5. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА (ПО ПЛОЩАДИ ПОВЕРХНОСТИ) 1. Задача, приводящая к понятию поверхностного интеграла I рода

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "5. ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА (ПО ПЛОЩАДИ ПОВЕРХНОСТИ) 1. Задача, приводящая к понятию поверхностного интеграла I рода"

Транскрипт

1 5 ПОВЕРХНОСТНЫЙ ИНТЕГРАЛ I РОДА ПО ПЛОЩАДИ ПОВЕРХНОСТИ Поверхностный интеграл I рода представляет собой такое же обобщение двойного интеграла каким криволинейный интеграл I рода является по отношению к определенному интегралу Задача приводящая к понятию поверхностного интеграла I рода Пусть квадрируемая поверхность в пространстве O по которой распределена масса Определим массу поверхности если плотность распределения массы в каждой точке M равна γ Эту задачу можно решить следующим образом Разобьем поверхность на частей На каждой части выберем произвольную точку P ξ η ζ Если часть мала то можно считать ее однородной с плотностью распределения массы γ ξ η ζ Тогда приближенное значение массы m части будет равно m γ ξ η ζ где площадь Так как масса m всей поверхности равна сумме масс ее частей то Причем разность m m m γ ξ η ζ γ ξ η ζ будет тем меньше чем мельче разбиение поверхности Следовательно точное значение массы поверхности будет равно m lm λ γ ξ η ζ где λ наибольший из диаметров частей Напомним что поверхность называется квадрируемой если она имеет площадь

2 К пределам вида сводятся и ряд других задач математики и физики Поэтому представляется целесообразным исследовать такие пределы отвлекаясь от их конкретного содержания Определение и свойства поверхностного интеграла I рода Пусть квадрируемая поверхность в пространстве O и на поверхности задана функция u Разобьем поверхность произвольным образом на частей не имеющих общих внутренних точек: На каждой части выберем произвольную точку P ξ η ζ и вычислим произведение P ξ η ς где площадь части Сумму I P P назовем интегральной суммой для функции по поверхности соответствующей данному разбиению поверхности и данному выбору точек P Очевидно что интегральная сумма I P зависит от способа разбиения поверхности и выбора точек P и следовательно для функции по поверхности можно записать множество различных интегральных сумм Пусть d диаметр λ ma d λ ОПРЕДЕЛЕНИЕ Число I называется пределом интегральных сумм I P при λ обозначают lm I P если для любого ε > существует δ > такое что для любого разбиения поверхности у которого λ < δ при любом выборе точек P выполняется неравенство I P I < ε Если предел интегральных сумм I P при λ существует то его называют поверхностным интегралом I рода по площади поверхности от функции по поверхности Поверхностный интеграл I рода от функции по поверхности обозначают

3 называют подынтегральной функцией областью интегрирования переменные интегрирования дифференциал площади поверхности Если существует то функция называется интегрируемой по поверхности Достаточное условие существования поверхностного интеграла I рода будет сформулировано позже когда покажем способ его вычисления Определение поверхностного интеграла I рода по структуре такое же как и определение определенного интеграла Поэтому поверхностный интеграл I рода обладает теми же свойствами что и определенный интеграл Приведем эти свойства без доказательства СВОЙСТВА ПОВЕРХНОСТНОГО ИНТЕГРАЛА I РОДА где площадь поверхности Постоянный множитель можно выносить за знак поверхностного интеграла I рода те c c 3 Поверхностный интеграла I рода от алгебраической суммы двух конечного числа функций равен алгебраической сумме поверхностных интегралов I рода от этих функций те [ ] 4 Если поверхность разбита на две части и не имеющие общих внутренних точек то свойство аддитивности поверхностного интеграла I рода 5 Если всюду на поверхности функция > то 6 Если всюду на поверхности < то Предполагаем что все рассматриваемые в свойствах интегралы существуют 3

4 7 следствие свойств 6 и Если m и M соответственно наименьшее и наибольшее значения функции на поверхности то m M где площадь поверхности 8 Теорема о среднем для поверхностного интеграла I рода Если функция непрерывна на поверхности содержащей свою границу если поверхность незамкнута то найдется такая точка P что справедливо равенство где площадь поверхности Функция называется непрерывной в точке M поверхности если выполняется условие lm M M Функция непрерывная в каждой M M M точке поверхности называется непрерывной на поверхности 4

