Оценивание сходства пользователей и ресурсов путем выявления скрытых тематических профилей.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Оценивание сходства пользователей и ресурсов путем выявления скрытых тематических профилей."

Транскрипт

1 Анализ Клиентских Сред Оценивание сходства пользователей и ресурсов путем выявления скрытых тематических профилей Постановка задачи Исходными данными являются протоколы действий пользователей Каждая запись протокола описывает событие «пользователь выбрал ресурс» В зависимости от конкретной задачи (предметной области запись может содержать следующую информацию: идентификатор пользователя название ресурса тип время начала и продолжительность действия и тд Например действием может быть посещение страницы выбор товара или услуги в интернет-магазине проставление рейтинга просмотренного фильма и т д Введем некоторые понятия необходимые для формальной постановки задачи Пусть есть R множество ресурсов U множество пользователей Задан протокол пользования D ( i i i l То есть множество событий типа пользователь U использовал ресурс R l число записей в протоколе По нему строится матрица пользования U R В зависимости от конкретной задачи A могут нести различную информацию о пользовательском поведении Это может быть бинарная информация о посещении или не посещении заданного ресурса данным пользователем частота (или число пользований ресурса пользователем стоимость или рейтинг проставленный пользователем для ресурса и тд Матрица A U R чаще всего бывает сильно разреженной (далеко не все пользователи используют все ресурсы и наоборот далеко не всеми ресурсами пользуются все пользователи Поэтому множество посещений нам часто удобнее хранить не в виде громоздкой матрицы а в виде набора непустых ее элементов: D A {( A > 0} Dи D множества непустых элементов в матрице посещений при фиксированном и при фиксированном соответственно Задача заключается в том чтобы по имеющимся данным построить функции сходства (метрики на множестве пользователей ρ :U U U R+ и на множестве ресурсов ρ R : R R R+ таким образом чтобы близкими по метрике ρ U были пользователи которые пользуются схожими ресурсами и близкими по метрике ρ R были ресурсы которыми пользуются схожие клиенты A В данной работе рассматривается подход при котором сначала по исходным данным вычисляются векторные описания ресурсов и пользователей называемые в работе профилями Затем функции сходства определяются как евклидовы метрики над профилями Причем компоненты профилей интерпретируются как тематики которыми могут интересоваться пользователи и которые могут удовлетворять (в той или иной степени ресурсы Пусть T множество тем в профиле

2 Тематический профиль ресурса и пользователя запишем следующим образом: P ( T P ( Подчеркнем что природа профилей пользователей и ресурсов одинакова поэтому зная профили для всех ресурсов и пользователей мы можем оценить расстояния (например как среднеквадратичное отклонение как от ресурса до ресурса и от пользователя до пользователя так и от пользователя до ресурса: ' ( ' ρ ( ' ρ( P P R Аналогично ρ ( ' ρ( P P и U ' ( ' ρ ( ρ( P P ( Вероятностная постановка задачи Допустим что у каждого пользователя U имеется некоторое множество интересов или потребностей которые мы будем называть темами Множество всех возможных тем обозначим через T Допустим пользователь имеет интерес T с вероятностью ( В свою очередь каждый ресурс соответствуем некоторому множеству тем Допустим ресурс удовлетворяет теме с вероятностью ( Профиль пользователя определим как вектор значений вероятностей ( T причем ( Аналогично профиль ресурса это вектор вероятностей ( T причем ( Обозначим через ( вероятность выбора ресурса пользователем Метод восстановления профилей предлагаемый в данной работе опирается на EMалгоритм разделения смеси распределений Коллаборативная фильтрация на основе EM-алгоритма Распишем вероятность выбора ресурса пользователем : ( ( ( ( где ( априорная вероятность того что выбор будет сделан U пользователем ;

3 ( для всех U вероятность того что пользователь в данный момент интересуется темой ; ( ( апостериорная вероятность того что будет выбран ресурс при условии что выбор делает пользователь интересующийся темой Таким образом вероятность ( будем записывать как сумму произведений этих трех вероятностей по всем темам Апостериорную вероятность ( найдем по формуле Байеса: ( R Подставим это выражение в формулу для ( : ( (4 R Приведенные выше формулы аналогичным образом можно записать относительно ресурсов: ( ( ( ( где ( значения априорной вероятности выбора ресурса ; ( вероятность того что ресурсу соответствует тема ; ( ( апостериорная вероятность того что пользователь интересуется темой зайдя на ресурс Здесь и в предыдущем случае мы опираемся на гипотезу независимости посещения пользователем различных ресурсов и считаем что ( не зависит от Таким образом мы можем записать формулу для вероятности ( через профили ресурсов: ( (5 R Воспользуемся принципом максимума правдоподобия для выборки посещений l ( i i i : D ln l i ( i i max Основная идея алгоритма восстановления профилей заключается в последовательном чередовании двух действий: оптимизировать при фиксированном оптимизировать при фиксированном и (6 по выборке D 3

