Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3)

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3)"

Транскрипт

1 Полная система уравнений теории упругости si F () i Лекция Полная система уравнений теории упругости. Уравнения совместности деформаций. Уравнения Бельтрами. Уравнения Ламе. Плоское напряженное и плоское деформированное состояния. Система уравнений теории термоупругости. Сферическая и цилиндрическая системы координат. Частные задачи. Примеры задач для курсовых проектов. Уравнения равновесия Соотношения Коши: æ i i i Соотношения Закона Гука () s t t X t s t Y t t s Z v v v g g g æ si mi i K - m kk () В 5 уравнениях () () () неизвестными являются шесть компонент тензора напряжений шесть компонент тензора деформаций и три компонента вектора перемещений т.е. всего 5 неизвестных Учитывая силы инерции приходим к уравнениям движения s F i i (4) s t t X или t s t v Y t t s Z Остальные уравнения остаются прежними. Уравнения равновесия для решения квазистатических задач. Уравнения движения для решения динамических задач. При прямом решении квазистатических задач теории упругости используются все 5 уравнений. В некоторых частных задачах не только для проверки решения но и для его нахождения оказываются удобными уравнения совместности деформаций которые вытекают из геометрических уравнений (т.е. являются их следствием). Иногда их называют уравнениями неразрывности. g g æ g g g - æ g g g - æ g g g - g (5) Учебники: Н.И.Бузухов Основы теории упругости пластичности и ползучести. О.И.Теребушко Основы теории упругости и пластичности. Кац. Теория упругости

2 Уравнения Ламэ и уравнения Бельтрами Задачи теории упругости можно формулировать и решать в напряжениях ив перемещениях в зависимости от того что в первую очередь требуется определить.. В первом случае за неизвестные величины принимаются напряжения. Тогда для нахождения 6 неизвестных функций координат s s s t t t нужно иметь шесть уравнений. Из уравнений равновесия эти величины непосредственно не определяются: трех уравнений оказывается недостаточно. И тогда используют уравнения совместности записанные с помощью () через напряжения: ( n) Ds ( n) Ds ( n) Ds (6) ( n) Dt ( n) Dt ( n) Dt где D... º Ñ... º Это и есть уравнения Бельтрами s s s s Задачи теории упругости можно непосредственно решать в перемещениях. Для этого следует записать уравнения равновесия в перемещениях. Это можно сделать выразив компоненты тензора напряжений через перемещения и подставив их в () или в (4). Окончательные уравнения можно представить в виде (7) q ( l m) mdu X q ( ) v l m mdv Y q ( ) l m md Z Это и есть уравнения Ламе в теории упругости. В векторном виде имеем ( l m) ÑÑ u mdu F q kk Аналогичным образом в перемещениях можно представить и краевые условия (8) Для практических задач интерес представляют две предельные ситуации: плоское напряженное и плоское деформированное состояния. Пример.. Если тонкая пластинка нагружена усилиями приложенными на ее границе параллельно плоскости пластинки и равномерно распределенными по толщине то компоненты напряжений s t t на обеих поверхностях пластинки равны нулю и можно предварительно предположить что они равны нулю и внутри пластинки. Тогда напряженное состояние будет определяться только компонентами s s t Можно также предположить что эти компоненты не зависят от т.е. не меняются по толщине пластинки а являются функциями только и. из соотношений Коши остается всего три æ u Тензор деформаций é Система уравнений равновесия s t t s закон Гука Пример. Подобные упрощения возможны и в другом предельном случае когда размер тела в направлении очень велик. Примером может быть длинное цилиндрическое или призматическое тело нагруженное силами которые перпендикулярны продольной оси тела и не меняются по его длине (а). Еще одним примером может быть тело помещенное между двумя абсолютно твердыми плитами расстояние между которыми остается неизменным и сжимаемое силами параллельными плоскостям плит (б) б а és s t t s s В этом случае задача также сводится к нахождению компонент тензора напряжений s s и t как функций координат и а компонента тензора напряжений s (так же как и компоненты тензора деформаций отличные от нуля) находится из соотношений закона Гука: s n ( s s )