5 3 Вычисление поверхностного интеграла I рода Вычисление поверхностных интегралов I рода обычно производится путем их сведения к двойным интегралам Пусть поверхность задана формулой В этом случае говорят что поверхность задана явно При этом поверхность называется гладкой если функция имеет непрерывные частные производные и в области В явном виде можно также задать поверхность формулой ψ или χ Если поверхность задана уравнением F не разрешенным относительно ни одной из переменных то говорят что поверхность задана неявно При этом поверхность называется гладкой если для любой ее внутренней точки существует такая окрестность которая может быть задана явно и является гладкой Пусть функция u F имеет непрерывные частные производные F F и F Точка M поверхности называется особой если в этой точке частные производные функции u F одновременно обращаются в нуль Если на поверхности нет особых точек то поверхность является гладкой С геометрической точки зрения гладкость поверхности означает что в каждой внутренней точке поверхности существует касательная плоскость и нормаль причем ее положение непрерывно меняется при перемещении точки касания по поверхности Поверхность составленная из нескольких гладких частей называется кусочно-гладкой Справедлива следующая теорема ТЕОРЕМА Если гладкая поверхность заданная уравнением квадрируемая область в плоскости O и функция непрерывна на то интегрируема по поверхности и справедливо равенство dd 3 По определению δ ДОКАЗАТЕЛЬСТВО lm I P lm λ 5 λ ξ η ζ

6 Площадь можно вычислить с помощью двойного интеграла по формуле dd где проекция на плоскость O Согласно теореме ос среднем для двойного интеграла существует точка такая что dd где площадь области Таким образом lm ζ η ξ λ Так как P ζ η ξ любая точка области то выберем ее так чтобы ее координаты были равны ξ η ζ Тогда получаем lm λ Пусть d наибольший из диаметров областей По условию поверхность гладкая Значит функции и на непрерывны и в силу 4 t при λ Следовательно d lm dd δ ПРИМЕР Найти интеграл где часть конуса вырезаемая плоскостями и 6

7 Имеем: Следовательно dd dd dd dd r rdrd D 8 4 d r dr π π 3 3 D СЛЕДСТВИЕ Если гладкая поверхность заданная уравнением ψ квадрируемая область в плоскости O и функция непрерывна на то интегрируема по поверхности и справедливо равенство ψ ψ ψ dd δ СЛЕДСТВИЕ 3 Если гладкая поверхность заданная уравнением χ квадрируемая область в плоскости O и функция непрерывна на то интегрируема по поверхности и справедливо равенство χ χ χ dd δ В заключение этого пункта сформулируем теорему которая очевидным образом следует из теорем 3 ТЕОРЕМА 4 достаточные условия существования поверхностного интеграла I рода Пусть кусочно-гладкая поверхность которая может быть явно задана например формулой Если квадрируемая область в плоскости O и функция кусочно-непрерывна на то интегрируема по поверхности 7

8 4 Геометрические и физические приложения поверхностных интегралов I рода Площадь квадрируемой поверхности может быть найдена по формуле Пусть материальная квадрируемая поверхность в пространстве O с плотностью γ Тогда справедливы следующие формулы: γ m масса поверхности 3 Статические моменты поверхности относительно плоскостей O O и O равны соответственно: 4 координаты центра тяжести поверхно- m m сти γ m γ γ 5 Моменты инерции поверхности относительно осей O O и O равны соответственно: I γ I γ I γ 6 I γ момент инерции поверхности o относительно начала координат 7 Если F F F F } сила притяжения материальной точки { M массы m материальной поверхностью то F γ m γ F 3 γ m r γ 3 r { F γ m γ 3 r где r } r r γ гравитационная постоянная 8


Тема: Двойной интеграл (определение, свойства, вычисление)

Тема: Двойной интеграл (определение, свойства, вычисление) Математический анализ Раздел: Интегрирование ФНП Тема: Двойной интеграл определение свойства вычисление Лектор Рожкова С.В. 03 г. Глава II. Кратные криволинейные и поверхностные интегралы 7. Двойной интеграл.

Подробнее

Тема: Криволинейный интеграл I рода

Тема: Криволинейный интеграл I рода Раздел: Математический анализ Интегрирование ФНП Тема: Криволинейный интеграл I рода Лектор Янущик О.В. 01. 9. Криволинейный интеграл I рода по длине дуги 1. Задача приводящая к криволинейному интегралу

Подробнее

Математический анализ Интегрирование ФНП. Тройной интеграл. Лектор Янущик О.В г.

Математический анализ Интегрирование ФНП. Тройной интеграл. Лектор Янущик О.В г. Раздел: Математический анализ Интегрирование ФНП Тема: Тройной интеграл Лектор Янущик О.В. 01 г. 8. Тройной интеграл 1. Задача приводящая к понятию тройного интеграла Пусть замкнутая ограниченная область

Подробнее

Тема: Тройной интеграл

Тема: Тройной интеграл Математический анализ Раздел: Интегрирование ФНП Тема: Тройной интеграл Лектор Рожкова С.В. 013 г. 8. Тройной интеграл 1. Задача приводящая к понятию тройного интеграла Пусть V замкнутая ограниченная область

Подробнее

Тема: Криволинейный интеграл II рода

Тема: Криволинейный интеграл II рода Математический анализ Раздел: Интегрирование ФНП Тема: Криволинейный интеграл II рода Лектор Пахомова Е.Г. 2013 г. 10 10. Криволинейный Криволинейный интеграл интеграл II II рода рода по по координатам

