Линейная алгебра

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Линейная алгебра"

Транскрипт

1 Линейная алгебра

2 Линейные модели в экономике Линейное программирование Теория двойственности Линейная алгебра (лекция 15) / 28

3 Линейное программирование Каждой задаче линейного программирования соответствует другая задача, называемая двойственной или сопряженной по отношению к исходной. Линейная алгебра (лекция 15) / 28

4 Линейное программирование Рассмотрим две задачи линейного программирования: Задача I F (x 1, x 2,..., x n ) = c 1 x 1 + c 2 x c n x n max, a 11 x 1 + a 12 x a 1n x n b 1, a 21 x 1 + a 22 x a 2n x n b 2, a m1 x 1 + a m2 x a mn x n b m, x i 0, i = 1, n. Линейная алгебра (лекция 15) / 28

5 Линейное программирование Задача II Φ(y 1, y 2,..., y m ) = b 1 y 1 + b 2 y b m y m min, a 11 y 1 + a 21 y a m1 y m c 1, a 12 y 1 + a 22 y a m2 y m c 2, a 1n y 1 + a 2n y a mn y m c m, y i 0, i = 1, m. Линейная алгебра (лекция 15) / 28

6 Линейное программирование Задачи I и II обладают следующими свойствами: В одной задаче производится поиск максимума целевой функции, в другой минимума. Коэффициенты при переменных в целевой функции одной задачи являются свободными членами системы ограничений другой задачи. Каждая из задач задана в стандартной форме, причем в задаче максимизации все неравенства вида " ", а в задаче минимизации все неравенства вида " ". Линейная алгебра (лекция 15) / 28

7 Линейное программирование Матрицы коэффициентов при переменных в системах ограничений обеих задач являются транспонированными по отношению друг к другу. Число неравенств в системе ограничений одной задачи совпадает с числом переменных в другой задаче. Условия неотрицательности переменных имеются в обеих задачах. Линейная алгебра (лекция 15) / 28

8 Линейное программирование Определение Две задачи I и II линейного программирования, обладающие указанными свойствами, называются симметричными взаимно двойственными задачами. Линейная алгебра (лекция 15) / 28

9 Линейное программирование Основное неравенство теории двойственности Пусть x любое допустимое решение задачи I, а ȳ любое допустимое решение задачи II. Тогда имеет место неравенство F ( x) Φ(ȳ). Линейная алгебра (лекция 15) / 28

10 Линейное программирование Следствие Если допустимое множество одной из задач I, II не пусто, то целевая функция другой задачи ограничена в направлении экстремума на своем допустимом множестве. Линейная алгебра (лекция 15) / 28

11 Линейное программирование Первая (основная) теорема двойственности Если одна из взаимно двойственных задач I или II имеет оптимальное решение, то и другая задача имеет оптимальное решение, причем экстремальные значения их целевых функций равны: F max = Φ min. Если одна из пары взаимно двойственных задач не имеет решения ввиду неограниченности целевой функции, то другая не имеет решения ввиду несовместности системы ограничений. Линейная алгебра (лекция 15) / 28

12 Линейное программирование Следствие (критерий оптимальности допустимых решений) Пусть x и ȳ допустимые решения взаимно двойственных задач I и II. Для того, чтобы эти решения были оптимальными, необходимо и достаточно выполнения равенства F ( x) = Φ(ȳ). Линейная алгебра (лекция 15) / 28

13 Линейное программирование Вторая теорема двойственности (теорема равновесия) Для того чтобы допустимые решения x и ȳ являлись оптимальными решениями взаимно двойственных задач I и II, необходимо и достаточно, чтобы выполнялись следующие равенства: ( m ) x j a ij y i c j = 0, j = 1, n; i=1 y i ( n j=1 a ij x j b i ) = 0, i = 1, m. Линейная алгебра (лекция 15) / 28

14 Линейное программирование Другими словами, если при подстановке оптимального решения в систему ограничений i-е ограничение задачи I выполняется как строгое неравенство, то i-я координата оптимального решения двойственной задачи II равна нулю, и, наоборот, если i-я координата оптимального решения двойственной задачи II отлична от нуля, то i-е ограничение задачи I при подстановке подстановке оптимального решения обращается в равенство. Линейная алгебра (лекция 15) / 28

15 Линейные модели в экономике Модель Леонтьева многоотраслевой экономики (балансовый анализ) Линейная алгебра (лекция 15) / 28

16 Модель Леонтьева Определение Уравнения x i = n x ij + y i, i = 1, n j=1 называются соотношениями баланса. Здесь x i общий объем продукции i-ой отрасли (валовый выпуск), x ij объем продукции i-ой отрасли, расходуемый j-ой отраслью в процессе производства, y i объем продукции i-ой отрасли, предназначенный для непроизводственного потребления (объем конечного потребления). Линейная алгебра (лекция 15) / 28

17 Модель Леонтьева Гипотеза линейности: для выпуска продукции j-ой отрасли объема x j необходимо затратить продукцию i-ой отрасли в объеме a ij x j, где a ij постоянный коэффициент. Коэффициенты a ij = x ij x j (i = 1, n) называются коэффициентами прямых затрат. Линейная алгебра (лекция 15) / 28