4 и так далее в итерациях пока не будет достигнута сходимость Рассмотрим задачу максимума правдоподобия (МП для формулы (4 Запишем Лагранжиан: L( ln ( λ ( D T При ограничениях: U ; 0 T U T Продифференцируем по и прировняем к нулю: L D max ( λ 0 Здесь мы умножили и разделили на ( Введем обозначение для так называемых скрытых компонент: ( ( (7 ( и заметим что это выражение есть ни что иное как формула Байеса Можно дать вероятностную интерпретацию данных компонент следующим образом: вероятность того что пользователь зайдя на ресурс интересовался темой Тогда ( Далее разнесем два члена уравнения в разные части равенства помножим обе части на и просуммируем по : ( λ T D ( T Учитывая что и D R получаем: D λ следовательно λ R Таким образом получаем D D ( Идея заключается в том чтобы последовательно вычислять скрытые компоненты ( при заданном по формуле (7 а затем вычислять при заданном ( и так 4

5 далее в итерациях пока не будет достигнута сходимость (значения будут меняться мало Найдем начальное приближение для ( для этого выпишем еще раз выражение для скрытых компонент: xx x T ( x T Пусть начальное приближение для x x ( ( где ( ( ' R равномерное ' ' тогда: T Показанным выше способом мы можем оптимизировать при фиксированном Совершенно аналогичным способом можно решить задачу максимума правдоподобия (6 для формулы (5 Тогда мы сможем решить обратную задачу: оптимизировать при фиксированном Теперь можно выписать алгоритм Описание алгоритма Вход: Выход: Алгоритм: U число пользователей; R число ресурсов; T число тем в профиле; D l ( i i i выборка посещений (из нее получается матрица посещений A U R ; профили пользователей; профили ресурсов; : построить списки Dи Dнепустых значений в матрице A : задать случайное начальное приближение для такое что 3: вычислить для каждого ресурса 4: повторять D и R D средние значения для каждого пользователя и U 5

6 I Оптимизируем при фиксированном : 5: для всех T 6: вычислить суммы S 7: для всех R 8: вычислить 9: вычислить 0: повторять : для всех U T : вычислить 3: для всех U R ' R ' ( S ' ( ( (не зависит от ( D D ( 4: вычислить суммы S ( 5: для всех T 6: вычислить 7: пока не сойдется II Оптимизируем при фиксированном 8: для всех T ( : 9: вычислить суммы S 0: для всех U : вычислить : вычислить 3: повторять ' U ( * 4: для всех R T ( ( S ' S ' ( ( 6

7 3: вычислить 5: для всех U R D * D ( 6: вычислить суммы S ( 7: для всех T 8: вычислить 9: пока не сойдется 30: пока не сойдется * ( ( S 7

8 Задачи Оптимизировать алгоритм разреженное хранение матриц и скрытых компонент добиться высокой скорости обработки данных функционал качества считать по профилям а не по метрике оптимизировать параметры алгоритма на реальных и на модельных данных: число внутренних внешних итераций количество тем Исследовать расходимость алгоритма профили известны куда уйдет алгоритм? какого размера должны быть выборки и профили чтобы не уходил? нужно ли накладывать ограничения типа некоррелированности профилей? Очевидно что если тематики пересекаются по сайтам то посещения будут размытыми но если есть жесткая кластеризация: некоторые группы пользователей посещают только некоторые группы сайтов то в профилях должны получаться чисто нулевые компоненты То есть если ко-кластерная структура существует в данных то алгоритм ее выявит Доказать теорему: Пусть U U U U n R R R R m Пользователи из группы U i посещают только ресурсы из группы Тогда в профиле ненулевыми могут оказаться только компоненты соответствующие «своей тематике» Робастные алгоритмы Игнорируют малые пересечения между тематиками и все равно выдают нулевые компоненты профилей Рассмотреть эвристику: «занулять незначительные компоненты профилей на каждой итерации» Выбирать порог значимости Разреженность матрицы расстояний Найти окрестность ближайших соседей для каждого ресурса Все дальнейшие анализы проводить только для этой окрестности Если профили не пересекаются то эти ресурсы считать «бесконечно далекими» и эту пару вообще нигде не учитывать R j 8

9 Исследовать теоретически сходимость алгоритма Построить теоретические оценки для количества внутренних и внешних итераций Иерархические профили Можно будет существенно оптимизировать работу алгоритма если учитывать иерархию тем в профиле Написать статьи Предполагается как минимум статьи Первая с более подробным описанием практических результатов а вторая более глубокая с уклоном на теоретические результаты 9

Технология персонализации на основе выявления тематических профилей пользователей и ресурсов Интернет

Технология персонализации на основе выявления тематических профилей пользователей и ресурсов Интернет МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ государственный университет ФАКУЛЬТЕТ УПРАВЛЕНИЯ И ПРИКЛАДНОЙ МАТЕМАТИКИ ВЫЧИСЛИТЕЛЬНЫЙ ЦЕНТР ИМ А А ДОРОДНИЦЫНА

Подробнее

Д. П. Ветров 1. Спецкурс «Графические модели» Лекция 5. Обучение без учителя. скрытых марковских моделей и. линейных динамических систем.