Подробнее

Тема: Поверхностный интеграл II рода

Тема: Поверхностный интеграл II рода Математический анализ Раздел: Интегрирование ФНП Тема: Поверхностный интеграл II рода Лектор Пахомова Е.Г. 2013 г. 12. Поверхностный интеграл II рода попо координатам 1. Односторонние и двусторонние поверхности

Подробнее

ξ i; i высота. Тогда площадь каждой полоски

ξ i; i высота. Тогда площадь каждой полоски Тема КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ Лекция КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ ПЕРВОГО РОДА Задачи приводящие к понятию криволинейного интеграла первого рода Определение и свойства криволинейного интеграла первого рода Вычисление

Подробнее

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =.

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =. ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) Определение векторного поля Определение векторной линии Задача о работе силового поля Полем называется множество, элементы которого удовлетворяют

Подробнее

Практическое занятие 6 Поверхностные интегралы. 6.1 Определение, свойства, вычисление и приложения поверхностного. функция f ; ;

Практическое занятие 6 Поверхностные интегралы. 6.1 Определение, свойства, вычисление и приложения поверхностного. функция f ; ; Практическое занятие 6 Поверхностные интегралы 6 Определение свойства вычисление и приложения поверхностного интеграла -го рода 6 Определение свойства и вычисление поверхностного интеграла -го рода 6 Определение

Подробнее

Тема 12. Определенный интеграл. Определенный интеграл. Задачи, приводящие к понятию определенного интеграла.

Тема 12. Определенный интеграл. Определенный интеграл. Задачи, приводящие к понятию определенного интеграла. Тема Определенный интеграл Определенный интеграл Задачи, приводящие к понятию определенного интеграла Задача о вычислении площади криволинейной трапеции В системе координат Оху дана криволинейная трапеция,

Подробнее

ЛЕКЦИЯ N 46. Приложения кратных интегралов.

ЛЕКЦИЯ N 46. Приложения кратных интегралов. ЛЕКЦИЯ N 6 Приложения кратных интегралов Задача о вычислении массы тонкой пластинки Статистические моменты; центр тяжести плоской фигуры 3Момент инерции 3 Площадь поверхности 3 5Применение тройного интеграла

Подробнее

Определенный интеграл Несобственные интегралы

Определенный интеграл Несобственные интегралы Математический анализ Тема: Определенный интеграл Несобственные интегралы Лектор Пахомова Е.Г. 2017 г. ГЛАВА II. Определенный интеграл и его приложения 1. Определенный интеграл и его свойства 1. Задачи,

Подробнее

Интегральное исчисление функции нескольких переменных

Интегральное исчисление функции нескольких переменных Интегральное исчисление функции нескольких переменных интегралов двойного тройного криволинейного по длине дуги (первого рода) поверхностного по площади поверхности (первого рода) Пусть функция f() определена

Подробнее

Практическое занятие 1 Криволинейные интегралы 1-го и 2-го рода. Обозначим max l

Практическое занятие 1 Криволинейные интегралы 1-го и 2-го рода. Обозначим max l Практическое занятие Криволинейные интегралы -го и -го рода Определение свойства вычисление и приложения криволинейного интеграла -го рода Определение свойства вычисление и приложения криволинейного интеграла

Подробнее

1. Уравнения поверхности. В 4 гл. X была рассмотрена поверхность, являющаяся графиком непрерывной функции. z = f(x, y), (x, y) G.

1. Уравнения поверхности. В 4 гл. X была рассмотрена поверхность, являющаяся графиком непрерывной функции. z = f(x, y), (x, y) G. Площадь поверхности Основные понятия и теоремы 1. Уравнения поверхности. В 4 гл. X была рассмотрена поверхность, являющаяся графиком непрерывной функции z = f(x, y), (x, y) G. (1) Задание поверхности уравнением

Подробнее

Êðèâîëèíåéíûé è ïîâåðõíîñòíûé èíòåãðàëû

Êðèâîëèíåéíûé è ïîâåðõíîñòíûé èíòåãðàëû Êðèâîëèíåéíûé è ïîâåðõíîñòíûé èíòåãðàëû Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Понятие криволинейного интеграла. Условия его существования, вычисление и применение. Понятие поверхностного интеграла. Условия его

Подробнее

Криволинейный и поверхностный интегралы

Криволинейный и поверхностный интегралы Криволинейный и поверхностный интегралы Волченко Ю.М. Содержание лекции Понятие криволинейного интеграла. Условия его существования, вычисление и применение. Понятие поверхностного интеграла. Условия его

Подробнее

ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР )

ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР ) ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР 2007-2008) 1 Сформулируйте определение шаровой окрестности точки пространства R 2 Сформулируйте определение прямоугольной