3 уравнения состояния для термоупругого тела Из () для малых деформаций и изотропного тела Уравнение баланса энергии для упругого тела: - u Ts si i Изотропное тело Основные уравнения термоупругости c bi s T i T s i -b i T iab ab (9) () [ l - a ( T )] s i m i i kk K T -T æ si F i u -Ñ J T s Ñv t u éc T i i T bi si t ë T t t t T i c -Ñ JT -Tbi s c T i bi t T t t () () T æ T æ T æ T c K T kk lt lt lt - at () Температура еще одна искомая переменная s i F i i T c K T kk -Ñ JT - at æ i i i [ l - a ( T )] s i m i i kk K T -T Если i имеем квазистатические задачи теории термоупругости Ka T kk T несвязанные задачи теории термоупругости T i и статические задачи (поля напряжений порождаемые стационарными температурными полями) Выражения для деформаций через перемещения: Декартова система координат u ( u u u ) æ u æ u æ Цилиндрическая система координат u ( u u ) ( ) u u æ u æ æ u æ Сферическая система координат u ( u ) Q Q ( Q) u u q u u ctgq q sinq u æ u q - q q q qq q q æ u æ uctgq q q - - sin q sin q q. Уравнения равновесия Цилиндрическая система координат: s s s - s q qq K q sq s s s qq q q Kq q s s s q K q Сферическая система координат: s s s - s - s s q qq ctg sin q sq s s s s qq q q q ctg q sin q s sq s sin q ( s - s ) qq ctg s

4 F ЗАДАЧИ.Однородная деформация p F S - нормальное к S напряжение S площадь сечения Однородная деформация все компоненты тензора деформаций одинаковы по всему объему т.е. не зависят от координат В этом случае все компоненты тензора напряжений кроме s нулю равны На торце единственная компонента вектора нормали отличная от нуля это n можно записать граничное условие s p В результате все компоненты тензора деформаций отличные от нуля найдем из соотношения закона Гука æ p K - - m æ p K m Предположение об однородной деформации идеализация которую сложно реализовать экспериментально.. Определить модуль сдвига из опыта принципиальная схема которого показана на рисунке u F F s S Из соотношений Коши находим: единственная компонента тензора напряжений отличная от нуля Смещение любой точки бруска происходит вдоль оси ; смещением вдоль других осей можно пренебречь. u u u tg» æ u u tg» С другой стороны из закона Гука находим: Из рисунка следует: F s m m S tg ( )» F m S.Определить деформацию шара под действием собственного веса Сила тяготения направлена противоположно радиус-вектору f - g Если шар изотропное тело то задача становится симметричной и одномерной. Выбираем сферическую систему координат: u u u( ) q u В этих условиях остается единственное уравнение равновесия: si mi ilkk s - s - s qq g - u u qq Остальные компоненты тензора деформаций равны нулю u s m l[ qq] ( l m) l Из общих соотношений для компонент тензора деформаций находим: () ( l m) m G или ( n) æ ( n )( - n ) n () ( u) A A g l ( -n ) ( n)( - n) [ ] ( l m) u s m l qq l u s sqq ( m l) l Подставляя напряжения выраженные через перемещения в уравнение равновесия и собирая подобные слагаемые найдем Л.: u g - - () s (4) Г.у.: u ( ) < ; ( ) Общее решение уравнения (): u () A (5) Постоянные интегрирования находим из г.у. Для того чтобы воспользоваться вторым условием этого нам нужно выразить напряжения через деформации из ()

5 подставляем в () A Находим: u A qq s æ æ A l A ( l m) Используя условие (4) находим: -n - A n A é- n æ В результате находим: u() - - n A é æ ë -n - n Следовательно внутри шара существует недеформированная в радиальном направлении поверхность где Распределения компонент тензора напряжений находим с помощью закона Гука (6) 4.Определить деформацию длинной полой цилиндрической трубы заполненной газом или жидкостью с давлением p. Давление снаружи отсутствует силой тяжести можно пренебречь. Здесь нам потребуется цилиндрическая система координат с осью направленной вдоль оси цилиндра. В соответствии с законом Паскаля давление внутри трубы изотропно и действует во всех направлениях одинаково. Следовательно деформация стенок трубы происходит только в радиальном направлении. Задача вновь p становится одномерной. Уравнение равновесия в цилиндрической системе координат Компоненты тензора деформаций Из соотношений Дюамеля- Неймана s - s u [ ] ( l m) () u s m l l u s m l[ ] ( l m) l éu s l[ ] l ë () () Используя первые два соотношения () из () находим æ ( u) Г.у.: s ( ) p s ( ) - Общее решение: u() (4) (5) - (6) u Подставляя (7) в г.у. приходим к системе уравнений: é - ( n)( - n) - ( - n) - p ( - n) Далее последовательно находим: é p u() ( n) ( -n) - é p () ( n) ( - n) - - é p () ( n) ( -n) - ë p - p ( ) n - ( n)( - n) s é ( ) ( )( ) - - n n - n ë (7) s é p - - ë () ( )( ) ( ) é s - n n - n - ë ( )( ) ( ) pn s n º n - n - [ ] p n º

