Оценивание сходства пользователей и ресурсов путем выявления скрытых тематических профилей.

Размер: px
Начинать показ со страницы:

Download "Оценивание сходства пользователей и ресурсов путем выявления скрытых тематических профилей."

Транскрипт

1 Анализ Клиентских Сред Оценивание сходства пользователей и ресурсов путем выявления скрытых тематических профилей Постановка задачи Исходными данными являются протоколы действий пользователей Каждая запись протокола описывает событие «пользователь выбрал ресурс» В зависимости от конкретной задачи (предметной области запись может содержать следующую информацию: идентификатор пользователя название ресурса тип время начала и продолжительность действия и тд Например действием может быть посещение страницы выбор товара или услуги в интернет-магазине проставление рейтинга просмотренного фильма и т д Введем некоторые понятия необходимые для формальной постановки задачи Пусть есть R множество ресурсов U множество пользователей Задан протокол пользования D ( i i i l То есть множество событий типа пользователь U использовал ресурс R l число записей в протоколе По нему строится матрица пользования U R В зависимости от конкретной задачи A могут нести различную информацию о пользовательском поведении Это может быть бинарная информация о посещении или не посещении заданного ресурса данным пользователем частота (или число пользований ресурса пользователем стоимость или рейтинг проставленный пользователем для ресурса и тд Матрица A U R чаще всего бывает сильно разреженной (далеко не все пользователи используют все ресурсы и наоборот далеко не всеми ресурсами пользуются все пользователи Поэтому множество посещений нам часто удобнее хранить не в виде громоздкой матрицы а в виде набора непустых ее элементов: D A {( A > 0} Dи D множества непустых элементов в матрице посещений при фиксированном и при фиксированном соответственно Задача заключается в том чтобы по имеющимся данным построить функции сходства (метрики на множестве пользователей ρ :U U U R+ и на множестве ресурсов ρ R : R R R+ таким образом чтобы близкими по метрике ρ U были пользователи которые пользуются схожими ресурсами и близкими по метрике ρ R были ресурсы которыми пользуются схожие клиенты A В данной работе рассматривается подход при котором сначала по исходным данным вычисляются векторные описания ресурсов и пользователей называемые в работе профилями Затем функции сходства определяются как евклидовы метрики над профилями Причем компоненты профилей интерпретируются как тематики которыми могут интересоваться пользователи и которые могут удовлетворять (в той или иной степени ресурсы Пусть T множество тем в профиле

2 Тематический профиль ресурса и пользователя запишем следующим образом: P ( T P ( Подчеркнем что природа профилей пользователей и ресурсов одинакова поэтому зная профили для всех ресурсов и пользователей мы можем оценить расстояния (например как среднеквадратичное отклонение как от ресурса до ресурса и от пользователя до пользователя так и от пользователя до ресурса: ' ( ' ρ ( ' ρ( P P R Аналогично ρ ( ' ρ( P P и U ' ( ' ρ ( ρ( P P ( Вероятностная постановка задачи Допустим что у каждого пользователя U имеется некоторое множество интересов или потребностей которые мы будем называть темами Множество всех возможных тем обозначим через T Допустим пользователь имеет интерес T с вероятностью ( В свою очередь каждый ресурс соответствуем некоторому множеству тем Допустим ресурс удовлетворяет теме с вероятностью ( Профиль пользователя определим как вектор значений вероятностей ( T причем ( Аналогично профиль ресурса это вектор вероятностей ( T причем ( Обозначим через ( вероятность выбора ресурса пользователем Метод восстановления профилей предлагаемый в данной работе опирается на EMалгоритм разделения смеси распределений Коллаборативная фильтрация на основе EM-алгоритма Распишем вероятность выбора ресурса пользователем : ( ( ( ( где ( априорная вероятность того что выбор будет сделан U пользователем ;

3 ( для всех U вероятность того что пользователь в данный момент интересуется темой ; ( ( апостериорная вероятность того что будет выбран ресурс при условии что выбор делает пользователь интересующийся темой Таким образом вероятность ( будем записывать как сумму произведений этих трех вероятностей по всем темам Апостериорную вероятность ( найдем по формуле Байеса: ( R Подставим это выражение в формулу для ( : ( (4 R Приведенные выше формулы аналогичным образом можно записать относительно ресурсов: ( ( ( ( где ( значения априорной вероятности выбора ресурса ; ( вероятность того что ресурсу соответствует тема ; ( ( апостериорная вероятность того что пользователь интересуется темой зайдя на ресурс Здесь и в предыдущем случае мы опираемся на гипотезу независимости посещения пользователем различных ресурсов и считаем что ( не зависит от Таким образом мы можем записать формулу для вероятности ( через профили ресурсов: ( (5 R Воспользуемся принципом максимума правдоподобия для выборки посещений l ( i i i : D ln l i ( i i max Основная идея алгоритма восстановления профилей заключается в последовательном чередовании двух действий: оптимизировать при фиксированном оптимизировать при фиксированном и (6 по выборке D 3