Подробнее

А.П. Потапов. Интегральное исчисление функций нескольких переменных. Оглавление

А.П. Потапов. Интегральное исчисление функций нескольких переменных. Оглавление АП Потапов Интегральное исчисление функций нескольких переменных Оглавление Глава Кратные интегралы Двойной интеграл Вычисление объема цилиндрического тела Понятие двойного интеграла 3 Условия интегрируемости

Подробнее

Лекция 2.1.6. Определенный интеграл Римана

Лекция 2.1.6. Определенный интеграл Римана Лекция 6 Определенный интеграл Римана Аннотация: Отмечается что кроме интеграла Римана существуют и другие интегралы Рассматриваются свойства определенного интеграла Понятие определенного интеграла настолько

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл Δ = i i

Интегрируемость функции (по Риману) и определенный интеграл Δ = i i Интегрируемость функции (по Риману) и определенный интеграл Основные понятия и теоремы 1. Интегральные суммы и определенный интеграл. Пусть функция f(x) определена на промежутке [a, b] (где a < b). Произвольное

Подробнее

ЛЕКЦИЯ N 48. Площадь поверхности. Определение поверхностных интегралов I и II рода. Их свойства. Вычисление.

ЛЕКЦИЯ N 48. Площадь поверхности. Определение поверхностных интегралов I и II рода. Их свойства. Вычисление. ЛЕКЦИЯ N 48 лощадь поверхности Определение поверхностных интегралов I и II рода Их свойства Вычисление лощадь поверхности Вычисление поверхностных интегралов I рода оверхностный интеграл II рода и его

Подробнее

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности. 5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

Подробнее

Глава 12 Кратные, криволинейные и поверхностные интегралы. 1 Интегралы по фигуре от скалярной функции

Глава 12 Кратные, криволинейные и поверхностные интегралы. 1 Интегралы по фигуре от скалярной функции 272 Глава 2 Кратные, криволинейные и поверхностные интегралы Интегралы по фигуре от скалярной функции Определение Множество точек называется связным, если две любые точки можно соединить линией, все точки

Подробнее

Криволинейные интегралы первого рода

Криволинейные интегралы первого рода Криволинейные интегралы первого рода Основные понятия и теоремы 1. Определение криволинейного интеграла первого рода. Пусть кривая L на координатной плоскости Оху задана параметрически уравнениями x =

Подробнее

11.1 Двойной интеграл и его свойства

11.1 Двойной интеграл и его свойства Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Двойной интеграл» Кафедра теоретической и прикладной математики. разработана доц.дуниной Е.Б.

Подробнее

4 Основные свойства определенного интеграла

4 Основные свойства определенного интеграла 178 4 Основные свойства определенного интеграла Рассмотрим основные свойства определенного интеграла. 1) Если нижний и верхний пределы интегрирования равны (=), то интеграл равен нулю f ( ) d = 0 Данное

Подробнее

и с боковой поверхностью, имеющей образующую, парал- лельную оси OZ т.е. ( )

и с боковой поверхностью, имеющей образующую, парал- лельную оси OZ т.е. ( ) 8 и с боковой поверхностью, имеющей образующую, парал- поверхностью z = f(, лельную оси OZ т.е. f(, s= v ц ( D) 4 Вычисление интеграла по фигуре от скалярной функции в декартовой системе координат Вычисление

Подробнее

22. Линейные уравнения с частными производными первого порядка

22. Линейные уравнения с частными производными первого порядка Линейные уравнения с частными производными первого порядка Понятие уравнения с частными производными и его интегрирование Уравнением с частными производными называется соотношение связывающее неизвестную

Подробнее

Лекция 2. Поверхностные интегралы первого рода

Лекция 2. Поверхностные интегралы первого рода С А Лавренченко wwwlawrecekoru Лекция Поверхностные интегралы первого рода Поверхностные интегралы -го рода представляют собой такое же естественное обобщение двойных интегралов, каким криволинейные интеграла

Подробнее

Тройной интеграл. 1 Понятие тройного интеграла. Волченко Ю.М. Содержание лекции. f (P i ) V i (1) i=1

Тройной интеграл. 1 Понятие тройного интеграла. Волченко Ю.М. Содержание лекции. f (P i ) V i (1) i=1 Тройной интеграл Волченко Ю.М. Содержание лекции Понятие тройного интеграла. Условия его существования. Теорема о среднем. Вычисление тройного интеграла в декартовых и криволинейных координатах. Тройной

Подробнее

Кратные интегралы. Определение меры плоской фигуры

Кратные интегралы. Определение меры плоской фигуры Кратные интегралы Определение меры плоской фигуры Измеримые множества на плоскости Пусть произвольное ограниченное множество точек на плоскости, ограниченное кусочно-гладкой кривой. Каждому такому множеству

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

I(G i, M i ) = f(ξ i, η i ) Δs i, Диаметром ограниченного множества G точек назовем точную верхнюю грань