6 5.Определить деформацию сплошного цилиндра равномерно вращающегося вокруг своей оси с угловой скоростью ω. Силой тяжести пренебречь. Система координат - цилиндрическая На единицу массы цилиндра в точке с радиус-вектором действует центробежная сила f В соответствии с условиями деформация цилиндра происходит только в направлении и только под действием этой силы Отличается от æ ( n)( - n) предыдущей u - ( -n) задачи только правой частью () u ( ) < ; s ( ) и г.у.! Уравнение равновесия: ( ) ( n)( -n) ( -n) u() - () 8 С. Чтобы найти С поступаем аналогично предыдущему: определяем деформации подставляем их в соотношение для напряжений используем внешнее граничное условие находим С затем перемещения и т.д. 6.Найти напряжения в полом цилиндре вызванные неравномерностью его нагрева. Силой тяжести и внешним давлением пренебрегаем. T T ( ) - заданная функция Пренебрегая влиянием торцов можно считать что сечения трубы перпендикулярные к ее оси остаются плоскими и работают в одинаковых условиях так что радиальные перемещения зависят только от радиуса перемещения в направлении угла отсутствуют. u u Относительное удлинение в направлении пока неизвестно но гипотеза плоских сечений позволяет считать что const Эта величина будет явно присутствовать во всех формулах и потребует определения на основе дополнительного условия. Уравнение равновесия уже знакомо s s - s qq () Г.у.: s ( ) s( ) () () Из соотношений Дюамеля-Неймана найдем Первый интеграл уравнения (5) есть или s ( l m) l( )- s K s ( l m) l( )- K ( l m) l( )- s K s s s ( - n) u n æ u - ( - n)( n) ( - n)( n) ( - n) ( - n) u n æ u - ( - n)( n) ( - n)( n) ( - n) s s ( - n) n æ u u. - ( - n)( n) ( - n)( n) ( - n) Подставляя первые два соотношения (4) в уравнение равновесия () найдем u u u n - (5) - n (4) n ( u) (6) - n Последующее интегрирование дает u n ò ( ) (7) - n или * a u() () ; ò q * ( n) a a ( - n) ; q T -T é n () () n - ; - () - n ò - n ò С помощью (7) из соотношений Дюамеля-Неймана находим: é * ( ) ( ) n a s - - ( ) ò q n - n - n ë Пока у нас три неизвестные постоянные а условий. (9) (8)

7 Для осевых напряжений получаем формулу Еще одним условием будет интегральное условие равновесия: Это условие имеет место для цилиндра со свободными от нагрузки торцевыми поверхностями. Это условие означает что труба не несет осевой нагрузки. Трех условий достаточно чтобы найти неизвестные величины Из (9) и соотношений Дюамеля-Неймана B s - ( ) A- ; ( - n) ò B s () - A ( -n) ò - n A ( - n)( n) é n ; ë () ò s () B n () s - ( - n) ( - n )( n) - ( - n ) n An -. ( - n ) ( - n )( n) Воспользовавшись граничными условиями найдем систему уравнений для определения постоянных A и B Следовательно: B A - - () A- ( -n) ò ( - n) a* qm - n a* qm B qm q - ò В результате найдем: -среднее значение приращения температуры в пределах поперечного сечения трубы Для того чтобы найти осевую деформацию постоянную для всех сечений трубы имеем равенство é - ò ë ( - n) An - ; - cp é a æ æ s - - ( ) q m q -n ò ë é a æ æ s - ( ) q m q q -n ò ë a s qm -q -n ( ) [ ] Примеры заданий:. Исследовать эволюцию поля напряжений в двухслойной пластине (например титан-железо; железо-медь никель-медь) при ее нагреве тепловым потоком постоянной интенсивности. Свойства металлов считать постоянными (или вычислить как среднеинтегральные значения в интересующем диапазоне температур).. Исследовать влияние зависимости модуля упругости материала от температуры на эволюцию полей напряжений и деформаций в толстой пластине при ее нагреве тепловым потоком равномерно распределенным по ее поверхности. В качестве объектов исследования выбрать пластины изготовленные например из железа меди и титана. Сравнить как изменятся поля напряжений и деформаций для постоянных (среднеинтегральных) модулей упругости и модулей упругости зависящих от температуры.. Исследовать эволюцию поля напряжений в пластине конечных размеров для двух материалов с различными свойствами которые считать постоянными.