18 Модель Леонтьева В предположении линейности зависимости материальных затрат от валового выпуска (гипотеза линейности) соотношения баланса имеют вид: x i = n a ij x j + y i, i = 1, n j=1 или (в матричной форме): x = A x + ȳ, (1) Линейная алгебра (лекция 15) / 28

19 Модель Леонтьева где x = A = ȳ = x 1 x 2... x n вектор валового выпуска, a 11 a a 1n a 21 a a 2n a n1 a n2... a nn y 1 y 2... y n продукта). матрица прямых затрат, вектор конечного потребления (конечного Линейная алгебра (лекция 15) / 28

20 Модель Леонтьева Основная задача межотраслевого баланса: найти такой вектор валового выпуска x, который при известной матрице прямых затрат A обеспечивает заданный вектор конечного потребления ȳ. Линейная алгебра (лекция 15) / 28

21 Модель Леонтьева Если матрица E A невырожденная, то существует единственное решение уравнения (1): x = (E A) 1 ȳ. Матрица S = (E A) 1 называется матрицей полных затрат. Элемент s ij (i, j = 1, n) матрицы S есть величина валового выпуска продукции i-ой отрасли, необходимого для обеспечения выпуска единицы конечного продукта j-ой отрасли. В соответствии с экономическим смыслом задачи x i 0, y i 0, a ij 0 (i, j = 1, n). Для краткости будем писать: x 0, ȳ 0, A 0. Линейная алгебра (лекция 15) / 28

22 Модель Леонтьева Определение Квадратная матрица A 0 называется продуктивной, если для любого вектора ȳ 0 существует решение x 0 уравнения (1). В этом случае модель Леонтьева называется продуктивной. Линейная алгебра (лекция 15) / 28

23 Модель Леонтьева Теорема Квадратная матрица A 0 продуктивна тогда и только тогда, когда матрица (E A) 1 существует и ее элементы неотрицательны. Линейная алгебра (лекция 15) / 28

24 Модель Леонтьева Теорема Фробениуса-Перрона Для любой квадратной матрицы A 0 существует собственное значение λ A 0, называемое числом Фробениуса, такое, что λ A λ для любого собственного значения λ матрицы A. Кроме того, существует собственный вектор ē A 0, соответствующий собственному значению λ A и называемый вектором Фробениуса. Линейная алгебра (лекция 15) / 28

25 Модель Леонтьева Теорема Квадратная матрица A 0 продуктивна тогда и только тогда, когда ее число Фробениуса меньше единицы. Линейная алгебра (лекция 15) / 28

26 Модель Леонтьева Теорема Если для A 0 и для некоторого вектора ȳ 0 существует решение x 0 уравнения (1), то матрица A продуктивна. Линейная алгебра (лекция 15) / 28

27 Модель Леонтьева Теорема Квадратная матрица A 0 продуктивна, если max j=1,n n и j: a ij < 1. i=1 n a ij 1 i=1 Линейная алгебра (лекция 15) / 28

28 Модель Леонтьева Двойственной к модели Леонтьева является модель равновесных цен, описываемая равенством где где p = p 1 p 2... p n продукции i-ой отрасли), ν = добавленной стоимости. p = A T p + ν, вектор цен (p i цена единицы ν 1 ν 2... ν n вектор норм Линейная алгебра (лекция 15) / 28


l =- с собственным вектором ( )

l =- с собственным вектором ( ) Глава 3 НЕОТРИЦАТЕЛЬНЫЕ МАТРИЦЫ И МОДЕЛИ ЛЕОНТЬЕВА 3 Число и вектор Фробениуса Число и вектор Фробениуса используются в балансовых экономических моделях и, в частности, в модели международной торговли

Подробнее

Двойственные задачи. Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов 2

Двойственные задачи. Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов 2 Двойственные задачи Содержание Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов 2 Взаимно двойственные задачи линейного программирования и их свойства 5 Теоремы двойственности

Подробнее

Двойственность в линейном программировании

Двойственность в линейном программировании Двойственность в линейном программировании Двойственными называются пары следующих задач: z b b, k k,, r r, w, k k, b, r r, Принципы составления двойственных задач: Если исходная задача на максимум, то

Подробнее

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ»

«ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» Федеральное государственное образовательное учреждение высшего профессионального образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (Финуниверситет) Кафедра «Прикладная математика»

Подробнее

Нормы расхода ресурсов на одно изделие. шкафов. По смыслу задачи эти переменные неотрицательны, x1, x2

Нормы расхода ресурсов на одно изделие. шкафов. По смыслу задачи эти переменные неотрицательны, x1, x2 Составление, решение и анализ задачи линейного программирования в Excel ЗАДАНИЕ. Построить математическую модель задачи и решить её средствами Excel. Записать сопряжённую задачу. Провести анализ и сделать

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

5 Транспортная задача

5 Транспортная задача 5 Транспортная задача Важный частный случай задач линейного программирования транспортные задачи. Это математические модели разнообразных прикладных задач по оптимизации перевозок. Распространенность в

Подробнее

В.М. Гончаренко, А.В. Овчинников, В.Ю. Попов МАТЕРИАЛЫ К ЭКЗАМЕНУ. по дисциплине «Исследование операций»