I(G i, M i ) = f(ξ i, η i ) Δs i, Диаметром ограниченного множества G точек назовем точную верхнюю грань Двойные интегралы Основные понятия и теоремы 1. Определение двойного интеграла. Пусть G квадрируемая (и, следовательно, ограниченная) область (открытая или замкнутая) на плоскости и пусть в области G определена

Подробнее

Основные понятия функций комплексного переменного

Основные понятия функций комплексного переменного Тема 11 Основные понятия функций комплексного переменного Определение Поскольку комплексным числам и w соответствуют пары действительных чисел x; y и u;v соответственно: x i y w u i v то задание функции

Подробнее

ds N 2 ν ξ r N 2 ξ ;

ds N 2 ν ξ r N 2 ξ ; Лекция 7 ПОТЕНЦИАЛ ПРОСТОГО СЛОЯ В этой лекции мы изучим свойства потенциала простого слоя при N 3.. План лекции. Потенциал простого слоя. 2. Теорема о непрерывности потенциала простого слоя. 3. Формулы

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

ДВОЙНЫЕ ИНТЕГРАЛЫ. 1. Задача, приводящая к двойному интегралу.

ДВОЙНЫЕ ИНТЕГРАЛЫ. 1. Задача, приводящая к двойному интегралу. ДВОЙНЫЕ ИНТЕГРАЛЫ. Задача, приводящая к двойному интегралу. Найти цилиндрического тела, основанием которого является часть координатной плоскости O, которую будем называть областью. Сверху тело ограниченно

Подробнее

( V) ( Q) i просуммируем подобные неравенства для всех значений j и k. Получаем неравенства. k) ( ) и просуммируем по i ( )

( V) ( Q) i просуммируем подобные неравенства для всех значений j и k. Получаем неравенства. k) ( ) и просуммируем по i ( ) 9 Положим m = f M = f. inf { }, { } i j k sup ( Vi, j, k) i, j, k,, Тогда в силу свойств интеграла по фигуре имеем Vi, j, k mi, j, kδiδk f dd M,, Δ Δ ( Vi, j, k) i j k i k для всех значений из [i, i+].

Подробнее

ориентированной двусторон- ней, односто- ронней. Интеграл по ориентированной фигуре от векторной функции.

ориентированной двусторон- ней, односто- ронней. Интеграл по ориентированной фигуре от векторной функции. 327 Линия (L называется ориентированной, если на ней выбрано направление перемещения. Для гладкой линии (L в качестве ориентирующего вектора bp может быть выбран единичный вектор касательной τ ( P, направленный

Подробнее

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

Решение. Пользуясь уравнением поверхности в векторной форме r = i u + j v + k (u 3 + v 2 ), получим. i j k

Решение. Пользуясь уравнением поверхности в векторной форме r = i u + j v + k (u 3 + v 2 ), получим. i j k Площадь поверхности Примеры решения задач 1. Составить уравнение касательной плоскости и вычислить направляющие косинусы нормали к поверхности x = u, y = u, z = u 3 + v 2 в точке М 0 (1, 1, 2). Решение.

Подробнее

Лекция 1. Интегралы. ]. Определенный интеграл от функции f от a до b обозначается и определяется так: n i

Лекция 1. Интегралы. ]. Определенный интеграл от функции f от a до b обозначается и определяется так: n i СА Лавренченко wwwlwrecekoru Лекция Интегралы Понятие определенного интеграла Определение (интеграла) Пусть f непрерывная функция на отрезке [, ] Пусть [, ] разбит на отрезков равной длины x Обозначим

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

Интегралы и дифференциальные уравнения. Лекции 5-6

Интегралы и дифференциальные уравнения. Лекции 5-6 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекции 5-6 Определенный

Подробнее

Лекция 5. Интегрирование

Лекция 5. Интегрирование С. А. Лавренченко www.lwreceo.r Лекция 5 Интегрирование Перед прослушиванием этой лекции рекомендуется повторить лекции 3 и 4 из модуля «Векторный анализ».. Понятие интеграла Предположим что f функция

Подробнее

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Производная сложной и неявно заданной функции нескольких переменных Касательная плоскость и нормаль к поверхности Пусть f ( где (t (t причём функции f ( (t (t дифференцируемы Тогда

Подробнее

Кафедра математики и информатики МАТЕМАТИКА ВЫЧИСЛЕНИЕ КРИВОЛИНЕЙНЫХ ИНТЕГРАЛОВ

Кафедра математики и информатики МАТЕМАТИКА ВЫЧИСЛЕНИЕ КРИВОЛИНЕЙНЫХ ИНТЕГРАЛОВ МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КИНО И

Подробнее

1.Двойные интегралы. σ i

1.Двойные интегралы. σ i ЛЕКЦИЯ N 43 Кратные интегралы Алгоритм построения Свойства Вычисление в декартовых координатах Двойные интегралы 2Связь между обыкновенным и двойным интегралом 3 3Основные свойства двойного и тройного