Лекция 3. Плоская задача теории упругости.

Лекция 3. Плоская задача теории упругости. Лекция 3 Плоская задача теории упругости. 3.1 Плоское напряженное состояние. 3. Плоская деформация. 3.3 Основные уравнения плоской задачи. 3.4 Использование функции напряжений 3.5 Решение плоской задачи

Подробнее

Пособие для подготовки курсовых проектов по курсу лекций ТЕПЛОФИЗИЧЕСКИЕ ОСНОВЫ СОВРЕМЕННЫХ МЕТОДОВ МЕТАЛЛООБРАБОТКИ. Князева А.Г.

Пособие для подготовки курсовых проектов по курсу лекций ТЕПЛОФИЗИЧЕСКИЕ ОСНОВЫ СОВРЕМЕННЫХ МЕТОДОВ МЕТАЛЛООБРАБОТКИ. Князева А.Г. Пособие для подготовки курсовых проектов по курсу лекций ТЕПЛОФИЗИЧЕСКИЕ ОСНОВЫ СОВРЕМЕННЫХ МЕТОДОВ МЕТАЛЛООБРАБОТКИ Князева АГ Содержание Часть Тензор напряжений Тензор деформаций 3 Основные уравнения

Подробнее

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны Лекция 9. Теорема о разгрузке. Итак, рассмотрен ряд теорий о поведении материала за пределами упругости. Теперь обратимся к другому вопросу: что будет, если начать разгружать образец, который уже находится

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Доц. Кузьменко В.С. ЛАБОРАТОРНАЯ РАБОТА -: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Студент группы Допуск Выполнение Защита Цель работы: изучить виды деформации твердого тела и определить

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА М-8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ Цель работы: определение модуля сдвига и момента инерции диска методом крутильных колебаний. Приборы и принадлежности:

Подробнее

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3.1. Сопротивление материалов. Задачи и определения. Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Первая задача сопротивления

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение 1. Электростатика 1 1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Уравнение для потенциала с источниками зарядами) уравнение Пуассона и уравнение без источников уравнение Лапласа Уравнение Пуассона

Подробнее

r 2 r. E + = 2κ a, E = 2κ a

r 2 r. E + = 2κ a, E = 2κ a 1. Электростатика 1 1. Электростатика Урок 2 Теорема Гаусса 1.1. (1.19 из задачника) Используя теорему Гаусса, найти: а) поле плоскости, заряженной с поверхностной плотностью σ; б) поле плоского конденсатора;

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными Растяжение (сжатие) элементов конструкций. Определение внутренних усилий, напряжений, деформаций (продольных и поперечных). Коэффициент поперечных деформаций (коэффициент Пуассона). Гипотеза Бернулли и

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 26. Т. 47, N- 6 129 УДК 539.3 ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ В. В. Калашников, М. И. Карякин Ростовский

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

Указания по выбору рисунка и варианта и рекомендации по оформлению курсовой работы

Указания по выбору рисунка и варианта и рекомендации по оформлению курсовой работы ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИНСТИТУТ ДИСТАНЦИОННОГО

Подробнее

Л-1: ; Л-2: с

Л-1: ; Л-2: с Лекция 8 Волновое движение Распространение колебаний в однородной упругой среде Продольные и поперечные волны Уравнение плоской гармонической бегущей волны смещение, скорость и относительная деформация

Подробнее

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A Лекция 05 Изгиб Проверка прочности балок Опыт показывает, что при нагружении призматического стержня с прямой осью силами и парами сил, расположенными в плоскости симметрии, наблюдаются деформации изгиба

