задачи аппроксимации Тема. Численные методы решения задачи аппроксимации Будем считать, что является функцией аргумента. Это означает, что любому значению из области определения поставлено в соответствие значение. На практике

Подробнее

Примеры решения экзаменационного диктанта

Примеры решения экзаменационного диктанта Примеры решения экзаменационного диктанта Численное интегрирование. Записать численную схему нахождения значения определенного интеграла методом прямоугольников слева coscd В данном интеграле пределы интегрирования

Подробнее

для выполнения лабораторной работы 4

для выполнения лабораторной работы 4 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАФЕДРА ПРИКЛАДНОЙ МАТЕМАТИКИ И КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ПРИБЛИЖЕННОЕ

Подробнее

Численные методы интегрирования и решения дифференциальных уравнений

Численные методы интегрирования и решения дифференциальных уравнений Краевой конкурс учебно-исследовательских и проектных работ учащихся «Прикладные вопросы математики» Математический анализ Численные методы интегрирования и решения дифференциальных уравнений Новопоселенких

Подробнее

Тема 8. «Методы численного интегрирования»

Тема 8. «Методы численного интегрирования» Тема 8. «Методы численного интегрирования» Не для всякой непрерывной функции ее первообразная вычисляется через элементарные функции. Задача численного интегрирования состоит в вычислении приближенного

Подробнее

Разработка и сравнение инструментальных средств численного интегрирования с заданной точностью

Разработка и сравнение инструментальных средств численного интегрирования с заданной точностью Разработка и сравнение инструментальных средств численного интегрирования с заданной точностью В процессе выполнения курсовой работы необходимо разработать средства вычисления определенного интеграла от

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

1. Многочлен Лагранжа. Пусть из эксперимента получены значения неизвестной функции

1. Многочлен Лагранжа. Пусть из эксперимента получены значения неизвестной функции 1 Многочлен Лагранжа Пусть из эксперимента получены значения неизвестной функции ( x i = 01 x [ a b] i i i Возникает задача приближенного восстановления неизвестной функции ( x в произвольной точке x Для

Подробнее

М е т о д и ч е ские указания для п р о в едения семинарских занятий

М е т о д и ч е ские указания для п р о в едения семинарских занятий МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Подробнее

Интерполирование функций

Интерполирование функций Постановка задачи, основные понятия Конечные разности и их свойства Интерполяционные многочлены Оценка остаточного члена интерполяционных многочленов Постановка задачи, основные понятия Пусть, то есть

Подробнее

Математический анализ

Математический анализ Математический анализ Определённый интеграл Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики Томского политехнического университета. Национальный

Подробнее

Задача 4. Численное интегрирование в редакторе электронных таблиц Calc

Задача 4. Численное интегрирование в редакторе электронных таблиц Calc Задача 4. Численное интегрирование в редакторе электронных таблиц Calc Содержание Часть (обязательная). Численное интегрирование методами прямоугольников и трапеций... Математическая постановка задачи...

Подробнее

Численное интегрирование функций

Численное интегрирование функций ( часа) Цель работы: получение практических навыков построения алгоритмов интегрирования функций, программной реализации их на компьютере, оценки погрешности решения, сравнение эффективности квадратурных

Подробнее

Лекции подготовлены доц. Мусиной М.В. Прикладная математика.

Лекции подготовлены доц. Мусиной М.В. Прикладная математика. Прикладная математика. Наступивший век - это век всеобщей информатизации. Математические расчеты, проводимые с помощью компьютеров, прочно проникли в самые разнообразные научные дисциплины, технику, экономику,

Подробнее

Первообразная функции и неопределенный интеграл.. Определение. Функция F (x) дифференцируема на ( a, b)

Первообразная функции и неопределенный интеграл.. Определение. Функция F (x) дифференцируема на ( a, b) Лекция подготовлена доц Мусиной МВ НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ Первообразная функции и неопределенный интеграл В прошлой главе мы ввели понятие производной и научились находить производные элементарных функций

Подробнее

4. Численные методы решения обыкновенных дифференциальных уравнений

4. Численные методы решения обыкновенных дифференциальных уравнений . Численные методы решения обыкновенных дифференциальных уравнений.. Решение задачи Коши... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши для одного дифференциального

Подробнее

Квадратурные и кубатурные формулы

Квадратурные и кубатурные формулы ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Пензенский государственный университет» Квадратурные и кубатурные формулы Методические

Подробнее

Лектор Ст. преподаватель Купо А.Н.