Д. П. Ветров 1. Спецкурс «Графические модели» Лекция 5. Обучение без учителя. скрытых марковских моделей и. линейных динамических систем. для Д. П. 1 1 МГУ, ВМиК, каф. ММП Спецкурс «Графические модели» Скрытая Марковская модель () для Скрытая Марковская модель [первого порядка] это вероятностная модель последовательности, которая Состоит

Подробнее

Лекция 4. Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ. Лектор Сенько Олег Валентинович

Лекция 4. Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ. Лектор Сенько Олег Валентинович Лекция 4 Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

Коллаборативная фильтрация в рекомендательных системах. SVD-разложение

Коллаборативная фильтрация в рекомендательных системах. SVD-разложение УДК 004.852 Коллаборативная фильтрация в рекомендательных системах. SVD-разложение Латкин И.И., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Системы обработки информации и управления»

Подробнее

системы линейных уравнений Б.М.Верников Лекция 3: Однородные и неоднородные системы

системы линейных уравнений Б.М.Верников Лекция 3: Однородные и неоднородные системы Лекция 3: Однородные и неоднородные системы линейных уравнений Система линейных уравнений Определение Линейным уравнением (или уравнением первого порядка) с n неизвестными x 1, x 2,..., x n называется

Подробнее

4. Понятие числового ряда. Критерий Коши сходимости числового ряда.

4. Понятие числового ряда. Критерий Коши сходимости числового ряда. 4. Понятие числового ряда. Критерий Коши сходимости числового ряда. Под словом "ряд"в математическом анализе понимают сумму бесконечного числа слагаемых. Рассмотрим произвольную числовую последовательность

Подробнее

Тема 2-11: Собственные векторы и собственные значения

Тема 2-11: Собственные векторы и собственные значения Тема 2-11: Собственные векторы и собственные значения А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

28. Фундаментальная система решений однородной системы линейных уравнений

28. Фундаментальная система решений однородной системы линейных уравнений 28. Фундаментальная система решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Размерность

Подробнее

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ ИГРЫ С РАЗНОТИПНЫМИ ИНТЕГРАЛЬНЫМИ ОГРАНИЧЕНИЯМИ

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ ИГРЫ С РАЗНОТИПНЫМИ ИНТЕГРАЛЬНЫМИ ОГРАНИЧЕНИЯМИ УДК 589 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ ИГРЫ С РАЗНОТИПНЫМИ ИНТЕГРАЛЬНЫМИ ОГРАНИЧЕНИЯМИ ВВ ОСТАПЕНКО ИЛ РЫЖКОВА Рассмотрены линейные дифференциальные игры с интегральными ограничениями на управления игроков

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

Семинар 5. Модели ARMA

Семинар 5. Модели ARMA Семинар 5. Модели ARMA 5.1. Авторегрессионная модель (AR) Авторегрессионная модель p-го порядка (обозначается AR(p)) имеет вид y t = p a k y t k + ε t, где ε t белый шум. Изучим свойства модели на примере

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

9. Линейные пространства

9. Линейные пространства 9 Линейные пространства 3 Нам часто приходится рассматривать некоторые множества объектов, для которых установлены так называемые линейные операции: сложение элементов множества и умножение элемента множества

Подробнее

Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2011

Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2011 Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2 Проблема анализа многомерных данных При решении различных задач

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

множества Z = X Y называют произведением полуколец S X и S Y и обозначают S X S Y. Для A S X, B S Y положим A B)= X(A) Y(B).