Подробнее

5. Динамика вращательного движения твердого тела

5. Динамика вращательного движения твердого тела 5. Динамика вращательного движения твердого тела Твердое тело это система материальных точек, расстояния между которыми не меняются в процессе движения. При вращательном движении твердого тела все его

Подробнее

5. Слоистые течения в движущихся системах. 5.1 Установившееся течение между двумя вращающимися коаксиальными цилиндрами

5. Слоистые течения в движущихся системах. 5.1 Установившееся течение между двумя вращающимися коаксиальными цилиндрами Лекция 6 5. Слоистые течения в движущихся системах 5. Установившееся течение между двумя вращающимися коаксиальными цилиндрами Рассмотрим геометрию, показанную на рис..5. Зазор между двумя коаксиальными

Подробнее

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6 Тема 5 Напряженное и деформированное состояние в точке. Лекция 6 Объемное напряженное состояние. 6. Главные напряжения и главные площадки. 6. Площадки экстремальных касательных напряжений. 6. Деформированное

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 4. ОБЪЕМНОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ И ТЕОРИИ ПРОЧНОСТИ

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 4 ИЗМЕРЕНИЕ МОМЕНТОВ ИНЕРЦИИ И МОДУЛЯ СДВИГА ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА 4 ИЗМЕРЕНИЕ МОМЕНТОВ ИНЕРЦИИ И МОДУЛЯ СДВИГА ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА 4 ИЗМЕРЕНИЕ МОМЕНТОВ ИНЕРЦИИ И МОДУЛЯ СДВИГА ТВЕРДЫХ ТЕЛ МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ Цель работы: 1. Изучить динамику и кинематику крутильных колебаний.. Измерить моменты инерции твердых

Подробнее

Тычина К.А. III. К р у ч е н и е

Тычина К.А. III. К р у ч е н и е Тычина К.А. tychina@mail.ru К р у ч е н и е Крутящим называют момент, вектор которого направлен вдоль оси стержня. Кручением называется такое нагружение стержня, при котором в его поперечных сечениях возникает

Подробнее

1.4. ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА, МОМЕНТА ИМПУЛЬСА И ЭНЕРГИИ. и ее масса и скорость). Из закона изменения импульса системы

1.4. ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА, МОМЕНТА ИМПУЛЬСА И ЭНЕРГИИ. и ее масса и скорость). Из закона изменения импульса системы Импульс системы n материальных точек ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА, МОМЕНТА ИМПУЛЬСА И ЭНЕРГИИ где импульс i-й точки в момент времени t ( i и ее масса и скорость) Из закона изменения импульса системы где

Подробнее

Тема 1.4. Динамика вращательного движения

Тема 1.4. Динамика вращательного движения Тема 1.4. Динамика вращательного движения План 1. Момент импульса частицы. Момент силы 3. Уравнение моментов 4. Собственный момент импульса 5. Динамика твердого тела 6. Момент инерции 7. Кинетическая энергия

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ УПРУГОСТИ

ЭЛЕМЕНТЫ ТЕОРИИ УПРУГОСТИ РОСЖЕЛДОР Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ростовский государственный университет путей сообщения» (ФГБОУ ВПО РГУПС) ТВ Суворова ЭЛЕМЕНТЫ

Подробнее

Исследование радиальных деформаций ротора молекулярно вязкостного вакуумного насоса

Исследование радиальных деформаций ротора молекулярно вязкостного вакуумного насоса Исследование радиальных деформаций ротора молекулярно вязкостного вакуумного насоса # 09, сентябрь 014 Никулин Н. К., Свичкарь Е. В. УДК: 81.9.14 Россия, МГТУ им. Н.Э. Баумана svic@bk.u МВВН [1,, 3] представляет

Подробнее

b + a + l + (Рис. 1) (8.2)

b + a + l + (Рис. 1) (8.2) Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

Подробнее

Рис. 5. А.К. Попов ОСЕВОЕ РАСТЯЖЕНИЕ СТЕРЖНЯ В РАМКАХ МОМЕНТНОЙ ТЕОРИИ УПРУГОСТИ

Рис. 5. А.К. Попов ОСЕВОЕ РАСТЯЖЕНИЕ СТЕРЖНЯ В РАМКАХ МОМЕНТНОЙ ТЕОРИИ УПРУГОСТИ Рис. 5 Данные фильмы позволяют преподавателю сократить время изложения данного материала, повысить наглядность, и, в конечном счете, помогает студентам усвоить материал, ведь в нужное время масштабируемый