4 и так далее в итерациях пока не будет достигнута сходимость Рассмотрим задачу максимума правдоподобия (МП для формулы (4 Запишем Лагранжиан: L( ln ( λ ( D T При ограничениях: U ; 0 T U T Продифференцируем по и прировняем к нулю: L D max ( λ 0 Здесь мы умножили и разделили на ( Введем обозначение для так называемых скрытых компонент: ( ( (7 ( и заметим что это выражение есть ни что иное как формула Байеса Можно дать вероятностную интерпретацию данных компонент следующим образом: вероятность того что пользователь зайдя на ресурс интересовался темой Тогда ( Далее разнесем два члена уравнения в разные части равенства помножим обе части на и просуммируем по : ( λ T D ( T Учитывая что и D R получаем: D λ следовательно λ R Таким образом получаем D D ( Идея заключается в том чтобы последовательно вычислять скрытые компоненты ( при заданном по формуле (7 а затем вычислять при заданном ( и так 4

5 далее в итерациях пока не будет достигнута сходимость (значения будут меняться мало Найдем начальное приближение для ( для этого выпишем еще раз выражение для скрытых компонент: xx x T ( x T Пусть начальное приближение для x x ( ( где ( ( ' R равномерное ' ' тогда: T Показанным выше способом мы можем оптимизировать при фиксированном Совершенно аналогичным способом можно решить задачу максимума правдоподобия (6 для формулы (5 Тогда мы сможем решить обратную задачу: оптимизировать при фиксированном Теперь можно выписать алгоритм Описание алгоритма Вход: Выход: Алгоритм: U число пользователей; R число ресурсов; T число тем в профиле; D l ( i i i выборка посещений (из нее получается матрица посещений A U R ; профили пользователей; профили ресурсов; : построить списки Dи Dнепустых значений в матрице A : задать случайное начальное приближение для такое что 3: вычислить для каждого ресурса 4: повторять D и R D средние значения для каждого пользователя и U 5

6 I Оптимизируем при фиксированном : 5: для всех T 6: вычислить суммы S 7: для всех R 8: вычислить 9: вычислить 0: повторять : для всех U T : вычислить 3: для всех U R ' R ' ( S ' ( ( (не зависит от ( D D ( 4: вычислить суммы S ( 5: для всех T 6: вычислить 7: пока не сойдется II Оптимизируем при фиксированном 8: для всех T ( : 9: вычислить суммы S 0: для всех U : вычислить : вычислить 3: повторять ' U ( * 4: для всех R T ( ( S ' S ' ( ( 6

7 3: вычислить 5: для всех U R D * D ( 6: вычислить суммы S ( 7: для всех T 8: вычислить 9: пока не сойдется 30: пока не сойдется * ( ( S 7

8 Задачи Оптимизировать алгоритм разреженное хранение матриц и скрытых компонент добиться высокой скорости обработки данных функционал качества считать по профилям а не по метрике оптимизировать параметры алгоритма на реальных и на модельных данных: число внутренних внешних итераций количество тем Исследовать расходимость алгоритма профили известны куда уйдет алгоритм? какого размера должны быть выборки и профили чтобы не уходил? нужно ли накладывать ограничения типа некоррелированности профилей? Очевидно что если тематики пересекаются по сайтам то посещения будут размытыми но если есть жесткая кластеризация: некоторые группы пользователей посещают только некоторые группы сайтов то в профилях должны получаться чисто нулевые компоненты То есть если ко-кластерная структура существует в данных то алгоритм ее выявит Доказать теорему: Пусть U U U U n R R R R m Пользователи из группы U i посещают только ресурсы из группы Тогда в профиле ненулевыми могут оказаться только компоненты соответствующие «своей тематике» Робастные алгоритмы Игнорируют малые пересечения между тематиками и все равно выдают нулевые компоненты профилей Рассмотреть эвристику: «занулять незначительные компоненты профилей на каждой итерации» Выбирать порог значимости Разреженность матрицы расстояний Найти окрестность ближайших соседей для каждого ресурса Все дальнейшие анализы проводить только для этой окрестности Если профили не пересекаются то эти ресурсы считать «бесконечно далекими» и эту пару вообще нигде не учитывать R j 8

9 Исследовать теоретически сходимость алгоритма Построить теоретические оценки для количества внутренних и внешних итераций Иерархические профили Можно будет существенно оптимизировать работу алгоритма если учитывать иерархию тем в профиле Написать статьи Предполагается как минимум статьи Первая с более подробным описанием практических результатов а вторая более глубокая с уклоном на теоретические результаты 9

Технология персонализации на основе выявления тематических профилей пользователей и ресурсов Интернет

Технология персонализации на основе выявления тематических профилей пользователей и ресурсов Интернет МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ государственный университет ФАКУЛЬТЕТ УПРАВЛЕНИЯ И ПРИКЛАДНОЙ МАТЕМАТИКИ ВЫЧИСЛИТЕЛЬНЫЙ ЦЕНТР ИМ А А ДОРОДНИЦЫНА

Подробнее

Д. П. Ветров 1. Курс «Графические модели» ЕМ-алгоритм. Обучение скрытых. марковских моделей без учителя. Ветров. ЕМ-алгоритм в общем виде

Д. П. Ветров 1. Курс «Графические модели» ЕМ-алгоритм. Обучение скрытых. марковских моделей без учителя. Ветров. ЕМ-алгоритм в общем виде Д. П. 1 1 МГУ, ВМиК, каф. ММП Курс «Графические модели» План лекции 1 2 3 4 5 6 EM-алгоритм. Разложение логарифма Требуется найти максимум в вероятностной модели со скрытыми переменными: p(x Θ) = p(x,

Подробнее

Итерационные методы решения СЛАУ.