Лектор Ст. преподаватель Купо А.Н. Лекция 8 Численное дифференцирование и интегрирование Лектор Ст. преподаватель Купо А.Н. 1. Математическое и численное дифференцирование и интегрирование.. Формулы для конечно-разностных производных. 3.

Подробнее

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра прикладной математики М.В. Лукина МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

Подробнее

7. Алгоритмы Рунге-Кутты

7. Алгоритмы Рунге-Кутты 7. Алгоритмы Рунге-Кутты 1 7. Алгоритмы Рунге-Кутты Наиболее эффективным и часто использующемся методом решения ОДУ остается метод Рунге-Кутты. Большинство расчетов задач Коши для ОДУ, которые не являются

Подробнее

Численные методы вычисления определенного интеграла

Численные методы вычисления определенного интеграла Глава 1 Численные методы вычисления определенного интеграла Цель работы изучение численных методов интегрирования и их практическое применение для приближенного вычисления однократных интегралов. Продолжительность

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

Приближенное вычисление определенных интегралов. 1. Формула трапеций.

Приближенное вычисление определенных интегралов. 1. Формула трапеций. ЛЕКЦИЯ N 7. Приближенное вычисление определенных интегралов. Несобственные интегралы. Приближенное вычисление определенных интегралов..... Формула трапеций.....формула парабол.... Несобственные интегралы....

Подробнее

Вычислительная математика

Вычислительная математика Федеральное агентство по образованию Российской Федерации Ухтинский государственный технический университет Вычислительная математика Методические указания и контрольные работы УХТА 6 УДК.6 7. ББК. я 7

Подробнее

( ) ( ) ( ) I = f x dx= F b F a. (1)

( ) ( ) ( ) I = f x dx= F b F a. (1) - 65 - Глава. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ. Формула Ньютона-Лейбница и численное интегрирование. Из курса математического анализа Вы знакомы с вычислением определенных интегралов с помощью формулы Ньютона-Лейбница

Подробнее

Примеры заданий контрольной работы (допуск к экзамену)

Примеры заданий контрольной работы (допуск к экзамену) Примеры заданий контрольной работы допуск к экзамену Для допуска к экзамену необходимо сдать задачу графики на компьютере и письменную контрольную работу на несданные в семестре темы по численным методам:.

Подробнее

Государственное бюджетное образовательное учреждение среднего профессионального образования

Государственное бюджетное образовательное учреждение среднего профессионального образования Государственное бюджетное образовательное учреждение среднего профессионального образования «Владимирский авиамеханический колледж» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине ЧИСЛЕННЫЕ

Подробнее

Методы решения начальных задач для обыкновенных дифференциальных уравнений

Методы решения начальных задач для обыкновенных дифференциальных уравнений Методы решения начальных задач для обыкновенных дифференциальных уравнений Постановка задачи Рассмотрим обыкновенное дифференциальное уравнение сокращенно ОДУ первого порядка f,, [,b ] 6 с начальным условием

Подробнее

Численные методы. Интегрирование. Численное дифференцирование

Численные методы. Интегрирование. Численное дифференцирование Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет Численные методы. Интегрирование.