множества Z = X Y называют произведением полуколец S X и S Y и обозначают S X S Y. Для A S X, B S Y положим A B)= X(A) Y(B). ЛАБОРАТОРНАЯ РАБОТА ТЕОРЕМА ФУБИНИ. ПРОСТРАНСТВА Lp, I. О с н о в н ы е п о н я т и я и т е о р е м ы Определение. Пусть и Y множества, и Y меры, заданные на полукольцах S и S Y подмножеств множеств и

Подробнее

Теорема Кронекера-Капелли

Теорема Кронекера-Капелли Установить совместность и решить систему линейных уравнений 5xx x xx 5x 0 x4x x 0 а) по формулам Крамера, б) матричным способом, в) методом Гаусса Совместность Совместность системы можно установить: а)

Подробнее

Лекция 9: Подпространства

Лекция 9: Подпространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение подпространства. Примеры подпространств (1) Определение Непустое подмножество

Подробнее

Уменьшение размерности

Уменьшение размерности Академический Университет, 2012 Outline 1 2 PCA Обзор курса Задача PCA Рассмотрим данные, лежащие в пространстве очень большой размерности. Как с ними работать? Часто оказывается, что «на самом деле» данные

Подробнее

ЭЛЕМЕНТЫ ФУНКЦИОНАЛЬНОГО АНАЛИЗА

ЭЛЕМЕНТЫ ФУНКЦИОНАЛЬНОГО АНАЛИЗА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Математика и теоретическая механика» Методические рекомендации

Подробнее

К. В. Григорьева. Методические указания Тема 3. Методы решения задачи минимизации квадратичной функции. Факультет ПМ-ПУ СПбГУ 2007 г.

К. В. Григорьева. Методические указания Тема 3. Методы решения задачи минимизации квадратичной функции. Факультет ПМ-ПУ СПбГУ 2007 г. К. В. Григорьева Методические указания Тема. Методы решения задачи минимизации квадратичной функции Факультет ПМ-ПУ СПбГУ 7 г. ОГЛАВЛЕНИЕ. ПОСТАНОВКА ЗАДАЧИ. ВСПОМОГАТЕЛЬНЫЕ СВЕДЕНИЯ.... МЕТОДЫ СПУСКА

Подробнее

Решение уравнения с одним неизвестным

Решение уравнения с одним неизвестным 1 Решение уравнения с одним неизвестным Дано уравнение в виде f(x)=0, где f(x) некоторая функция переменной x. Число x * называется корнем или решением данного уравнения, если при подстановке x=x * в уравнение

Подробнее

Тема 1: Системы линейных уравнений

Тема 1: Системы линейных уравнений Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

План лекции. 1 Смесь Гауссовских распределений. 2 EM-алгоритм. 3 Информационные методы

План лекции. 1 Смесь Гауссовских распределений. 2 EM-алгоритм. 3 Информационные методы План лекции 1 Смесь Гауссовских распределений 2 EM-алгоритм 3 Информационные методы А. А. Бояров, А. А. Сенов (СПбГУ) стохастическое программирование весна 2014 1 / 21 Смешанные модели Пусть W подмножество

Подробнее

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА)

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Постановка задачи. Рассматривается задача о вычислении однократного интеграла J(F ) = F (x) dx. ()

Подробнее

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова.

28. Устойчивость решений систем обыкновенных дифференциальных уравнений. Прямой метод Ляпунова. 8 Устойчивость решений систем обыкновенных дифференциальных уравнений Прямой метод Ляпунова ВДНогин 1 о Введение Для того чтобы можно было поставить задачу об устойчивости, необходимо располагать объектом,

Подробнее

Введение. 1. Задача линейного программирования. Основные понятия

Введение. 1. Задача линейного программирования. Основные понятия Введение Данные методические указания адресованы студентам заочной формы обучения всех специальностей, которые будут выполнять контрольную работу т 4 по высшей математике, и охватывают раздел математического

Подробнее

A в системе счисления с основанием p вычисляется

A в системе счисления с основанием p вычисляется Сомножитель Год 20 Задача. Младший разряд некоторого числа в системе счисления с основанием 2 равен. Младший разряд этого же числа в системе счисления с основанием 3 равен 2. Перечислить через пробел в

Подробнее

11. Аксиомы отделимости

11. Аксиомы отделимости 48 11 Аксиомы отделимости Понятие топологического пространства было введено в самом общем виде Рассмотрим ограничения, накладываемые на топологические пространства Определение Говорят, что топологическое

Подробнее

Лекция 7: Векторные пространства

Лекция 7: Векторные пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к изучению линейной алгебры как таковой,

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8.

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8. 01 1. Найдите общее и базисное решения системы уравнений: 16x 10x + 2x = 8, 40x + 25x 5x = 20. Ответ: Если в качестве базисной переменной выбрать x, то общее решение: x = 1 2 + 5 8 x 1 8 x, x, x R; базисное

Подробнее

Лекция 6: Крамеровские системы линейных уравнений

Лекция 6: Крамеровские системы линейных уравнений Лекция 6: Крамеровские системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической

Подробнее

Лекция 12.Байесовский подход

Лекция 12.Байесовский подход Лекция 12.Байесовский подход Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Байесовский подход Санкт-Петербург, 2013 1 / 36 Cодержание Содержание 1 Байесовский подход к статистическому