Итерационные методы решения СЛАУ. 4 Итерационные методы решения СЛАУ Метод простых итераций При большом числе уравнений прямые методы решения СЛАУ (за исключением метода прогонки) становятся труднореализуемыми на ЭВМ прежде всего из-за

Подробнее

Д. П. Ветров 1. Курс «Графические модели», 2012г. Лекция 3. Скрытые марковские модели. Ветров. Ликбез. Основы применения СММ.

Д. П. Ветров 1. Курс «Графические модели», 2012г. Лекция 3. Скрытые марковские модели. Ветров. Ликбез. Основы применения СММ. Д. П. 1 1 МГУ, ВМиК, каф. ММП Курс «Графические модели», 2012г. План 1 Метод динамического программирования 2 Определение Обучение с учителем Алгоритм Витерби 3 Графические модели с неполными данными Разделение

Подробнее

1. Численные методы решения уравнений

1. Численные методы решения уравнений 1. Численные методы решения уравнений 1. Системы линейных уравнений. 1.1. Прямые методы. 1.2. Итерационные методы. 2. Нелинейные уравнения. 2.1. Уравнения с одним неизвестным. 2.2. Системы уравнений. 1.

Подробнее

Информационный поиск Архитектура поисковых систем PageRank. Юрий Лифшиц. Осень 2006

Информационный поиск Архитектура поисковых систем PageRank. Юрий Лифшиц. Осень 2006 Информационный поиск Архитектура поисковых систем PageRank Лекция N 3 курса Алгоритмы для Интернета Юрий Лифшиц ПОМИ РАН - СПбГУ ИТМО Осень 2006 1 / 29 Авторы алгоритмов ссылочной популярности В ноябре

Подробнее

Лекция 4. Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ. Лектор Сенько Олег Валентинович

Лекция 4. Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ. Лектор Сенько Олег Валентинович Лекция 4 Статистические методы распознавания, Распознавание при заданной точности для некоторых классов, ROC-анализ Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й

Подробнее

Численное решение нелинейных уравнений

Численное решение нелинейных уравнений Постановка задачи Метод половинного деления Метод хорд (метод пропорциональных частей 4 Метод Ньютона (метод касательных 5 Метод итераций (метод последовательных приближений Постановка задачи Пусть дано

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

ВЕРОЯТНОСТНЫЕ МОДЕЛИ В АНАЛИЗЕ КЛИЕНТСКИХ СРЕД

ВЕРОЯТНОСТНЫЕ МОДЕЛИ В АНАЛИЗЕ КЛИЕНТСКИХ СРЕД На правах рукописи ЛЕКСИН ВАСИЛИЙ АЛЕКСЕЕВИЧ ВЕРОЯТНОСТНЫЕ МОДЕЛИ В АНАЛИЗЕ КЛИЕНТСКИХ СРЕД 01.01.09 Дискретная математика и математическая кибернетика Автореферат диссертации на соискание ученой степени

Подробнее

Ax = b, (1) x 0. a s1 x s 1. 0 ) = b и A( x + x s j

Ax = b, (1) x 0. a s1 x s 1. 0 ) = b и A( x + x s j Симплекс метод Рассмотрим следующую задачу линейного программирования: Задача 1. max(c, x), Ax = b, (1) x Здесь линейный оператор A действует из R n в R m, c R n, b R m. Считаем что m < n, и ранг матрицы

Подробнее

Линейная регрессия: метод наименьших квадратов

Линейная регрессия: метод наименьших квадратов Линейная регрессия: метод наименьших квадратов Академический Университет, 2012 Outline Наименьшие квадраты и ближайшие соседи Метод наименьших квадратов Метод ближайших соседей 1 Наименьшие квадраты и

Подробнее

Д. П. Ветров 1. Спецкурс «Графические модели» Лекция 5. Обучение без учителя. скрытых марковских моделей и. линейных динамических систем.