Подробнее

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА 4 Интерполяция табличных данных

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА 4 Интерполяция табличных данных РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА 4 Интерполяция табличных данных. Краткие теоретические сведения Задачей приближения или аппроксимации функций (от лат. approimo приближаюсь) называется задача замены одних математических

Подробнее

Вопросы, выносимые на опрос (для дискуссии) по Введению. Вопросы, выносимые на опрос (для дискуссии) по разделу 1

Вопросы, выносимые на опрос (для дискуссии) по Введению. Вопросы, выносимые на опрос (для дискуссии) по разделу 1 1. Оценочные средства текущего контроля. Вопросы, выносимые на опрос (для дискуссии) по Введению -Назовите виды погрешности. - Как рассчитывается абсолютная погрешность? - Как рассчитывается относительная

Подробнее

. Предполагается, что эта величина аддитивна, т. е. точкой с [ a,

. Предполагается, что эта величина аддитивна, т. е. точкой с [ a, Лекция 0 Приложения определённого интеграла Приложения определённого интеграла Метод интегральной суммы Пусть требуется найти значение какой-либо геометрической или физической величины A (площадь фигуры,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. ПРОГРАММА И КОНТРОЛЬНАЯ РАБОТА 9 по курсу: «Высшая математика»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. ПРОГРАММА И КОНТРОЛЬНАЯ РАБОТА 9 по курсу: «Высшая математика» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный университет геодезии и картографии (МИИГАиК) Факультет дистанционных форм обучения Заочное отделение ПРОГРАММА И КОНТРОЛЬНАЯ

Подробнее

( ) ( ) Контрольная работа по численным методам с решением. f (2) f ''(2) = > 0, значит, метод Ньютона сходится. x x ε = 2 1.

( ) ( ) Контрольная работа по численным методам с решением. f (2) f ''(2) = > 0, значит, метод Ньютона сходится. x x ε = 2 1. Контрольная работа по численным методам с решением Задание На отрезке [;] методом Ньютона найти корень уравнения + = с точностью, График функции Условие сходимости метода Ньютона: f f ''(, ( > где = начальное

Подробнее

x i Определение. Задача нахождения значения интерполяционной функции F x в точке не совпадающей ни с одной абсциссой интерполяционных узлов x,

x i Определение. Задача нахождения значения интерполяционной функции F x в точке не совпадающей ни с одной абсциссой интерполяционных узлов x, ИНТЕРПОЛИРОВАНИЕ ФУНКЦИЙ ПОСТАНОВКА ЗАДАЧИ Дано: точки наблюдения y (их количество + ) a b ; ; y y y y y Найти функцию : F F : y Определение Точки y называются узлами интерполяции Графическая интерпретация

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине «Информатика» семестр 3

МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине «Информатика» семестр 3 МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине «Информатика» семестр 3 НОВОСИБИРСК 008 Министерство науки и образования РФ Новосибирский технологический институт Московского государственного

Подробнее

Методические указания к лабораторным занятиям и самостоятельной работе по дисциплине «Численные методы»

Методические указания к лабораторным занятиям и самостоятельной работе по дисциплине «Численные методы» Министерство образования и науки Российской Федерации Федеральное государственное образовательное учреждение высшего образования ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

. Имеем. . Запишем теорему Ланграджа для функции ϕ ( x ) ϕ(

. Имеем. . Запишем теорему Ланграджа для функции ϕ ( x ) ϕ( Лекция.. Интегральное исчисление Неопределенный интеграл Определение Функция F) называется первообразной для функции f) на отрезке [;], если для всех [;] выполнено равенство F)f) Примеры f ) F ) Замечание

Подробнее

ПРИБЛИЖЕНИЕ ТАБЛИЧНЫХ ФУНКЦИЙ ПО МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ

ПРИБЛИЖЕНИЕ ТАБЛИЧНЫХ ФУНКЦИЙ ПО МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ ПРИБЛИЖЕНИЕ ТАБЛИЧНЫХ ФУНКЦИЙ ПО МЕТОДУ НАИМЕНЬШИХ КВАДРАТОВ Постановка задачи аппроксимации По результатам экспериментов получена таблица с произвольным расположением аргументов: x, y,,. Аналитическое

Подробнее

Кафедра Электроэнергетика, электроснабжение и силовая электроника. Составители: Флаксман Е.А., Гребенщиков В.И. ЧИСЛЕННЫЕ МЕТОДЫ АНАЛИЗА

Кафедра Электроэнергетика, электроснабжение и силовая электроника. Составители: Флаксман Е.А., Гребенщиков В.И. ЧИСЛЕННЫЕ МЕТОДЫ АНАЛИЗА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.