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

ТЕОРИЯ МАТРИЧНЫХ ИГР. Задачи выбора в условиях неопределенности

ТЕОРИЯ МАТРИЧНЫХ ИГР. Задачи выбора в условиях неопределенности ТЕОРИЯ МАТРИЧНЫХ ИГР Задачи выбора в условиях неопределенности Имеется набор возможных исходов y Y, из которых один окажется совмещенным с выбранной альтернативой, но с какой именно в момент выбора неизвестно,

Подробнее

Б а й е с о в с к а я к л а с с и ф и к а ц и я

Б а й е с о в с к а я к л а с с и ф и к а ц и я МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П.КОРОЛЕВА

Подробнее

О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин

О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин Сибирский математический журнал Январь февраль, 2010. Том 51, 1 УДК 519.233.5+519.654 О СВЯЗИ МЕЖДУ КОЭФФИЦИЕНТАМИ ПРОСТОЙ И МНОЖЕСТВЕННОЙ РЕГРЕССИОННЫХ МОДЕЛЕЙ В. Г. Панов, А. Н. Вараксин Аннотация. Рассмотрена

Подробнее

3. Ряды Числовые ряды

3. Ряды Числовые ряды . Ряды Числовые ряды Определение. Числовым рядом называется выражение вида u u u... u..., где числа u, u, u,... называются членами ряда u называется общим членом ряда. Определение. -ой частичной суммой

Подробнее

С.А. Лавренченко. Доказательство: Повести самостоятельно. Указание: Применить произведения, взяв

С.А. Лавренченко. Доказательство: Повести самостоятельно. Указание: Применить произведения, взяв Лекция 4 1 СА Лавренченко Вычисление пределов 1 Правила вычисления пределов Пусть действительная константа и целое положительное число При условии, что существуют оба предела и, имеют место следующие десять

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ

РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ РЕШЕНИЕ РЕКУРРЕНТНЫХ УРАВНЕНИЙ Обозначим через значение некоторого выражения при подстановке в него целого числа Тогда зависимость члена последовательности от членов последовательности F F со значениями

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

Лекция 14: Линейный оператор

Лекция 14: Линейный оператор Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к рассмотрению функций из векторного

Подробнее

МАТЕМАТИКА ЭЛЕМЕНТЫ ТЕОРИИ ИГР

МАТЕМАТИКА ЭЛЕМЕНТЫ ТЕОРИИ ИГР Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу ЭЛЕМЕНТЫ ТЕОРИИ ИГР К Л Самаров, 009 ООО «Резольвента», 009 ООО «Резольвента»,

Подробнее

ТЕМА 10. Статистическое оценивание Точечные и интервальные оценки параметров распределения

ТЕМА 10. Статистическое оценивание Точечные и интервальные оценки параметров распределения ТЕМА 10. Статистическое оценивание. Цель контента темы 10 изучить практически необходимые методы нахождения точечных и интервальных оценок неизвестных параметров распределения. Задачи контента темы 10:

Подробнее

Лекция 15: Собственные значения и собственные векторы. оператора

Лекция 15: Собственные значения и собственные векторы. оператора Лекция 15: Собственные значения и собственные векторы линейного оператора Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение

Подробнее

Предполагается, что для этих двух операций выполнены аксиомы линейного пространства: 1) x + y = y + x коммутативность операции сложения; 2) (x+y)+z =

Предполагается, что для этих двух операций выполнены аксиомы линейного пространства: 1) x + y = y + x коммутативность операции сложения; 2) (x+y)+z = 2. Общие линейные и евклидовы пространства Говорят, что множество X является линейным пространством над полем вещественных чисел, или просто вещественным линейным пространством, если для любых элементов

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

x a x 18. Вычисление пределов lim, lim, lim.

x a x 18. Вычисление пределов lim, lim, lim. Перечень экзаменационных вопросов: 1 семестр 1. Множества и операции над ними. 2. Декартово произведение множеств. 3. Предельные точки. 4. Предел последовательности. 5. Предел функции. 6. Бесконечно малые.

Подробнее

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Ткачев С.Б. каф. Математического моделирования МГТУ им. Н.Э. Баумана ДИСКРЕТНАЯ МАТЕМАТИКА ИУ5 4 семестр, 2015 г. Лекция 10. АЛГЕБРЫ: ПОЛУКОЛЬЦА Определение 10.1. Полукольцо это алгебра с двумя бинарными

Подробнее

Рабочая программа дисциплины. Теория вероятностей, математическая статистика и случайные процессы

Рабочая программа дисциплины. Теория вероятностей, математическая статистика и случайные процессы МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Саратовский государственный университет имени Н.Г.Чернышевского Факультет компьютерных наук и информационных технологий УТВЕРЖДАЮ 20 г. Рабочая программа

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

АСИМПТОТИЧЕСКИ ОПТИМАЛЬНОЕ ОЦЕНИВАНИЕ В ЗАДАЧЕ ЛИНЕЙНОЙ РЕГРЕССИИ СО СЛУЧАЙНЫМИ ОШИБКАМИ В КОЭФФИЦИЕНТАХ Ю. Ю. Линке, А. И.