В.М. Гончаренко, А.В. Овчинников, В.Ю. Попов МАТЕРИАЛЫ К ЭКЗАМЕНУ. по дисциплине «Исследование операций» Федеральное государственное образовательное учреждение высшего профессионального образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (Финуниверситет) Кафедра «Прикладная математика»

Подробнее

Модель Леонтьева многоотраслевой экономики Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными

Модель Леонтьева многоотраслевой экономики Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными 223 Модель Леонтьева многоотраслевой экономики Макроэкономика функционирования многоотраслевого хозяйства требует баланса между отдельными отраслями Каждая отрасль, с одной стороны, является производителем,

Подробнее

5 Транспортная задача

5 Транспортная задача 1 5 Транспортная задача Важный частный случай задач линейного программирования транспортные задачи Это математические модели разнообразных прикладных задач по оптимизации перевозок Распространенность в

Подробнее

Экономико-математические методы в менеджменте Линейные модели в управление и их решение средствами программы EXCEL продукта Microsoft Office

Экономико-математические методы в менеджменте Линейные модели в управление и их решение средствами программы EXCEL продукта Microsoft Office Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Уральский государственный лесотехнический университет Кафедра

Подробнее

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Исследование операций Определение Операция - мероприятие, направленное на достижение некоторой цели, допускающее несколько возможностей и их управление Определение Исследование операций совокупность математических

Подробнее

НЕОТРИЦАТЕЛЬНЫЕ МАТРИЦЫ И МОДЕЛИ ЛЕОНТЬЕВА

НЕОТРИЦАТЕЛЬНЫЕ МАТРИЦЫ И МОДЕЛИ ЛЕОНТЬЕВА Глава 3 НЕОТРИЦАТЕЛЬНЫЕ МАТРИЦЫ И МОДЕЛИ ЛЕОНТЬЕВА 3 Число и вектор Фробениуса Число и вектор Фробениуса используются в балансовых экономических моделях и, в частности, в модели международной торговли

Подробнее

3 Конечномерные гладкие задачи с равенствами

3 Конечномерные гладкие задачи с равенствами 3 Конечномерные гладкие задачи с равенствами и неравенствами В этом параграфе даются необходимые и достаточные условия экстремума в гладкой конечномерной задаче с ограничениями типа равенств и неравенств.

Подробнее

4.4 Экономическая интерпретация двойственной задачи

4.4 Экономическая интерпретация двойственной задачи 4.4 Экономическая интерпретация двойственной задачи За двойственными переменными стоят не только числа, по которым, следуя теореме 4.2, можно найти решение прямой задачи, но и определенный содержательный

Подробнее

Практическая работа. «Экономико-математические методы и модели» Вариант 2. Задание 1. Решить графически.

Практическая работа. «Экономико-математические методы и модели» Вариант 2. Задание 1. Решить графически. Практическая работа «Экономико-математические методы и модели» Вариант 2 Задание 1. Решить графически. 150x + 70x max, 30x1 + 75x2 900, 3x1 + 2x2 30, x, x 0. Решение. Построим область допустимых решений

Подробнее

«Юго-Западный государственный университет» (ЮЗГУ) Кафедра конструирования и технологии электронновычислительных

«Юго-Западный государственный университет» (ЮЗГУ) Кафедра конструирования и технологии электронновычислительных «Юго-Западный государственный университет» ЮЗГУ) Кафедра конструирования и технологии электронновычислительных средств МЕТОДЫ УСЛОВНОЙ ОПТИМИЗАЦИИ Методические указания по выполнению лабораторной работы

Подробнее

Задача 1. (необходимо решить графическим методом) Найти максимум целевой функции L=4x+3y при следующих ограничениях:

Задача 1. (необходимо решить графическим методом) Найти максимум целевой функции L=4x+3y при следующих ограничениях: Задача. (необходимо решить графическим методом) Найти максимум целевой функции L=4+y при следующих ограничениях: Решить задачу при дополнительном условии (ДУ): ДУ: Найти минимум целевой функции L=-y при

Подробнее

Лекции подготовила доц. Мусина М.В. Лекция 2. Основная задача линейного программирования. (в матричной форме A x b, где b 0 )

Лекции подготовила доц. Мусина М.В. Лекция 2. Основная задача линейного программирования. (в матричной форме A x b, где b 0 ) Лекция 2. Основная задача линейного программирования. Все задачи линейного программирования могут быть приведены к стандартной форме, в которой целевая функция должна быть максимизирована, а все ограничения

Подробнее

max f при условии, что g(x) = b i, (1)

max f при условии, что g(x) = b i, (1) Метод множителей Лагранжа Рассмотрим экстремальную задачу с ограничениями в виде равенств: найти a при условии что ) = ) на множестве допустимых значений описываемом системой уравнений где R : R R : R

Подробнее

Линейная алгебра

Линейная алгебра Линейная алгебра 08.12.2012 Линейные модели в экономике Линейное программирование Линейная алгебра (лекция 13) 08.12.2012 2 / 25 Задача линейного программирования: F (x 1, x 2,..., x n ) = n c j x j max(min),

Подробнее

Введение. 1. Задача линейного программирования. Основные понятия

Введение. 1. Задача линейного программирования. Основные понятия Введение Данные методические указания адресованы студентам заочной формы обучения всех специальностей, которые будут выполнять контрольную работу т 4 по высшей математике, и охватывают раздел математического