Подробнее

А.П. Потапов. Интегральное исчисление функций нескольких переменных. Оглавление. Глава 2. Криволинейные интегралы

А.П. Потапов. Интегральное исчисление функций нескольких переменных. Оглавление. Глава 2. Криволинейные интегралы АП Потапов Интегральное исчисление функций нескольких переменных Глава Криволинейные интегралы Оглавление Криволинейный интеграл рода Понятие криволинейного интеграла рода Свойства криволинейного интеграла

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

M, и, построив прямой цилиндрический столбик с основанием

M, и, построив прямой цилиндрический столбик с основанием Кратные интегралы Задачи приводящие к понятию кратного интеграла В теории определенного интеграла для нахождения площади криволинейной трапеции было введено понятие интегральной суммы пределом которой

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ.

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» СИ, Бородина, МЮ Старовская ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ

Подробнее

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им ВС Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ ЕФ КАЛИНИЧЕНКО ЛЕКЦИИ ПО ВЫЧИСЛЕНИЮ ОПРЕДЕЛЕННЫХ

Подробнее

Тройные интегралы. m m V AKF3.RU. d T maxd Q. i i i. Определение тройного интеграла. Рис.3

Тройные интегралы. m m V AKF3.RU. d T maxd Q. i i i. Определение тройного интеграла. Рис.3 Тройные интегралы. Задача о массе тела с плотностью (,, ) - тело. т. М m ( M ) (,, ) lim 0 () Тогда разбиение Т-тела в на с объемом дает,, mi M i i i i i i () n n i i, i, i i (3) m m i i 0 d T mad m i

Подробнее

Теория поверхностей в дифференциальной геометрии

Теория поверхностей в дифференциальной геометрии Теория поверхностей в дифференциальной геометрии Элементарная поверхность Определение Область на плоскости называется элементарной областью, если она является образом открытого круга при гомеоморфизме,

Подробнее

Экзаменационные вопросы по математическому анализу, ФЛА, весна 2007г.

Экзаменационные вопросы по математическому анализу, ФЛА, весна 2007г. Экзаменационные вопросы по математическому анализу, ФЛА, весна 2007г. Дифференциальные уравнения 1. Запишите общий вид дифференциального уравнения. Что такое интегральная кривая? Как определить порядок

Подробнее

1 Ее предел, если он существует, называют поверхностным интегралом от функции

1 Ее предел, если он существует, называют поверхностным интегралом от функции 277 Δ ( 2 3) S f P q f x, x, x Δq. Ее предел, если он существует, называют поверхностным интегралом от функции f ( x, x2, x3) по площади поверхности (Q) или поверхностным интегралом первого рода и обозначают

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Задачи, приводящие к понятию определённого интеграла J n d lm n m Δõ ξ Δ Геометрический смысл определённого интеграла площадь криволинейной трапеции Физический смысл определённого

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

1. Определения и формулы для решения задач. Пусть D проекция G на плоскость Oхy, а функции

1. Определения и формулы для решения задач. Пусть D проекция G на плоскость Oхy, а функции Выражение массы тела через тройной интеграл в цилиндрических координатах Определения и формулы для решения задач Определение Цилиндрическим брусом ориентированным по оси O рис Называется тело G ограниченное

Подробнее

кривой АВ и обозначим их через выберем произвольно точку М . Составим сумму вида: n =

кривой АВ и обозначим их через выберем произвольно точку М . Составим сумму вида: n = Глава.Криволинейные интегралы 1. Криволинейные интегралы первого рода по длине дуги п. 1. Понятие криволинейного интеграла первого рода Пусть в плоскости хоу задана спрямляемая кривая L без точек самопересечения

Подробнее

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ):

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ): Функции нескольких переменных Во многих вопросах геометрии естествознания и пр дисциплин приходится иметь дело с функциями двух трех и более переменных Примеры: Площадь треугольника S a h где a основание

Подробнее

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ].

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ]. Лекция 8 Определённый интеграл Определенный интеграл Римана Пусть f ( ) некоторая функция, определенная на отрезке [, ] Произведем разбиение R отрезка [, ] на п частей: = < 1 < K < n = Выберем на каждом

Подробнее

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новгородский государственный университет имени

Подробнее

Тема: Применение определенного интеграла.