Подробнее

Тема: Применение определенного интеграла.

Тема: Применение определенного интеграла. Математический анализ Раздел: Определенный интеграл Тема: Применение определенного интеграла. Приближенное вычисление определенного интеграла Лектор Пахомова Е.Г. 013 г. II Плоская кривая, заданная параметрическими

Подробнее

Министерство образования Российской Федерации. Московский государственный университет леса. В.И. Мышенков, Е.В. Мышенков ЧИСЛЕННЫЕ МЕТОДЫ

Министерство образования Российской Федерации. Московский государственный университет леса. В.И. Мышенков, Е.В. Мышенков ЧИСЛЕННЫЕ МЕТОДЫ Министерство образования Российской Федерации Московский государственный университет леса ВИ Мышенков ЕВ Мышенков ЧИСЛЕННЫЕ МЕТОДЫ Часть первая Учебное пособие для студентов специальности 7 Издательство

Подробнее

ЛЕКЦИЯ 13 ИНТЕГРАЛЫ С КВАДРАТУРАМИ ГАУССА

ЛЕКЦИЯ 13 ИНТЕГРАЛЫ С КВАДРАТУРАМИ ГАУССА ЛЕКЦИЯ 3 ИНТЕГРАЛЫ С КВАДРАТУРАМИ ГАУССА На прошлой лекции были получены погрешности интегрирования основных формул Ньютона Котеса, а именно формулы прямоугольников, формулы трапеции и формулы Симпсона,

Подробнее

Глава 7. Определенный интеграл

Глава 7. Определенный интеграл 68 Глава 7 Определенный интеграл 7 Определение и свойства К понятию определенного интеграла приводят разнообразные задачи вычисления площадей, объемов, работы, объема производства, денежных потоков и тп

Подробнее

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ].

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ]. Лекция 8 Определённый интеграл Определенный интеграл Римана Пусть f ( ) некоторая функция, определенная на отрезке [, ] Произведем разбиение R отрезка [, ] на п частей: = < 1 < K < n = Выберем на каждом

Подробнее

Предел. Непрерывность.

Предел. Непрерывность. Функция. 1 1. Какие числа образуют множество действительных чисел? 2. Что называется числовой осью? 3. Что называется интервалом? 4. Определить понятие окрестности точки. 5. Что называется абсолютной величиной?

Подробнее

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ . ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши

Подробнее

ПЕРВООБРАЗНАЯ И ИНТЕГРАЛ. Понятие первообразной

ПЕРВООБРАЗНАЯ И ИНТЕГРАЛ. Понятие первообразной ПЕРВООБРАЗНАЯ И ИНТЕГРАЛ Понятие первообразной Задача. Скорость точки, движущейся прямолинейно, выражается как. Определить закон движения. Для решения данной задачи требуется ответить на вопрос производная

Подробнее

Ш87(03) Береславский Э. Н., Далингер Я. М., Павлов В. Д., Соловьева Т. В. Численные методы. Учебное пособие/университет ГА. С.-Петербург, 2014.

Ш87(03) Береславский Э. Н., Далингер Я. М., Павлов В. Д., Соловьева Т. В. Численные методы. Учебное пособие/университет ГА. С.-Петербург, 2014. Министерство транспорта Российской Федерации (Минтранс России) Федеральное агентство воздушного транспорта (Росавиация) ФГБОУ ВПО «Санкт-Петербургский государственный университет гражданской авиации» Э.