АСИМПТОТИЧЕСКИ ОПТИМАЛЬНОЕ ОЦЕНИВАНИЕ В ЗАДАЧЕ ЛИНЕЙНОЙ РЕГРЕССИИ СО СЛУЧАЙНЫМИ ОШИБКАМИ В КОЭФФИЦИЕНТАХ Ю. Ю. Линке, А. И. Сибирский математический журнал Январь февраль, 010. Том 51, 1 УДК 519.33.5 АСИМПТОТИЧЕСКИ ОПТИМАЛЬНОЕ ОЦЕНИВАНИЕ В ЗАДАЧЕ ЛИНЕЙНОЙ РЕГРЕССИИ СО СЛУЧАЙНЫМИ ОШИБКАМИ В КОЭФФИЦИЕНТАХ Ю. Ю. Линке, А. И. Саханенко

Подробнее

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье.

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье. Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда..4. Равенство Парсеваля Пусть система вещественных функций g( ), g( ),..., g ( ),... ортогональна и

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ ПРОГРАММА И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ ЭЛЕМЕНТЫ

Подробнее

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва. 2013 гг.

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. А.В. Колесников Вариационное исчисление Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Необходимые и достаточные условия второго порядка в простейшей вариационной задаче Необходимые

Подробнее

Лекция апреля 2009

Лекция апреля 2009 Действительный анализ. Лекция 10. 15 апреля 009 1 Действительный анализ. IV семестр. 009 год. Лектор Скворцов В. А. Об ошибках писать на july.tih@gmil.com Лекция 10 15 апреля 009 Продолжим доказательство

Подробнее

Методические указания к решению "простейшей задачи" вариационного исчисления. А.В. Ожегова, Р.Г. Насибуллин

Методические указания к решению простейшей задачи вариационного исчисления. А.В. Ожегова, Р.Г. Насибуллин Методические указания к решению "простейшей задачи" вариационного исчисления А.В. Ожегова, Р.Г. Насибуллин Казань, 2013 УДК 519.6, 517.97 ББК Печатается по решению методической комиссии Института математики

Подробнее

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа ВВ Колыбасова, НЧ Крутицкая В В Колыбасова, Н Ч Крутицкая Достаточные условия существования решения задачи об условном

Подробнее

Министерство образования и науки Российской Федерации. Факультет радиоэлектроники и информатики

Министерство образования и науки Российской Федерации. Факультет радиоэлектроники и информатики Министерство образования и науки Российской Федерации РЫБИНСКАЯ ГОСУДАРСТВЕННАЯ АВИАЦИОННАЯ ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ ИМЕНИ П.А. СОЛОВЬЕВА Факультет радиоэлектроники и информатики Кафедра «МПО ЭВС» «УТВЕРЖДАЮ»

Подробнее

Тема 2-1: Линейные пространства

Тема 2-1: Линейные пространства Тема 2-1: Линейные пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

Лекция 17: Евклидово пространство

Лекция 17: Евклидово пространство Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания При решении многих задач возникает необходимость иметь числовые

Подробнее

Д. П. Ветров 1 Д. А. Кропотов 2

Д. П. Ветров 1 Д. А. Кропотов 2 решение Лекция 8. Д. П. Ветров 1 Д. А. 2 1 МГУ, ВМиК, каф. ММП 2 ВЦ РАН Спецкурс «Байесовские методы машинного обучения» План лекции решение 1 Дифференцирование матриц Задача оптимального распределения

Подробнее

А.В. КРЯНЕВ, Г.В. ЛУКИН МЕТРИЧЕСКИЙ АНАЛИЗ И ОБРАБОТКА ДАННЫХ

А.В. КРЯНЕВ, Г.В. ЛУКИН МЕТРИЧЕСКИЙ АНАЛИЗ И ОБРАБОТКА ДАННЫХ А.В. КРЯНЕВ, Г.В. ЛУКИН МЕТРИЧЕСКИЙ АНАЛИЗ И ОБРАБОТКА ДАННЫХ Рекомендовано УМО в области ядерные физика и технологии в качестве учебного пособия МОСКВА ФИЗМАТЛИТ 2010 УДК 519.2+6 ББК 22.17, 22.19 К85

Подробнее

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы.