Д. П. Ветров 1. Спецкурс «Графические модели» Лекция 5. Обучение без учителя. скрытых марковских моделей и. линейных динамических систем. для Д. П. 1 1 МГУ, ВМиК, каф. ММП Спецкурс «Графические модели» Скрытая Марковская модель () для Скрытая Марковская модель [первого порядка] это вероятностная модель последовательности, которая Состоит

Подробнее

А. П. ИВАНОВ АППРОКСИМАЦИЯ ФУНКЦИЙ

А. П. ИВАНОВ АППРОКСИМАЦИЯ ФУНКЦИЙ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ АППРОКСИМАЦИЯ ФУНКЦИЙ Методические указания Санкт-Петербург 2013 1. Линейная задача метода

Подробнее

Лекция 2. Статистики первого типа. Точеченые оценки и их свойства

Лекция 2. Статистики первого типа. Точеченые оценки и их свойства Лекция 2. Статистики первого типа. Точеченые оценки и их свойства Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 2. Статистики первого типа. Точеченые Санкт-Петербург,

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

16. Формула Тейлора (продолжение)

16. Формула Тейлора (продолжение) 6. Формула Тейлора (продолжение Докажем единственность представления из теоремы 5.7. Предложение 6.. Пусть f : (p; q R функция класса C n, и пусть a (p; q. Предположим, что f(x = c 0 + c (x a + : : : +

Подробнее

Уравнение прямой в пространстве

Уравнение прямой в пространстве Уравнение прямой в пространстве 1 Прямая как пересечение двух плоскостей. Система двух линейных уравнений с тремя неизвестными. Прямую в пространстве можно задать как пересечение двух плоскостей. Пусть

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

Семинары по байесовским методам

Семинары по байесовским методам Семинары по байесовским методам Евгений Соколов sokolov.evg@gmail.com 5 декабря 2014 г. 2 Нормальный дискриминантный анализ Нормальный дискриминантный анализ это частный случай байесовской классификации,

Подробнее

ЗАНЯТИЕ 1 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. Отделение корней

ЗАНЯТИЕ 1 ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. Отделение корней ЗАНЯТИЕ ПРИБЛИЖЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Отделение корней Пусть дано уравнение f () 0, () где функция f ( ) C[ a; Определение Число называется корнем уравнения () или нулем функции f (), если

Подробнее

1 Элеметарная теория погрешностей. 2

1 Элеметарная теория погрешностей. 2 Содержание Элеметарная теория погрешностей. Решение СЛАУ. 4. Нормы в конечномерных пространствах... 4. Обусловленность СЛАУ............ 5.3 Итерационные методы решения линейных систем......................

Подробнее

ВЫЯВЛЕНИЕ И ВИЗУАЛИЗАЦИЯ МЕТРИЧЕСКИХ СТРУКТУР НА МНОЖЕСТВАХ ПОЛЬЗОВАТЕЛЕЙ И РЕСУРСОВ ИНТЕРНЕТ

ВЫЯВЛЕНИЕ И ВИЗУАЛИЗАЦИЯ МЕТРИЧЕСКИХ СТРУКТУР НА МНОЖЕСТВАХ ПОЛЬЗОВАТЕЛЕЙ И РЕСУРСОВ ИНТЕРНЕТ УДК 519.237 К. В. Воронцов, К. В. Рудаков, В. А. Лексин, А. Н. Ефимов Вычислительный центр РАН, г. Москва, Россия voron@ccas.ru ВЫЯВЛЕНИЕ И ВИЗУАЛИЗАЦИЯ МЕТРИЧЕСКИХ СТРУКТУР НА МНОЖЕСТВАХ ПОЛЬЗОВАТЕЛЕЙ

Подробнее

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Методические

Подробнее

Голосование в стохастической среде: случай двух групп

Голосование в стохастической среде: случай двух групп Голосование в стохастической среде: случай двух групп П.Ю. Чеботарев, А.К. Логинов, Я.Ю. Цодикова, З.М. Лезина, В.И. Борзенко Институт проблем управления им. В.А.Трапезникова РАН pchv@rambler.ru. Введение

Подробнее

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ

Линейная алгебра. Лекция 13. ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейная алгебра Лекция 3 ЛИНЕЙНЫЕ ОТОБРАЖЕНИЯ Линейное (векторное) пространство Определение Множество элементов произвольной природы X называется линейным (или векторным) пространством если для любых

Подробнее

1. Найти прямую l, с наименьшей суммой расстояний до этих точек, т.е. такую, что

1. Найти прямую l, с наименьшей суммой расстояний до этих точек, т.е. такую, что Математика. О некоторых экстремальных прямых Ипатова Виктория физико-математический класс ГБОУ «Химический лицей» город Москва Научный руководитель: Привалов Александр Андреевич МПГУ доцент к.ф.-м.н. Пусть

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

Какими средствами наиболее удобно пользоваться при прогнозировании страховых взносов В.В. Колмыков Мордовский государственный университет имени

Какими средствами наиболее удобно пользоваться при прогнозировании страховых взносов В.В. Колмыков Мордовский государственный университет имени Какими средствами наиболее удобно пользоваться при прогнозировании страховых взносов В.В. Колмыков Мордовский государственный университет имени Н.П.Огарева e-mal: v.v_@b.ru В данной статье мне бы хотелось

Подробнее

системы линейных уравнений Б.М.Верников Лекция 3: Однородные и неоднородные системы

системы линейных уравнений Б.М.Верников Лекция 3: Однородные и неоднородные системы Лекция 3: Однородные и неоднородные системы линейных уравнений Система линейных уравнений Определение Линейным уравнением (или уравнением первого порядка) с n неизвестными x 1, x 2,..., x n называется

Подробнее

Статистическая радиофизика и теория информации

Статистическая радиофизика и теория информации Статистическая радиофизика и теория информации. Введение Радиофизика как наука изучает физические явления существенные для радиосвязи, излучения и распространения радиоволн, приема радиосигналов. Предметом

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

1.3. Распределение молекул газа в сосуде.