Подробнее

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ

ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ КАФЕДРА СТРОИТЕЛЬНОЙ МЕХАНИКИ ПЛОСКАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ Методические указания к упражнениям и расчетной

Подробнее

Деформированное состояние в точке. Связь между деформациями и напряжениями

Деформированное состояние в точке. Связь между деформациями и напряжениями Деформированное состояние в точке. Связь между деформациями и напряжениями. Деформированным состоянием в точке называется (-ются) ОТВТ: ) совокупность деформаций в точке; ) совокупность нормальных и касательных

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

1. Геометрия масс (продолжение) Рис. 10.1

1. Геометрия масс (продолжение) Рис. 10.1 ЛЕКЦИЯ 10 ЭЛЛИПСОИД ИНЕРЦИИ. КИНЕТИЧЕСКИЙ МОМЕНТ И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ПРИ ВРАЩЕНИИ ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ. ДИНАМИЧЕСКИЕ УРАВНЕНИЯ ЭЙЛЕРА. СЛУЧАЙ ЭЙЛЕРА 1. Геометрия масс (продолжение) Рис. 10.1 Выберем

Подробнее

А. В. Бенин, О. В. Козьминская, Н. И. Невзоров, И. Б. Поварова, И. И. Рыбина. ТЕОРИЯ УПРУГОСТИ Задачи и примеры. Учебное пособие

А. В. Бенин, О. В. Козьминская, Н. И. Невзоров, И. Б. Поварова, И. И. Рыбина. ТЕОРИЯ УПРУГОСТИ Задачи и примеры. Учебное пособие ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Государственное образовательное учреждение высшего профессионального образования "ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ " (ПГУПС) А.

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1

Труды международного симпозиума «Надежность и качество 2009», Пенза том 1 Труды международного симпозиума «Надежность и качество 009», Пенза том Горячев ВЯ, Савин АВ ОПРЕДЕЛЕНИЕ СВЯЗИ МЕЖДУ УСКОРЕНИЕМ И ПОПЕРЕЧНОЙ ДЕФОРМАЦИЕЙ УПРУГОГО ЭЛЕМЕНТА ДАТЧИКА Упругий элемент является

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

Лекция 4. Динамика вращательного движения твердого тела. План лекции

Лекция 4. Динамика вращательного движения твердого тела. План лекции 5 Лекция 4 Динамика вращательного движения твердого тела План лекции гл4 6-9 Момент инерции Момент силы 3 Основное уравнение динамики вращательного движения Момент инерции При рассмотрении вращательного

Подробнее

ВОЛНЫ. Лекция 5 Волны в упругой среде Лекция 6 Энергия упругих волн. Стоячие волны Лекция 7 Электромагнитные волны

ВОЛНЫ. Лекция 5 Волны в упругой среде Лекция 6 Энергия упругих волн. Стоячие волны Лекция 7 Электромагнитные волны ВОЛНЫ Лекция 5 Волны в упругой среде Лекция 6 Энергия упругих волн Стоячие волны Лекция 7 Электромагнитные волны 39 ЛЕКЦИЯ 5 ВОЛНЫ В УПРУГОЙ СРЕДЕ Упругие волны Основные определения для волнового процесса

Подробнее

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Работа переменной силы. Масса и заряд материальной кривой. Статические моменты и центр тяжести материальной кривой и плоской

Подробнее

Хабаровск Издательство ТОГУ

Хабаровск Издательство ТОГУ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет».частные

Подробнее

Теорема Гаусса. Применение теоремы Гаусса к расчету полей

Теорема Гаусса. Применение теоремы Гаусса к расчету полей Теорема Гаусса Применение теоремы Гаусса к расчету полей Основные формулы Электростатическое поле можно задать, указав для каждой точки величину и направление вектора Совокупность этих векторов образует

Подробнее

ЛЕКЦИЯ 7 ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КОЛИЧЕСТВА ДВИЖЕНИЯ И КИНЕТИЧЕСКОГО МОМЕНТА. МОМЕНТ ИНЕРЦИИ