Подробнее

4 Методы нахождения первоначальной крайней точки

4 Методы нахождения первоначальной крайней точки 4 Методы нахождения первоначальной крайней точки 4. Переход к решению двойственной задачи Рассмотрим метод решения задач линейного программирования путем перехода к двойственной задаче и решения полученной

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Ижевский государственный технический университет кафедра САПР МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по дисциплине "Системный анализ" на тему

Подробнее

4.1 Элементы выпуклого анализа. Выпуклые множества. Введем некоторые понятия, которые используются в выпуклом анализе:

4.1 Элементы выпуклого анализа. Выпуклые множества. Введем некоторые понятия, которые используются в выпуклом анализе: 4 Выпуклые задачи Пусть в этом пункте X линейное нормированное пространство (для простоты понимания можно считать, что X = R n конечномерное пространство). 4.1 Элементы выпуклого анализа. Выпуклые множества

Подробнее

Симплекс-метод решения задачи линейного программирования

Симплекс-метод решения задачи линейного программирования Симплекс-метод решения задачи линейного программирования. Эквивалентные формулировки задачи линейного программирования. Формулировка задачи линейного программирования. Напомним, что математически задача

Подробнее

Лекция 13. Методы решения равновесных задач и вариационных неравенств

Лекция 13. Методы решения равновесных задач и вариационных неравенств Лекция 13. Методы решения равновесных задач и вариационных неравенств Вспомним основные определения равновесных задач и вариационных неравенств. Пусть D R n - непустое замкнутое выпуклое множество. Определение

Подробнее

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ Глава 2 МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ 2.1. Симплекс-метод решения задачи линейного программирования Для решения задач линейного программирования симплексметодом следует выполнить ряд

Подробнее

сырье Пусть матрица А матрица нормы расхода сырья на производство - матрица плана выпуска продукции. Матрица B b1 b2 b3

сырье Пусть матрица А матрица нормы расхода сырья на производство - матрица плана выпуска продукции. Матрица B b1 b2 b3 40 4. Использование матриц, определителей и систем уравнений в экономике 4. Использование матриц в экономике Пусть некоторое предприятие выпускает три вида продукции,, и использует для этого три вида сырья,,.

Подробнее

4.3 Выпуклые задачи. Доказательство. ˆx absmin P f(x) f(ˆx) 0 = 0, x

4.3 Выпуклые задачи. Доказательство. ˆx absmin P f(x) f(ˆx) 0 = 0, x 4.3 Выпуклые задачи 4.3.1 Задачи без ограничений Пусть f : X R выпуклая функция, отображающая нормированное пространство X в расширенную прямую. Выпуклой задачей без ограничений называется следующая экстремальная

Подробнее

ВАРИАНТ 5. Контрольная работа выполнена на сайте МатБюро. Решение задач по математике, статистике, теории вероятностей

ВАРИАНТ 5. Контрольная работа выполнена на сайте  МатБюро. Решение задач по математике, статистике, теории вероятностей ВАРИАНТ 5 Для изготовления различных изделий А, В, С предприятие использует различных вида сырья. Используя данные таблицы: Вид сырья Нормы затрат сырья Кол-во сырья А В С I II III 18 6 5 15 4 12 8 540

Подробнее

Часть I МЕТОДЫ МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ В ЭКОНОМИКЕ. Постановка задачи математического программирования

Часть I МЕТОДЫ МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ В ЭКОНОМИКЕ. Постановка задачи математического программирования Часть I МЕТОДЫ МАТЕМАТИЧЕСКОГО ПРОГРАММИРОВАНИЯ В ЭКОНОМИКЕ Постановка задачи математического программирования Постановка любой задачи оптимизации начинается с определения набора независимых переменных

Подробнее

МАКСИМАЛЬНОЕ СИНГУЛЯРНОЕ ЧИСЛО ДЛЯ МАТРИЦЫ ПОЛНЫХ ЗАТРАТ

МАКСИМАЛЬНОЕ СИНГУЛЯРНОЕ ЧИСЛО ДЛЯ МАТРИЦЫ ПОЛНЫХ ЗАТРАТ МАКСИМАЛЬНОЕ СИНГУЛЯРНОЕ ЧИСЛО ДЛЯ МАТРИЦЫ ПОЛНЫХ ЗАТРАТ П.И. СТЕЦЮК, Институт кибернетики имени В.М.Глушкова, Киев, Украина stetsyukp@gmail.com Для матрицы полных затрат в модели Леонтьева описаны свойства

Подробнее

три вида ресурсов. Известны технологическая матрица A 6 ресурсов на производство единицы каждого вида продукции, вектор b 150

три вида ресурсов. Известны технологическая матрица A 6 ресурсов на производство единицы каждого вида продукции, вектор b 150 Линейная производственная задача. Предприятие может выпускать четыре вида продукции, используя при этом три вида ресурсов. Известны технологическая матрица A затрат 7 8 ресурсов на производство единицы

Подробнее

Точка пересечения не принадлежит области. Построим область допустимых решений.

Точка пересечения не принадлежит области. Построим область допустимых решений. Задача. Решить графически ma F Находим точки пересечения прямых определяющих неравенства. Отсюда Точка пересечения не принадлежит области. Построим область допустимых решений. Построим вектор направления

Подробнее

1. Требования к результатам освоения дисциплины «Математические методы в экономике».