1.3. Распределение молекул газа в сосуде. .3. Распределение молекул газа в сосуде..3.. Распределение молекул между двумя половинками сосуда. Применим элементы теории вероятности для описания поведения одноатомного газа в сосуде. Рассмотрим распределение

Подробнее

2. Метрические пространства

2. Метрические пространства 2 2. Метрические пространства Одним из часто встречающихся в математике понятий является понятие расстояния. Оно используется в аналитической геометрии при изучении свойств геометрических объектов в евклидовых

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

Вектор-момент силы относительно точки

Вектор-момент силы относительно точки Вектор-момент силы относительно точки m o (F) Вектор-моментом силы F относительно точки называется m o (F) = r F Как известно, результат векторного произведения векторов перпендикулярен каж- F r дому из

Подробнее

5. Элементы теории матричных игр

5. Элементы теории матричных игр 5 Элементы теории матричных игр a m В теории игр исследуются модели и методы принятия решений в конфликтных ситуациях В рамках теории игр рассматриваются парные игры (с двумя сторонами) или игры многих

Подробнее

Обзор алгоритмов машинного обучения. Воронов Александр Video Group CS MSU Graphics & Media Lab

Обзор алгоритмов машинного обучения. Воронов Александр Video Group CS MSU Graphics & Media Lab Обзор алгоритмов машинного обучения Воронов Александр Vdeo Group CS MSU Graphcs & Meda Lab On for Maxus Содержание Введение Дерево решений Статистические алгоритмы Метрические алгоритмы SVM AdaBoost CS

Подробнее

Оценивание моделей. Метод максимального правдоподобия

Оценивание моделей. Метод максимального правдоподобия Оценивание моделей дискретного выбора Метод максимального правдоподобия План лекции. Метод максимального правдоподобия. Свойства оценок ММП 3. Пример оценки ММП для классической линейной регрессии 4. Модели

Подробнее

Методы решения сеточных уравнений

Методы решения сеточных уравнений Методы решения сеточных уравнений 1 Прямые и итерационные методы В результате разностной аппроксимации краевых задач математической физики получаются СЛАУ, матрицы которых обладают следующими свойствами:

Подробнее

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости

Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Регрессионный анализ Функциональная статистическая и корреляционная зависимости Во многих прикладных (в том числе экономических) задачах

Подробнее

Вероятностные тематические модели

Вероятностные тематические модели Вероятностные тематические модели Докладчик: Андрей Гомзин (528 гр.) Руководители: А. Коршунов, И. Белобородов 4 декабря 2012 г. Андрей Гомзин (528 гр.) Вероятностные тематические модели 4 декабря 2012

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Машинное обучение (Machine Learning)

Машинное обучение (Machine Learning) Машинное обучение (Machine Learning) Уткин Л.В. Содержание 1 Наивный байесовский классификатор 2 1 Метод k ближайших соседей 2 Метод окна Парзена 3 Метод потенциальных функций Презентация является компиляцией

Подробнее

1 Экспонента линейного оператора.

1 Экспонента линейного оператора. 134 1. ЭКСПОНЕНТА ЛИНЕЙНОГО ОПЕРАТОРА. 1 Экспонента линейного оператора. 1.1 Напоминание: геометрическая формулировка основной задачи ОДУ. Напомним, что векторное поле это отображение, которое каждой точке

Подробнее

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг.

А.В. Колесников. Вариационное исчисление. Высшая Школа Экономики. Математический факультет. Москва гг. А.В. Колесников Вариационное исчисление Высшая Школа Экономики. Математический факультет. Москва. 2013 гг. Некоторые специальные экстремальные задачи Дискретная транспортная задача (задача Монжа-Канторовича)

Подробнее

Лекция 3. Лемма Неймана-Пирсона. Две гипотезы: нулевая простая, альтернативная сложная. Последовательный критерий Вальда

Лекция 3. Лемма Неймана-Пирсона. Две гипотезы: нулевая простая, альтернативная сложная. Последовательный критерий Вальда Лекция 3. Лемма Неймана-Пирсона. Две гипотезы: нулевая простая, альтернативная сложная. Последовательный критерий Вальда Грауэр Л.В., Архипова О.А. CS center Санкт-Петербург, 2014 Грауэр Л.В., Архипова

Подробнее

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

A в системе счисления с основанием p вычисляется

A в системе счисления с основанием p вычисляется Сомножитель Год 20 Задача. Младший разряд некоторого числа в системе счисления с основанием 2 равен. Младший разряд этого же числа в системе счисления с основанием 3 равен 2. Перечислить через пробел в