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы. ЛАБОРАТОРНАЯ РАБОТА 6 ПРЕОБРАЗОВАНИЕ ФУРЬЕ I О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение Преобразованием Фурье функции из L называется функция определяемая равенством d Оператор F : называется

Подробнее

Используя так называемую таблицу эквивалентностей, а, по сути, линейный член разложения функций в ряд Маклорена и свойства функции arctg, получаем

Используя так называемую таблицу эквивалентностей, а, по сути, линейный член разложения функций в ряд Маклорена и свойства функции arctg, получаем ) Вычислите предел lim ln( arcsin tg( ) Обозначим L = lim ) arctg tg( ) ln( arcsin ) arctg Используя так называемую таблицу эквивалентностей, а, по сути, линейный член разложения функций в ряд Маклорена

Подробнее

Оценивание скорости убывания экспоненциального хвоста распределения

Оценивание скорости убывания экспоненциального хвоста распределения Информационные процессы, Том 9, 3, 2009, стр. 210 215. c 2009 Давиденко. МАТЕМАТИЧЕСКИЕ МОДЕЛИ, ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ Оценивание скорости убывания экспоненциального хвоста распределения М.Г. Давиденко

Подробнее

1. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы

1. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы ЛАБОРАТОРНАЯ РАБОТА СПЕКТР ОПЕРАТОРА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Пусть : ограниченный линейный оператор в банаховом пространстве над полем. C. Определение. Точка C называется регулярной

Подробнее

А. С. Конушин 1 Д. П. Ветров 2 Д. А. Кропотов 3 В. С. Конушин 1 О. В. Баринова 1. Спецкурс «Структурные методы анализа изображений и сигналов»

А. С. Конушин 1 Д. П. Ветров 2 Д. А. Кропотов 3 В. С. Конушин 1 О. В. Баринова 1. Спецкурс «Структурные методы анализа изображений и сигналов» . Метод (PCA) метод. А. С. Конушин 1 Д. П. Ветров 2 3 В. С. Конушин 1 О. В. Баринова 1 1 МГУ, ВМиК, лаб. КГ 2 МГУ, ВМиК, каф. ММП 3 ВЦ РАН Спецкурс «Структурные методы анализа изображений и сигналов» План

Подробнее

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

МАТЕМАТИКА МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ООО «Резольвента», www.resolventa.ru, resolventa@lst.ru, (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук, профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

рассуждений Д. П. Ветров 1 Курс «Математические методы прогнозирования» Лекция 4. Байесовский подход к теории вероятностей. Примеры байесовских

рассуждений Д. П. Ветров 1 Курс «Математические методы прогнозирования» Лекция 4. Байесовский подход к теории вероятностей. Примеры байесовских к. к. Д. П. Ветров 1 1 МГУ, ВМиК, каф. ММП Курс «Математические методы прогнозирования» План лекции к. 1 Sum- и Product- rule Формула Байеса 2 Частотный 3 Связь между байесовским ом и булевой логикой Пример

Подробнее

Лекция 2. Степенные ряды

Лекция 2. Степенные ряды С А Лавренченко wwwlwreekoru Лекция Степенные ряды Понятие степенного ряда Степенной ряд можно рассматривать как многочлен с бесконечным числом членов Определение (степенного ряда) Степенным рядом называется

Подробнее

1. Устойчивые решения ОДУ. Устойчивые многочлены

1. Устойчивые решения ОДУ. Устойчивые многочлены Глава III. Теория устойчивости 1. Устойчивые решения ОДУ. Устойчивые многочлены III.1.1. Устойчивые решения линейных ОДУ Существенную роль в исследовании различных процессов, поведение которых описывается

Подробнее

Применение алгоритмов неконтролируемой классификации при обработке данных ДЗЗ

Применение алгоритмов неконтролируемой классификации при обработке данных ДЗЗ Применение алгоритмов неконтролируемой классификации при обработке данных ДЗЗ И.А. Зубков, В.О. Скрипачев ФГУП «Научный центр космических информационных систем и технологий наблюдения» Москва E-mail: zubkov@cpi.space.ru

Подробнее

Основания статистической механики и квантовая запутанность

Основания статистической механики и квантовая запутанность Основания статистической механики и квантовая запутанность О. В. Лычковский Институт Теоретической и Экспериментальной Физики 13 мая 2010 г. О. В. Лычковский (ИТЭФ) Основания статистической механики 13

Подробнее

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ О В Афонасенков Т А Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ И ИНТЕГРАЛ ФУРЬЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

«Теория вероятностей и математическая статистика»

«Теория вероятностей и математическая статистика» Московский государственный университет имени М.В. Ломоносова МОСКОВСКАЯ ШКОЛА ЭКОНОМИКИ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Теория вероятностей и математическая статистика» Шифр дисциплины Для направления 080100