1. Требования к результатам освоения дисциплины «Математические методы в экономике». 2 1. Требования к результатам освоения дисциплины «Математические методы в экономике». 1.1. Процесс изучения дисциплины «Математические методы в экономике» направлен на формирование следующих компетенций:

Подробнее

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4 Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.4 Аннотация Собственные векторы и собственные значения линейного оператора, их свойства.

Подробнее

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.2

Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.2 Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве. Квадратичные формы Лекция 2.2 Аннотация Квадратичные формы. Знакоопределенные квадратичные формы. Критерий Сильвестра. Квадратичная

Подробнее

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг.

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг. А.В. Колесников Вариационное исчисление Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Некоторые специальные экстремальные задачи Дискретная транспортная задача (задача Монжа-Канторовича)

Подробнее

Линейная алгебра Лекция 6. Метод Гаусса

Линейная алгебра Лекция 6. Метод Гаусса Линейная алгебра Лекция 6 Метод Гаусса В свободной энциклопедии Википедии написано: «Метод Гаусса классический метод решения системы линейных алгебраических уравнений (СЛАУ) Этот метод последовательного

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны.

Пусть на проективной плоскости задан проективный репер. Поскольку точки лежат на одной прямой, то компланарны. Лекция 3 Тема: Уравнение прямой на проективной плоскости Принцип двойственности Теорема Дезарга Проективные отображения и проективные преобразования План лекции 1 Уравнение прямой на проективной плоскости

Подробнее

Московский институт электроники и математики НИУ ВШЭ. Отчет студентов группы МЭ-63. Воробьянинова Ипполита Матвеевича,

Московский институт электроники и математики НИУ ВШЭ. Отчет студентов группы МЭ-63. Воробьянинова Ипполита Матвеевича, ОБРАЗЕЦ ОФОРМЛЕНИЯ ОТЧЕТА Разработчик доц., к.ф.-м.н. Манита Л.А. Московский институт электроники и математики НИУ ВШЭ Отчет студентов группы МЭ-63 Воробьянинова Ипполита Матвеевича, Изнуренкова Авессалома

Подробнее

МАКСИМАЛЬНОЕ СИНГУЛЯРНОЕ ЧИСЛО ДЛЯ МАТРИЦЫ ПОЛНЫХ ЗАТРАТ

МАКСИМАЛЬНОЕ СИНГУЛЯРНОЕ ЧИСЛО ДЛЯ МАТРИЦЫ ПОЛНЫХ ЗАТРАТ МАКСИМАЛЬНОЕ СИНГУЛЯРНОЕ ЧИСЛО ДЛЯ МАТРИЦЫ ПОЛНЫХ ЗАТРАТ ПИ СТЕЦЮК, Институт кибернетики имени ВМГлушкова, Киев, Украина stetsyukp@gmailcom Для матрицы полных затрат в модели Леонтьева описаны свойства

Подробнее

К теме «Транспортная задача»

К теме «Транспортная задача» К теме «Транспортная задача» Математическая формулировка транспортной задачи. Построение опорного плана перевозок методом «северо-западного угла». Построение опорного плана перевозок методом минимальных

Подробнее

Линейная алгебра Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Линейная алгебра Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА АНАЛИТИЧЕСКОЙ ЭКОНОМИКИ И ЭКОНОМЕТРИКИ Линейная алгебра Конспект лекций и практикум для студентов экономических

Подробнее

2. Методы решения общей задачи линейного программирования

2. Методы решения общей задачи линейного программирования . Методы решения общей задачи линейного программирования Современные методы ЛП делятся на две большие группы: - координатные методы и итерационные, позволяющие находить приближенные решения задач ЛП. Наиболее

Подробнее

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Федеральное Агентство по образованию Российской Федерации ГОУ ВПО ЮЖНО-РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА (ЮРГУЭС) Филькин Г.В. ЛЕКЦИИ ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ для студентов экономических

Подробнее

3 Обоснование симплекс-метода

3 Обоснование симплекс-метода 1 3 Обоснование симплекс-метода 3.1 Теоремы существования, двойственности, критерий решения Приведем три теоремы, играющие важную роль при обосновании симплекс-метода. Рассмотрим задачу линейного программирования

Подробнее

МАТРИЧНЫЕ ИГРЫ И ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. В. Н. Малозёмов. 14 апреля 2016 г.

МАТРИЧНЫЕ ИГРЫ И ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ. В. Н. Малозёмов. 14 апреля 2016 г. МАТРИЧНЫЕ ИГРЫ И ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ В. Н. Малозёмов malv@math.spbu.ru 14 апреля 2016 г. Аннотация. В докладе матричные игры анализируются с точки зрения линейного программирования. Приведены два

Подробнее

Линейная алгебра. Лекция 2.2

Линейная алгебра. Лекция 2.2 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Линейная алгебра Модуль 2. Линейные операторы в евклидовом пространстве.квадратичные

Подробнее

1 Билинейная и квадратичная формы.

1 Билинейная и квадратичная формы. 1 Билинейная и квадратичная формы. Пусть ϕ(x, y) числовая функция, заданная на линейном пространстве, то есть ϕ : L L R. Если ϕ(x, y) линейна по каждому из своих аргументов, то её называют билинейной формой.