Тема: Применение определенного интеграла. Математический анализ Раздел: Определенный интеграл Тема: Применение определенного интеграла. Приближенное вычисление определенного интеграла Лектор Пахомова Е.Г. 013 г. II Плоская кривая, заданная параметрическими

Подробнее

ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ

ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Нижегородский государственный университет им НИ Лобачевского ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ Учебно-методическое пособие Рекомендовано методической комиссией

Подробнее

Министерство транспорта Российской Федерации. Федеральное государственное бюджетное. образовательное учреждение. высшего образования

Министерство транспорта Российской Федерации. Федеральное государственное бюджетное. образовательное учреждение. высшего образования Министерство транспорта Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский университет транспорта (МИИТ)» ИТТСУ Кафедра «Высшая и вычислительная

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Задачи, приводящие к понятию определённого интеграла

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Задачи, приводящие к понятию определённого интеграла ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Задачи, приводящие к понятию определённого интеграла J n lm n m Δх 0 f ξ Δ Геометрический смысл определённого интеграла площадь криволинейной трапеции Физический смысл определённого

Подробнее

x i Эта сумма выражает площадь ступенчатой фигуры, состоящей из прямоугольников, и приближенно заменяет криволинейную трапецию.

x i Эта сумма выражает площадь ступенчатой фигуры, состоящей из прямоугольников, и приближенно заменяет криволинейную трапецию. Задача о площади криволинейной трапеции =f() B A f(ξ i ) ξ 1 ξ 2 ξ 3 ξ i ξ 1 2 i-1 i S k 1 f ( ) k Эта сумма выражает площадь ступенчатой фигуры, состоящей из прямоугольников, и приближенно заменяет криволинейную

Подробнее

МАТЕМАТИКА ТРОЙНЫЕ ИНТЕГРАЛЫ. Методические указания к решению задач для студентов дневного и заочного отделений ФАВТ, ФМА и ФФиТРМ

МАТЕМАТИКА ТРОЙНЫЕ ИНТЕГРАЛЫ. Методические указания к решению задач для студентов дневного и заочного отделений ФАВТ, ФМА и ФФиТРМ МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КИНО И

Подробнее

3. Кратные и криволинейные интегралы

3. Кратные и криволинейные интегралы 3 Кратные и криволинейные интегралы 3 Повторный интеграл По аналогии с нахождением частных производных функции нескольких переменных можно интегрировать по одному аргументу, поступая с остальными как с

Подробнее

Криволинейные интегралы первого рода

Криволинейные интегралы первого рода Криволинейные интегралы первого рода Примеры решения задач 1. Вычислить криволинейный интеграл первого рода (x 4/3 + y 4/3 ) dl, где кривая L астроида x 2/3 + y 2/3 = a 2/3. Решение. Запишем параметрические

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Подробнее

Лекция Дифференцирование сложной функции

Лекция Дифференцирование сложной функции Лекция 8 Дифференцирование сложной функции Рассмотрим сложную функцию t t t f где ϕ t t t t t t t f t t t t t t t t t Теорема Пусть функции дифференцируемы в некоторой точке N t t t а функция f дифференцируема

Подробнее

( ) ( t) ( ) 2. ( x) ( ) ( ) ( ( )) Глава 2. КРИВОЛИНЕЙНЫЕ И ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ 2.1. Криволинейные интегралы первого рода (криволинейные

( ) ( t) ( ) 2. ( x) ( ) ( ) ( ( )) Глава 2. КРИВОЛИНЕЙНЫЕ И ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ 2.1. Криволинейные интегралы первого рода (криволинейные Глава КРИВОЛИНЕЙНЫЕ И ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ Криволинейные интегралы первого рода (криволинейные интегралы по длине) Вычисление криволинейных интегралов первого рода Вычисление криволинейного интеграла

Подробнее

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Работа переменной силы. Масса и заряд материальной кривой. Статические моменты и центр тяжести материальной кривой и плоской

Подробнее

Интеграл от функции комплексного переменного

Интеграл от функции комплексного переменного Интеграл от функции комплексного переменного Кривые в комплексной плоскости Кривой на комплексной плоскости называется непрерывное [; β] R в C (или в C: отображение отрезка = σ(t = x(t + iy(t, t [; β],

Подробнее

равная произведению массы этой точки и квадрата расстояния до оси ОХ (оси ОУ,

равная произведению массы этой точки и квадрата расстояния до оси ОХ (оси ОУ, 9 Вычисление статических моментов инерции и координат центра масс Определение Статическим моментом материальной точки А(х;у) в которой сосредоточена масса m относительно оси ОХ (ОУ) называется величина

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

Глава 5. Тройной интеграл.

Глава 5. Тройной интеграл. Глава 5. Тройной интеграл. 5.1. Определение тройного интеграла. После введения в предыдущей главе понятия двойного интеграла естественно было бы провести его дальнейшее обобщение на трехмерное пространство

Подробнее

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания

Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц. Методические указания МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая, А. Н. Карапетянц Методические указания для студентов 1 курса физического факультета

Подробнее

ЗАДАЧИ ОБЩЕГО ЗАЧЕТА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (II семестр)

ЗАДАЧИ ОБЩЕГО ЗАЧЕТА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (II семестр) ЗАДАЧИ ОБЩЕГО ЗАЧЕТА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (II семестр) Функции, предел, непрерывность Нарисуйте семейство линий уровня функции ) = ) = u, = + + + 4 ) = + Исследуйте функцию на непрерывность по каждой