Подробнее

«НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.Е. АЛЕКСЕЕВА» (НГТУ)

«НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.Е. АЛЕКСЕЕВА» (НГТУ) Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы СОДЕРЖАНИЕ 1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы. Описание показателей и критериев оценивания компетенций на различных этапах их формирования,

Подробнее

7 АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ

7 АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ 0 7 АППРОКСИМАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ МЕТОДОМ НАИМЕНЬШИХ КВАДРАТОВ Первоначально данные исследований представляют в виде таблиц. Однако табличные данные не имеют наглядности и не могут быть использованы

Подробнее

8. Численное решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядка

8. Численное решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядка Варианты задания 8. Численное решение задачи Коши для обыкновенного дифференциального уравнения -го порядка 8.. Постановка задачи Рассмотрим задачу Коши для обыкновеннго дифференциального уравнения y =

Подробнее

Решение. По условию: Вычисляем: По формуле Лагранжа абсолютная погрешность вычисляется по формуле: Относительная погрешность: Ответ.

Решение. По условию: Вычисляем: По формуле Лагранжа абсолютная погрешность вычисляется по формуле: Относительная погрешность: Ответ. www.reshuzdch.ru Задание.5. Найти произведение приближенных чисел и указать его погрешности (Δ и δ), если считать в исходных данных все значащие цифры верными.,8,55, Решение. По условию:,8, b, 55, c,,,,

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ ИЗДАТЕЛЬСТВО ТГТУ

ЧИСЛЕННЫЕ МЕТОДЫ ИЗДАТЕЛЬСТВО ТГТУ ЧИСЛЕННЫЕ МЕТОДЫ ИЗДАТЕЛЬСТВО ТГТУ Министерство образования и науки Российской Федерации ГОУ ВПО «Тамбовский государственный технический университет» ЧИСЛЕННЫЕ МЕТОДЫ Методические указания к выполнению

Подробнее

Институт радиоэлектроники и информационных технологий

Институт радиоэлектроники и информационных технологий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.

Подробнее

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА 9.5.4. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и

Подробнее

на третьем этапе получаем основные выводы и следствия из главных закономерностей и теоретических положений;

на третьем этапе получаем основные выводы и следствия из главных закономерностей и теоретических положений; Тема 1. СТРУКТУРИРОВАНИЕ СОДЕРЖАНИЯ ТЕМ ИЗУЧАЕМОГО ПРЕДМЕТА Предметный учебно-информационный комплекс должен формировать системные знания. Основной их признак состоит в том, что они адекватны структуре

Подробнее

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им ВС Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ ЕФ КАЛИНИЧЕНКО ЛЕКЦИИ ПО ВЫЧИСЛЕНИЮ ОПРЕДЕЛЕННЫХ

Подробнее

Обработка данных. Цели обработки данных. Виды эксперимента. Аппроксимация. Интерполяция. Локальная и глобальная интерполяции

Обработка данных. Цели обработки данных. Виды эксперимента. Аппроксимация. Интерполяция. Локальная и глобальная интерполяции Обработка данных. Цели обработки данных. Виды эксперимента. Аппроксимация. Интерполяция. Локальная и глобальная интерполяции На настоящий момент, единственное, известное человеку, «устройство для обработки

Подробнее

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной РАЗДЕЛ 5 Интегральное исчисление функций одной переменной Материалы подготовлены преподавателями математики кафедры общеобразовательных дисциплин для системы электронного дистанционного обучения Содержание

Подробнее

Министерство образования и науки РФ Алтайский государственный университет Рубцовский институт (филиал) ЧИСЛЕННЫЕ МЕТОДЫ.

Министерство образования и науки РФ Алтайский государственный университет Рубцовский институт (филиал) ЧИСЛЕННЫЕ МЕТОДЫ. Министерство образования и науки РФ Алтайский государственный университет Рубцовский институт (филиал) ЧИСЛЕННЫЕ МЕТОДЫ Учебное пособие Барнаул Рубцовск Барнаул Издательство Алтайского государственного

Подробнее

Лабораторная работа по численным методам с решением

Лабораторная работа по численным методам с решением Лабораторная работа по численным методам с решением Задание 1. Рассмотрим функцию, где Провести математическое исследование графика функции. Построить эскиз графика функции. Изолировать нули функции, то

Подробнее