Подробнее

Математическое программирование. 1-я задача. Симплекс-метод решения задачи.

Математическое программирование. 1-я задача. Симплекс-метод решения задачи. Математическое программирование. 1) Решить графически следующие задачи линейного программирования. 2) Решить обе задачи перебором базисных решений. 3) Решить первую задачу симплекс методом. 1-я задача:

Подробнее

1. При каких значениях ранг матрицы. Решение:

1. При каких значениях ранг матрицы. Решение: . При каких значениях ранг матрицы равен двум? Решение: Ранг матрицы равен порядку базисного минора. Поскольку требуется, чтобы ранг матрицы был равен двум, то базисным должен быть какой-либо минор второго

Подробнее

Матрицы и определители. Обратная матрица. Линейная алгебра (лекция 3) 2 / 23

Матрицы и определители. Обратная матрица. Линейная алгебра (лекция 3) 2 / 23 Линейная алгебра Матрицы и определители Обратная матрица Линейная алгебра (лекция 3) 2 / 23 Квадратная матрица называется вырожденной (или особенной), если ее определитель равен нулю, и невырожденной (или

Подробнее

Симплекс-метод для решения задач линейного программирования

Симплекс-метод для решения задач линейного программирования для решения задач линейного программирования Арсений Мамошкин СПбГУ ИТМО Кафедра КТ 2010 г. Мамошкин А. М. (СПбГУ ИТМО КТ) http://rain.ifmo.ru/cat 1 / 28 Содержание Формулировка задачи 1. Формулировка

Подробнее

Занятие 14 Понятие линейного оператора

Занятие 14 Понятие линейного оператора Линейная алгебра и аналитическая геометрия Занятие 4 Понятие линейного оператора Преподаватель Пахомова Елена Григорьевна 6 ЛИНЕЙНЫЕ ОПЕРАТОРЫ Определение линейного оператора Пусть L и V линейные пространства

Подробнее

Нелинейная задача оптимизации.

Нелинейная задача оптимизации. Нелинейная задача оптимизации. Кольцов С.Н 2014 www.linis.ru Задача безусловной оптимизации Задача оптимизации формулируется следующим образом: заданы множество Х (допустимое множество задачи) и функция

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ. Требования к знаниям, умениям, навыкам Знать общую постановку задачи линейного программирования [, с. 7 8]. Уметь составлять математические модели простейших экономических задач (задача о банке,

Подробнее

Сборник тестовых заданий

Сборник тестовых заданий ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ» Кафедра Математика А. Е. Гарслян ИССЛЕДОВАНИЕ

Подробнее

бесконечно малой величиной более высокого порядка малости по сравнению с ρ n ), т.е. можно представить его в форме Пеано ( ) ( )

бесконечно малой величиной более высокого порядка малости по сравнению с ρ n ), т.е. можно представить его в форме Пеано ( ) ( ) 55 является при бесконечно малой величиной более высокого порядка малости по сравнению с ρ n (, ), где ρ ( ) + ( ), те можно представить его в форме Пеано n R, ρ Пример Записать формулу Тейлора при n с

Подробнее

Глава 2. Линейное программирование

Глава 2. Линейное программирование Глава 2 Линейное программирование В линейном программировании изучаются задачи об экстремуме линейной функции нескольких переменных при ограничениях типа равенств и неравенств, задаваемых также линейными

Подробнее

Е.В. Шульга Омский государственный педагогический университет

Е.В. Шульга Омский государственный педагогический университет Е.В. Шульга Омский государственный педагогический университет Электронный научный журнал «Вестник Омского государственного педагогического университета» Выпуск 2006 www.omsk.edu Обучение математическому

Подробнее

Применение линейной алгебры в экономике

Применение линейной алгебры в экономике Лекция 4 Применение линейной алгебры в экономике Модель Леонтьева модель многоотраслевой экономики (балансовый анализ) Цель балансового анализа ответить на вопрос, рассматриваемый в макроэкономике и связанный

Подробнее

Методы оптимальных решений Контрольная работа

Методы оптимальных решений Контрольная работа Методы оптимальных решений Контрольная работа Задача 1. Предприятие производит продукцию двух видов (A и Б), используя при изготовлении этой продукции ресурсы трех видов (первого, второго и третьего).

Подробнее

Квадратичные формы. Линейная алгебра (лекция 9) / 30

Квадратичные формы. Линейная алгебра (лекция 9) / 30 Линейная алгебра (лекция 9) 10.11.2012 2 / 30 Определение Квадратичной формой F (x 1, x 2,..., x n ) от n неизвестных x 1, x 2,..., x n называется сумма, каждое слагаемое которой является либо квадратом

Подробнее

3 Симплекс-метод. 3.1 Базисные решения ЗЛП

3 Симплекс-метод. 3.1 Базисные решения ЗЛП 3 Симплекс-метод Поиск оптимального решения ЗЛП путем простого перебора крайних точек допустимого множества возможен, но совершенно непрактичен с вычислительной точки зрения. Неэффективность такого подхода

Подробнее

Системы неравенств и задачи оптимизации с двусторонними ограничениями на переменные

Системы неравенств и задачи оптимизации с двусторонними ограничениями на переменные Системы неравенств и задачи оптимизации с двусторонними ограничениями на переменные Зоркальцев Валерий Иванович, проф., д.т.н., Заведующий лабораторией «Методов математического моделирования и оптимизации

Подробнее

9. Сбалансированные игры

9. Сбалансированные игры 1 9. Сбалансированные игры 1. Непустота ядра. Игры с непустым ядром представляют явную ценность для практических целей, поскольку могут быть учтены запросы каждой коалиции, каждой группы интересов. Если

Подробнее

Тема 3. Симплекс-метод решения задачи линейного программирования

Тема 3. Симплекс-метод решения задачи линейного программирования Тема 3. Симплекс-метод решения задачи линейного программирования Цель: познакомить читателя с симплекс-методом решения задачи линейного программирования и основными понятиями и теоремами теории двойственности

Подробнее

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно.