Подробнее

ρ вых ρ вх ρ = ρ 1 (ϕ) α ρ ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 9 Вычисление двойного интеграла в полярных координатах. Приложения двойных интегралов

ρ вых ρ вх ρ = ρ 1 (ϕ) α ρ ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 9 Вычисление двойного интеграла в полярных координатах. Приложения двойных интегралов ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 9 Вычисление двойного интеграла в полярных координатах Приложения двойных интегралов Рассмотрим частный случай замены переменных часто используемый при вычислении двойного интеграла

Подробнее

Определение двойного интеграла и его свойства. Как задача вычисления площади криволинейной трапеции. так аналогичная задача вычисления объема тела

Определение двойного интеграла и его свойства. Как задача вычисления площади криволинейной трапеции. так аналогичная задача вычисления объема тела Двойной интеграл Определение двойного интеграла и его свойства Как задача вычисления площади криволинейной трапеции приводит к определенному интегралу от функции одной переменной, так аналогичная задача

Подробнее

ЛЕКЦИЯ N36. Теорема Коши. Формула Коши. Интеграл Коши.

ЛЕКЦИЯ N36. Теорема Коши. Формула Коши. Интеграл Коши. ЛЕКЦИЯ N36. Теорема Коши. Формула Коши. Интеграл Коши. 1.Теорема Коши.... 1 2.Формула Коши.... 2 3.Распространение формулы Коши на случай сложных контуров.... 4 4.Интеграл типа Коши.... 5 1.Теорема Коши.

Подробнее

r N 2 ds ξ, r = x ξ. ν ξ ds ξ c < +,

r N 2 ds ξ, r = x ξ. ν ξ ds ξ c < +, Лекция 6 ПОТЕНЦИАЛ ДВОЙНОГО СЛОЯ В этой лекции мы введём потенциалы простого и двойного слоя, которые уже мы встречали в третьей формуле Грина из предыдущей тематической лекции, и изучим сначала свойства

Подробнее

ГЛАВА 11 ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ

ГЛАВА 11 ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ ГЛАВА ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ Понятие функции комплексной переменной Непрерывность фкп Определение фкп во многом аналогично определению фдп Говорят что на некотором множестве комплексной

Подробнее

Тема: Замена переменной, интегрирование по частям в определенном интеграле. Применение определенного интеграла

Тема: Замена переменной, интегрирование по частям в определенном интеграле. Применение определенного интеграла Математический анализ Раздел: Определенный интеграл Тема: Замена переменной, интегрирование по частям в определенном интеграле Применение определенного интеграла Лектор Рожкова СВ 03 г Замена переменной

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Вычисление и приложения тройного интеграла

Вычисление и приложения тройного интеграла Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Сформулируйте определение окрестности точки пространства R Сформулируйте определение прямоугольной окрестности точки

Сформулируйте определение окрестности точки пространства R Сформулируйте определение прямоугольной окрестности точки Тема 1 Множества точек пространства R 1 Определения 11 Сформулируйте определение ε-окрестности точки пространства R 1 Сформулируйте определение прямоугольной окрестности точки пространства R 13 Сформулируйте

Подробнее

1.Дивергенция векторного поля.

1.Дивергенция векторного поля. ЛЕКЦИЯ N Дивергенция векторного поля Циркуляция Ротор отенциальные соленоидальные гармонические поля Операторы Лапласа и Гамильтона Дивергенция векторного поля Соленоидальные поля Циркуляция 4Формула Стокса

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

5. Задачи с подвижной границей. при условии, что левый конец функции, на которой достигается экстремум, закреплен:

5. Задачи с подвижной границей. при условии, что левый конец функции, на которой достигается экстремум, закреплен: Лекция 5 Задачи с подвижной границей Рассмотрим задачу минимизации функционала V F при условии что левый конец функции на которой достигается экстремум закреплен: а правый может перемещаться вдоль заданной

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

Составители: ст. преп. Н.Е. Трубникова, ст. преп. А.Я. Мисурагина, ст. преп. Т.В. Никонова, ст. преп. Н.С. Статковский

Составители: ст. преп. Н.Е. Трубникова, ст. преп. А.Я. Мисурагина, ст. преп. Т.В. Никонова, ст. преп. Н.С. Статковский Учреждение образования «Витебский государственный технологический университет» Составители: ст преп НЕ Трубникова, ст преп АЯ Мисурагина, ст преп ТВ Никонова, ст преп НС Статковский ВЫСШАЯ МАТЕМАТИКА Кратные

Подробнее

Приложения поверхностного интеграла 1-го типа

Приложения поверхностного интеграла 1-го типа Глава 6 Приложения поверхностного интеграла 1-го типа 6.1 Необходимые сведения На прошлых занятиях мы уже освоили методы вычисления поверхностных интегралов 1-го типа, оперируя при этом преимущественно

Подробнее