Подробнее

Лекция 31 Глава 3. Аналитическая геометрия в пространстве

Лекция 31 Глава 3. Аналитическая геометрия в пространстве Лекция Глава Аналитическая геометрия в пространстве Плоскость в пространстве Уравнение плоскости проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве OXYZ даны точка ) и ненулевой

Подробнее

Решения задач по алгебре за второй семестр

Решения задач по алгебре за второй семестр Решения задач по алгебре за второй семестр Д.В. Горковец, Ф.Г. Кораблев, В.В. Кораблева 1 Линейные векторные пространства Задача 1. Линейно зависимы ли векторы в R 4? a 1 = (4, 5, 2, 6), a 2 = (2, 2, 1,

Подробнее

ЧИСЛЕННОЕ СРАВНЕНИЕ ОЦЕНОК МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ С ОДНОШАГОВЫМИ И ВЛИЯНИЕ ТОЧНОСТИ ОЦЕНИВАНИЯ НА РАСПРЕДЕЛЕНИЯ СТАТИСТИК КРИТЕРИЕВ СОГЛАСИЯ [1]

ЧИСЛЕННОЕ СРАВНЕНИЕ ОЦЕНОК МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ С ОДНОШАГОВЫМИ И ВЛИЯНИЕ ТОЧНОСТИ ОЦЕНИВАНИЯ НА РАСПРЕДЕЛЕНИЯ СТАТИСТИК КРИТЕРИЕВ СОГЛАСИЯ [1] Заводская лаборатория. Диагностика материалов. 2003. Т. 69. С.62-68. УДК 519.2 ЧИСЛЕННОЕ СРАВНЕНИЕ ОЦЕНОК МАКСИМАЛЬНОГО ПРАВДОПОДОБИЯ С ОДНОШАГОВЫМИ И ВЛИЯНИЕ ТОЧНОСТИ ОЦЕНИВАНИЯ НА РАСПРЕДЕЛЕНИЯ СТАТИСТИК

Подробнее

7. Экстремумы функций нескольких переменных

7. Экстремумы функций нескольких переменных 7. Экстремумы функций нескольких переменных 7.. Локальные экстремумы Пусть функция f(x,..., x n ) определена на некотором открытом множестве D R n. Точка M D называется точкой локального максимума (локального

Подробнее

Определение области разброса фазовых координат механической системы /453448

Определение области разброса фазовых координат механической системы /453448 Определение области разброса фазовых координат механической системы 77-48/453448 Инженерный вестник # 0, октябрь 0 Беляев А. В., Тушев О. Н. УДК 69.7.07 Россия, МГТУ им. Н.Э. Баумана belaev@bstu.ru Излагается

Подробнее

Курсовая работа по дисциплине: «дифференциальные уравнения»

Курсовая работа по дисциплине: «дифференциальные уравнения» Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «дифференциальные уравнения» ВАРИАНТ 5 Выполнил: студент -го курса, гр. АК3-3 Ягубов Роман Борисович

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

1.3. Распределение молекул газа в сосуде.

1.3. Распределение молекул газа в сосуде. .3. Распределение молекул газа в сосуде..3.. Распределение молекул между двумя половинками сосуда. Применим элементы теории вероятности для описания одноатомного газа в сосуде. Рассмотрим распределение

Подробнее

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ ЗАДАЧА ОПТИМИЗАЦИИ На прошлой лекции были рассмотрены методы решения нелинейных уравнений Были рассмотрены двухточечные методы, которые используют локализацию корня,

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Комбинаторика, правила произведения и суммы. Виды соединений

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Комбинаторика, правила произведения и суммы. Виды соединений ТЕОРИЯ ВЕРОЯТНОСТЕЙ Комбинаторика, правила произведения и суммы Комбинаторика как наука Комбинаторика это раздел математики, в котором изучаются соединения подмножества элементов, извлекаемые из конечных

Подробнее

ГЛАВА Несмещенные и состоятельные гиперслучайные оценки гиперслучайных величин

ГЛАВА Несмещенные и состоятельные гиперслучайные оценки гиперслучайных величин ГЛАВА 8 ХАРАКТЕРИСТИКИ ГИПЕРСЛУЧАЙНЫХ ОЦЕНОК ГИПЕРСЛУЧАЙНЫХ ВЕЛИЧИН Для точечных гиперслучайных оценок гиперслучайных величин введены понятия несмещенной, состоятельной, эффективной и достаточной оценок

Подробнее

ОБ ОЦЕНИВАНИИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЙ ПО ИНТЕРВАЛЬНЫМ НАБЛЮДЕНИЯМ

ОБ ОЦЕНИВАНИИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЙ ПО ИНТЕРВАЛЬНЫМ НАБЛЮДЕНИЯМ Вычислительные технологии Том 3, 2, 1998 ОБ ОЦЕНИВАНИИ ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЙ ПО ИНТЕРВАЛЬНЫМ НАБЛЮДЕНИЯМ Б.Ю. Лемешко, С.Н. Постовалов Новосибирский государственный технический университет, Россия e-mail:

Подробнее

52. Чем определяется потенциальная точность совместных оценок частоты и задержки сигнала? 53. В чём заключается идея оценивания параметров сигнала с

52. Чем определяется потенциальная точность совместных оценок частоты и задержки сигнала? 53. В чём заключается идея оценивания параметров сигнала с Контрольные вопросы 0. Вывод рекуррентного уравнения для АПВ дискретных марковских 1. Как преобразуются ПВ распределения случайных величин при их функциональном преобразовании? 2. Что такое корреляционная

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Тема 1: Системы линейных уравнений

Тема 1: Системы линейных уравнений Тема 1: Системы линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

Коллаборативная фильтрация в рекомендательных системах. SVD-разложение

Коллаборативная фильтрация в рекомендательных системах. SVD-разложение УДК 004.852 Коллаборативная фильтрация в рекомендательных системах. SVD-разложение Латкин И.И., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана, кафедра «Системы обработки информации и управления»

Подробнее

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход.

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход. Метод Ритца Выделяют два основных типа методов решения вариационных задач. К первому типу относятся методы, сводящие исходную задачу к решению дифференциальных уравнений. Эти методы очень хорошо развиты

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): 8 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1 Кафедра М и ММЭ 2 Направление подготовки Бизнес-информатика Общий профиль 3 Дисциплина

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2011

Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2011 Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2 Проблема анализа многомерных данных При решении различных задач

Подробнее

Этап 3 Методы решения задачи линейного программирования (1)

Этап 3 Методы решения задачи линейного программирования (1) стр. Этап 3 Методы решения задачи линейного программирования Дано: f (X) = x + 3x 2 extr + x x 2 () 2x + x 2 (2) x, x 2 0 (3) а) Решить задачу графически Алгоритм графического решения задачи. Построить

Подробнее

Лекция 9. Структура ошибки выпуклых комбинаций, комитетные методы, логическая коррекция. Лектор Сенько Олег Валентинович

Лекция 9. Структура ошибки выпуклых комбинаций, комитетные методы, логическая коррекция. Лектор Сенько Олег Валентинович Лекция 9 Структура ошибки выпуклых комбинаций, комитетные методы, логическая коррекция Лектор Сенько Олег Валентинович Курс «Математические основы теории прогнозирования» 4-й курс, III поток Сенько Олег

Подробнее

Уменьшение размерности

Уменьшение размерности Академический Университет, 2012 Outline 1 2 PCA Обзор курса Задача PCA Рассмотрим данные, лежащие в пространстве очень большой размерности. Как с ними работать? Часто оказывается, что «на самом деле» данные

Подробнее

1. ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЧИСЛЕННЫЕ МЕТОДЫ ЛИНЕЙНОЙ АЛГЕБРЫ В разделе «Численные методы линейной алгебры» рассматриваются численные методы решения систем линейных алгебраических уравнений (СЛАУ) и численные методы решения задач

Подробнее

Coa Компьютерная алгебра

Coa Компьютерная алгебра 6. Быстрые алгоритмы деления Деление чисел методом Ньютона Для определенности будем считать, что делимое a = ( a,, am) и делитель b = ( b,, b ) записаны в позиционной системе счисления по основанию ( ).

Подробнее

Модели информационного поиска. PageRank Лекция 3 курса «Алгоритмы для Интернета»

Модели информационного поиска. PageRank Лекция 3 курса «Алгоритмы для Интернета» Модели информационного поиска. PageRank Лекция 3 курса «Алгоритмы для Интернета» Юрий Лифшиц 12 октября 2006 г. Содержание 1. Модели информационного поиска 1 1.1. Булевская модель............................................

Подробнее

Babilua Petre, Nadaraya Elizbar, Shatashvili Albert, Sokhadze Grigol. I. Javakhishvili Tbilisi State University. Donetsk State University

Babilua Petre, Nadaraya Elizbar, Shatashvili Albert, Sokhadze Grigol. I. Javakhishvili Tbilisi State University. Donetsk State University Обращение интеграла Винера и одно статистическое применение Babla Pere Naaraa lzbar Shaashvl Alber Sohaze Grol I Javahshvl Tbls Sae Uvers Does Sae Uvers ABSTRAT В работе доказана теорема об обращении интеграла

Подробнее

1. Построить область определения следующих функций. то область определения функции является множество

1. Построить область определения следующих функций. то область определения функции является множество 1. Построить область определения следующих функций. a) Так как функции определена при то область определения функции является множество - полуплоскость. b) Так как область определения функции является

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

Д.Ю. КУЗНЕЦОВ, Т.Л. ТРОШИНА. Кластерный анализ и его применение

Д.Ю. КУЗНЕЦОВ, Т.Л. ТРОШИНА. Кластерный анализ и его применение Д.Ю. КУЗНЕЦОВ, Т.Л. ТРОШИНА Кластерный анализ и его применение Исследователь часто стоит перед лицом огромной массы индивидуальных наблюдений. Возникает задача сведения множества характеристик к небольшому