Доказательство. Свойствo 1) вернo, т.к. сложение векторов коммутативно. ЛЕКЦИЯ 5 МЕТОД ГАУССА Мы разобрали выше два различных способа задания линейных подпространств F n 2 при помощи образующих и как множество решений системы линейных уравнений Для различных приложений нам

Подробнее

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.1

Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.1 Линейная алгебра Модуль 1. Линейные и евклидовы пространства. Линейные операторы в линейном пространстве Лекция 1.1 Аннотация Вещественное линейное пространство, аксиомы и примеры. Линейно зависимые и

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Тамбовский государственный технический университет» О.Ю. Буравлева

Подробнее

Лабораторная работа 3_9. Поиск и принятие решений в Excel. 1-й вид продукции 2-й вид продукции 1,2 1,9 37 2,3 1,8 57,6 0,1 0,7 7

Лабораторная работа 3_9. Поиск и принятие решений в Excel. 1-й вид продукции 2-й вид продукции 1,2 1,9 37 2,3 1,8 57,6 0,1 0,7 7 Лабораторная работа 3_9. Поиск и принятие решений в Excel. Что осваивается и изучается? Решение задачи определения оптимального плана и транспортной задачи при помощи надстройки «Поиск решения». Задание

Подробнее

Автор теста: Мухаметжанова Ж.С. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и

Автор теста: Мухаметжанова Ж.С. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и Автор теста: Мухаметжанова Ж.С. Название теста: Моделирование экономических процессов и систем Предназначено для студентов специальности: Учет и аудит курс, 3 г.о., ДОТ Семестр: 2 Количество кредитов:

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ Экономический факультет. В. Ф. Ходыкин МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ Экономический факультет. В. Ф. Ходыкин МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ Экономический факультет В. Ф. Ходыкин МАТЕМАТИЧЕСКОЕ ПРОГРАММИРОВАНИЕ (Тексты лекций для студентов экономических специальностей)

Подробнее

Модели расчета равновесного распределения потоков Бекмана и Нестерова-де Пальма. Дорн Юрий

Модели расчета равновесного распределения потоков Бекмана и Нестерова-де Пальма. Дорн Юрий Модели расчета равновесного распределения потоков Бекмана и Нестерова-де Пальма Дорн Юрий dorn@pism.nt Принципы Вардропа: 1. Агент ведет себя оппортунистически, стараясь при выборе маршрута минимизировать

Подробнее

Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Лекция 9 ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Понятие экстремума функции многих переменных Некоторые сведения о квадратичных формах 3 Достаточные условия экстремума Понятие экстремума функции многих переменных

Подробнее

Кафедра высшей математики ЛИНЕЙНАЯ АЛГЕБРА МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ЭКОНОМИКЕ

Кафедра высшей математики ЛИНЕЙНАЯ АЛГЕБРА МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ЭКОНОМИКЕ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Национальный минерально-сырьевой университет

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.2

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.2 Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Лекция 12 Аннотация Вырожденные и невырожденные матрицы Приведение квадратной невырожденной матрицы к единичной с помощью элементарных

Подробнее

Контрольная работа по ММУ. Вариант 1. Задание 1. Решить графическим методом задачу линейного программирования:

Контрольная работа по ММУ. Вариант 1. Задание 1. Решить графическим методом задачу линейного программирования: Контрольная работа по ММУ Вариант Задание Решить графическим методом задачу линейного программирования: а) найти область допустимых значений многоугольник решений); б) найти оптимумы целевой функции. Дано:

Подробнее

Тесты по дисциплине «Исследование операций»

Тесты по дисциплине «Исследование операций» Тесты по дисциплине «Исследование операций».под экономико-математической моделью понимается: AОтображение свойств экономической системы в виде таблиц диаграмм схем BФормально-математическое отображение

Подробнее

Аналитическая геометрия. Лекция 1.3

Аналитическая геометрия. Лекция 1.3 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ

ИССЛЕДОВАНИЕ ОПЕРАЦИЙ Федеральное государственное образовательное учреждение высшего профессионального образования «ФИНАНСОВАЯ АКАДЕМИЯ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНАКАДЕМИЯ) Кафедра «Прикладная математика» В.М.