Подробнее

ТЕСТЫ. Математика. Варианты, решения и ответы

ТЕСТЫ. Математика. Варианты, решения и ответы Министерство образования и науки Российской Федерации Федеральное агентство по образованию Алтайский государственный технический университет им. И. И. Ползунова Е. В. Мартынова, И. П. Мурзина, Т. М. Степанюк,

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Т А Матвеева В Б Светличная С А Зотова ТЕОРИЯ ВЕРОЯТНОСТЕЙ: СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН И ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

Использование ресурсов Интернета для построения таксономии

Использование ресурсов Интернета для построения таксономии Использование ресурсов Интернета для построения таксономии Екатерина.Черняк, Борис Миркин Отделение Прикладной Математики и Информатики Национальный Исследовательский Университет Высшая Школа Экономики

Подробнее

ТЕОРИЯ ИГР ТЕОРИЯ ИГР И.В. ПИВОВАРОВА. Пивоварова Ирина Викторовна. Министерство образования и науки Российской Федерации

ТЕОРИЯ ИГР ТЕОРИЯ ИГР И.В. ПИВОВАРОВА. Пивоварова Ирина Викторовна. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Владивостокский государственный университет экономики и сервиса Учебное издание Пивоварова Ирина Викторовна ТЕОРИЯ ИГР Практикум ИВ ПИВОВАРОВА ТЕОРИЯ

Подробнее

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки Теория напряженного состояния Понятие о тензоре напряжений, главные напряжения Линейное, плоское и объемное напряженное состояние Определение напряжений при линейном и плоском напряженном состоянии Решения

Подробнее

Теория вероятностей и математическая статистика

Теория вероятностей и математическая статистика САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Б.И. Положинцев Теория вероятностей и математическая статистика Введение в математическую статистику Санкт-Петербург Издательство СПбГПУ

Подробнее

+ z A1A 2. z A1A 4 A 1 A 2 A 1 A = 9

+ z A1A 2. z A1A 4 A 1 A 2 A 1 A = 9 Математика. Задание 1. По координатам вершин пирамиды A 1 A A 3 A 4 найти: 1. Длины рјбер A 1 A и A 1 A 3 ;. Угол между рјбрами A 1 A и A 1 A 3 ; 3. площадь грани A 1 A A 3 ; 4. объјм пирамиды; 5. уравнения

Подробнее

Министерство образования Республики Беларусь. Учреждение образования Гомельский государственный университет имени Франциска Скорины

Министерство образования Республики Беларусь. Учреждение образования Гомельский государственный университет имени Франциска Скорины Министерство образования Республики Беларусь Учреждение образования Гомельский государственный университет имени Франциска Скорины А. В. БУЗЛАНОВ, С. Ф. КАМОРНИКОВ, В. С. МОНАХОВ АЛГЕБРА И ТЕОРИЯ ЧИСЕЛ.

Подробнее

ОБ ЭФФЕКТИВНОСТИ ВЫЯВЛЕНИЯ МАРКОВСКОЙ ЗАВИСИМОСТИ С ИСПОЛЬЗОВАНИЕМ УНИВЕРСАЛЬНЫХ ПРЕДИКТОРОВ. Костевич А.Л., Шилкин А.В.

ОБ ЭФФЕКТИВНОСТИ ВЫЯВЛЕНИЯ МАРКОВСКОЙ ЗАВИСИМОСТИ С ИСПОЛЬЗОВАНИЕМ УНИВЕРСАЛЬНЫХ ПРЕДИКТОРОВ. Костевич А.Л., Шилкин А.В. 364 Труды XXXIX Молодежной школы-конференции ОБ ЭФФЕКТИВНОСТИ ВЫЯВЛЕНИЯ МАРКОВСКОЙ ЗАВИСИМОСТИ С ИСПОЛЬЗОВАНИЕМ УНИВЕРСАЛЬНЫХ ПРЕДИКТОРОВ Костевич А.Л., Шилкин А.В. e-mail: kostevich@bsu.by Рассмотрим

Подробнее

Алгоритм решения систем линейных уравнений в кольцах вычетов

Алгоритм решения систем линейных уравнений в кольцах вычетов Авдошин С.М., Савельева А.А. Алгоритм решения систем линейных уравнений в кольцах вычетов Разработан эффективный алгоритм решения систем линейных уравнений в кольцах вычетов [], эквивалентный по сложности

Подробнее

Лекция 10: Умножение матриц

Лекция 10: Умножение матриц Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции вводится операция умножения матриц, изучаются

Подробнее

u ik λ k v kj + c ij, (1) u 2 ik =

u ik λ k v kj + c ij, (1) u 2 ik = В. В. Стрижов. «Информационное моделирование». Конспект лекций. Сингулярное разложение Сингулярное разложение (Singular Values Decomposition, SVD) является удобным методом при работе с матрицами. Cингулярное

Подробнее