Подробнее

Статистическое исследование алгоритма случайного поиска

Статистическое исследование алгоритма случайного поиска Статистическое исследование алгоритма случайного поиска В. Т. Кушербаева, Ю. А. Сушков Санкт-Петербургский государственный университет 1 В работе рассматривается статистическое исследование одного алгоритма

Подробнее

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду:

Решение типовых задач , разложив его по. Пример 2. Вычислить определитель, приведя его к треугольному виду: Пример Вычислить определитель Решение типовых задач 5 5 7, разложив его по 9 9 элементам первой строки 7 5 7 5 5 6 9 9 9 9 Пример Вычислить определитель, приведя его к треугольному виду: 5 7 Обозначим

Подробнее

Метод опорных векторов Лекция 7 курса «Алгоритмы для Интернета»

Метод опорных векторов Лекция 7 курса «Алгоритмы для Интернета» Метод опорных векторов Лекция 7 курса «Алгоритмы для Интернета» Юрий Лифшиц 9 ноября 2006 г. Содержание 1. Постановка задачи классификации 1 2. Оптимальная разделяющая гиперплоскость 2 2.1. Разделение

Подробнее

Методы коллаборативной фильтрации и их применения

Методы коллаборативной фильтрации и их применения Методы коллаборативной фильтрации и их применения К. В. Воронцов vokov@forecsys.ru http://www.ccas.ru/voron Вычислительный Центр им.а. А.Дородницына РАН; ЗАО «Форексис» ВШЭ, семинар Б. Г. Миркина, 10 ноября

Подробнее

Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Пусть дано нелинейное уравнение ( 0, (3.1 где ( функция, определенная и непрерывная на некотором промежутке. В некоторых случаях

Подробнее

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2) Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ

Подробнее

Численные методы решения алгебраических уравнений и систем уравнений

Численные методы решения алгебраических уравнений и систем уравнений Краевой конкурс учебно-исследовательских и проектных работ учащихся «Прикладные вопросы математики» Алгебра Численные методы решения алгебраических уравнений и систем уравнений Булычев Сергей, МОУ «Лицей

Подробнее

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ ИГРЫ С РАЗНОТИПНЫМИ ИНТЕГРАЛЬНЫМИ ОГРАНИЧЕНИЯМИ

ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ ИГРЫ С РАЗНОТИПНЫМИ ИНТЕГРАЛЬНЫМИ ОГРАНИЧЕНИЯМИ УДК 589 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ ИГРЫ С РАЗНОТИПНЫМИ ИНТЕГРАЛЬНЫМИ ОГРАНИЧЕНИЯМИ ВВ ОСТАПЕНКО ИЛ РЫЖКОВА Рассмотрены линейные дифференциальные игры с интегральными ограничениями на управления игроков

Подробнее

ЛЕКЦИЯ 2 ВЫЧИСЛЕНИЕ НАИБОЛЬШЕГО ОБЩЕГО ДЕЛИТЕЛЯ. Алгоритм Евклида

ЛЕКЦИЯ 2 ВЫЧИСЛЕНИЕ НАИБОЛЬШЕГО ОБЩЕГО ДЕЛИТЕЛЯ. Алгоритм Евклида ЛЕКЦИЯ 2 ВЫЧИСЛЕНИЕ НАИБОЛЬШЕГО ОБЩЕГО ДЕЛИТЕЛЯ Алгоритм Евклида При работе с большими составными числами их разложение на простые множители, как правило, неизвестно. Но для многих прикладных задач теории

Подробнее

А. С. Конушин 1 Д. П. Ветров 2 Д. А. Кропотов 3 В. С. Конушин 1 О. В. Баринова 1. Спецкурс «Структурные методы анализа изображений и сигналов»

А. С. Конушин 1 Д. П. Ветров 2 Д. А. Кропотов 3 В. С. Конушин 1 О. В. Баринова 1. Спецкурс «Структурные методы анализа изображений и сигналов» . Фильтр. Фильтр А. С. Конушин 1 Д. П. Ветров 2 Д. А. 3 В. С. Конушин 1 О. В. Баринова 1 1 МГУ, ВМиК, лаб. КГ 2 МГУ, ВМиК, каф. ММП 3 ВЦ РАН Спецкурс «Структурные методы анализа изображений и сигналов»

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

Лекция 1. Последовательности

Лекция 1. Последовательности С А Лавренченко wwwlwrecekoru Лекция 1 Последовательности 1 Понятие последовательности Мы будем рассматривать только бесконечные числовые последовательности Начнем с формального определения этого объекта

Подробнее

План лекции. 1 Смесь Гауссовских распределений. 2 EM-алгоритм. 3 Информационные методы

План лекции. 1 Смесь Гауссовских распределений. 2 EM-алгоритм. 3 Информационные методы План лекции 1 Смесь Гауссовских распределений 2 EM-алгоритм 3 Информационные методы А. А. Бояров, А. А. Сенов (СПбГУ) стохастическое программирование весна 2014 1 / 21 Смешанные модели Пусть W подмножество

Подробнее

Тема 2-15: Ортогональность

Тема 2-15: Ортогональность Тема 2-15: Ортогональность А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр)

Подробнее