Подробнее

Глава 10. Экстремумы функций нескольких переменных

Глава 10. Экстремумы функций нескольких переменных Глава Экстремумы функций нескольких переменных Локальные экстремумы функций двух переменных Условные экстремумы Функция z f ) имеет максимум минимум) в точке M если можно найти такую окрестность точки

Подробнее

Аналитическая геометрия. Лекция 1.2

Аналитическая геометрия. Лекция 1.2 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

Задача линейного программирования

Задача линейного программирования Министерство образования РФ Дальневосточный государственный университет Задача линейного программирования Методические указания по курсу "Методы оптимизации" Владивосток 2003 2 УДК 5196 Методические указания

Подробнее

ЛЕКЦИЯ 2. Лагранжева теория двойственности. 4. Теория двойственности линейного программирования

ЛЕКЦИЯ 2. Лагранжева теория двойственности. 4. Теория двойственности линейного программирования ЛЕКЦИЯ 2 Лагранжева теория двойственности 1. Определения 2. Теорема о седловой точке 3. Линейное программирование 4. Теория двойственности линейного программирования -1- Лагранжева теория двойственности

Подробнее

МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ

МЕТОДЫ ОПТИМАЛЬНЫХ РЕШЕНИЙ МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ЗАБАЙКАЛЬСКИЙ АГРАРНЫЙ ИНСТИТУТ - филиал ФГБОУ ВО «Иркутский государственный аграрный университет имени А.А.Ежевского» Экономический факультет Кафедра

Подробнее

Графическое решение задачи

Графическое решение задачи Решить задачу линейного программирования, где 3x12x2 8 x14x2 10 x1 0 x 2 0 LX3x14x2 max а) геометрическим способом, б) перебором базисных решений, в) симплекс-методом. Графическое решение задачи L X 3x14

Подробнее

ЛЕКЦИЯ 4. Теория двойственности ЛП (продолжение) 1. Теоремы Фаркаша Минковского и Гордана

ЛЕКЦИЯ 4. Теория двойственности ЛП (продолжение) 1. Теоремы Фаркаша Минковского и Гордана ЛЕКЦИЯ 4 Теория двойственности ЛП (продолжение) 1. Теоремы Фаркаша Минковского и Гордана Необходимые условия экстремума 2. Необходимые условия оптимальности Куна Таккера 3. Критерий оптимальности (выпуклый

Подробнее

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа ВВ Колыбасова, НЧ Крутицкая В В Колыбасова, Н Ч Крутицкая Достаточные условия существования решения задачи об условном

Подробнее

Построение математической модели задачи. Симплекс-метод решения задачи, метод искусственного базиса.

Построение математической модели задачи. Симплекс-метод решения задачи, метод искусственного базиса. ) Задача о планировании производства. Производственному участку может быть запланировано к изготовлению на определённый плановый период времени два вида изделий: A и B. На производство единицы изделия

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Обратная матрица Раздел электронного учебника для сопровождения лекции Изд. 3-е, испр. и доп. e-mail:

Подробнее

Линейная модель внутреннего ценообразования на Ресурсы (включая Труд), Время и Капитал в экономической подсистеме. (Р(Т)ВК Модель Планирования)

Линейная модель внутреннего ценообразования на Ресурсы (включая Труд), Время и Капитал в экономической подсистеме. (Р(Т)ВК Модель Планирования) Линейная модель внутреннего ценообразования на Ресурсы (включая Труд), Время и Капитал в экономической подсистеме. (Р(Т)ВК Модель Планирования) Михаил Любощинский На основе модели Линейного Программирования,

Подробнее

Пусть на проективной плоскости задан какой - либо проективный репер. Кривой второго порядка на проективной плоскости называется

Пусть на проективной плоскости задан какой - либо проективный репер. Кривой второго порядка на проективной плоскости называется Лекция 6 Тема: Общее уравнение кривой второго порядка на проективной плоскости Взаимное расположение кривой и прямой Касательная кривой Полюс поляра поляритет План лекции 1 Общее уравнение кривой второго

Подробнее

МОДИФИЦИРОВАННЫЙ СИМПЛЕКС-МЕТОД

МОДИФИЦИРОВАННЫЙ СИМПЛЕКС-МЕТОД МОДИФИЦИРОВАННЫЙ СИМПЛЕКС-МЕТОД В. Н. Малозёмов malv@math.spbu.ru 20 ноября 2010 г. Симплекс-метод решения задач линейного программирования является одним из выдающихся математических достижений 20-го

Подробнее

МАТРИЦЫ И ОТОБРАЖЕНИЯ

МАТРИЦЫ И ОТОБРАЖЕНИЯ ЛЕКЦИЯ 7 РАНГ МАТРИЦЫ КРИТЕРИЙ СОВМЕСТНОСТИ МАТРИЦЫ И ОТОБРАЖЕНИЯ 1 РАНГ МАТРИЦЫ В векторном пространстве R m столбцов высоты m рассмотрим n векторов A (j) = [a 1j, a 2j,..., a mj ], j = 1, 2,..., n, и

Подробнее

ЛЕКЦИЯ 5. Необходимые условия экстремума. 1. Необходимые условия оптимальности Куна Таккера 2. Критерий оптимальности (выпуклый случай)

ЛЕКЦИЯ 5. Необходимые условия экстремума. 1. Необходимые условия оптимальности Куна Таккера 2. Критерий оптимальности (выпуклый случай) ЛЕКЦИЯ 5 Необходимые условия экстремума 1. Необходимые условия оптимальности Куна Таккера 2. Критерий оптимальности (выпуклый случай) -1- Лекция 4: Теорема 7 (Фаркаша Минковского). Система уравнений Ax

Подробнее