ЛЕКЦИЯ 7 ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КОЛИЧЕСТВА ДВИЖЕНИЯ И КИНЕТИЧЕСКОГО МОМЕНТА. МОМЕНТ ИНЕРЦИИ ЛЕКЦИЯ 7 ТЕОРЕМЫ ОБ ИЗМЕНЕНИИ КОЛИЧЕСТВА ДВИЖЕНИЯ И КИНЕТИЧЕСКОГО МОМЕНТА. МОМЕНТ ИНЕРЦИИ Рис. 7.1 Пусть система состоит из точек P, ν = 1, 2,, N. Начало отсчёта обозначим как O, радиус-вектор точки P

Подробнее

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ Профессор, д.т.н. Богус Ш.Н., студент КубГАУ Лысов Д.С., Пономарев Р.В. Кубанский государственный аграрный университет Краснодар, Россия При увеличении пропускной способности

Подробнее

3.2. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА. РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА-БОЛЬЦМАНА

3.2. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА. РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА-БОЛЬЦМАНА МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА-БОЛЬЦМАНА Системой рассматриваемой в классической молекулярно-кинетической теории газов является разреженный газ состоящий из N молекул

Подробнее

E 0 e -i t. rot E = 1 c. c div D = 0, c 2. z 2 + k2 E = 0, 2 E

E 0 e -i t. rot E = 1 c. c div D = 0, c 2. z 2 + k2 E = 0, 2 E 1 Квазистационарные явления 1 1 Квазистационарные явления Урок 6 Скин-эффект Базовые решения - плоскость, шар, цилиндр 11 (Задача 676)Полупространство Z заполнено проводником с проводи- E e -i t мостью

Подробнее

ϕ 2 (x) 2 q l ln x a + A, A = q ( 2 q l ln 1 + q l B = q l C = ϕ 3 (0) = q B = ϕ 1 (x) = q x.

ϕ 2 (x) 2 q l ln x a + A, A = q ( 2 q l ln 1 + q l B = q l C = ϕ 3 (0) = q B = ϕ 1 (x) = q x. Урок 2 Емкость Задача 20) Оценить емкость: а) металлической пластинки с размерами h a и б) цилиндра с a Решение а) Рассмотрим потенциал пластины на расстояниях x На этом расстоянии можно всю пластину считать

Подробнее

площадке компоненты (σn и τn соответственно). Пусть S- площадь наклонной площадки, тогда равенство сил в направлении нормали запишется в виде:

площадке компоненты (σn и τn соответственно). Пусть S- площадь наклонной площадки, тогда равенство сил в направлении нормали запишется в виде: Круги Мора Рассмотрим некоторый элемент (см. рис. в системе координат главных осей. Так как оси (ось перпендикулярна плоскости рис.- главные, то касательные напряжения на площадках, перпендикулярных к

Подробнее

2. Проводники и диэлектрики в электрическом поле. Конденсаторы.

2. Проводники и диэлектрики в электрическом поле. Конденсаторы. Проводники и диэлектрики в электрическом поле Конденсаторы Напряженность электрического поля у поверхности проводника в вакууме: σ E n, где σ поверхностная плотность зарядов на проводнике, напряженность

Подробнее

x i dt + ξ α 1 ( ) ε iα = 1 2 ( vi x α + vα x i ).

x i dt + ξ α 1 ( ) ε iα = 1 2 ( vi x α + vα x i ). Тензор скоростей деформации. Чтобы замкнуть систему пяти дифференциальных уравнений, состоящую из законов сохранения, делают различные предположения о свойствах сплошной среды. Пусть за время dt вектор

Подробнее

Таким образом, мы пришли к закону (5).

Таким образом, мы пришли к закону (5). Конспект лекций по курсу общей физики Часть II Электричество и магнетизм Лекция. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ (продолжение).4. Теорема Остроградского Гаусса. Применение теоремы Докажем теорему для частного

Подробнее

Министерство образования и науки Российской Федерации НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ (ННГАСУ)

Министерство образования и науки Российской Федерации НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ (ННГАСУ) 1 Министерство образования и науки Российской Федерации НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ (ННГАСУ) Кафедра теоретической механики ИНТЕРНЕТ-ТЕСТИРОВАНИЕ ПО ТЕОРЕТИЧЕСКОЙ

Подробнее

Лабораторная работа 5. Краткая теория

Лабораторная работа 5. Краткая теория Лабораторная работа 5 Определение модуля сдвига по крутильным колебаниям Целью работы является изучение деформации сдвига и кручения, определение модуля сдвига металлического стержня. Краткая теория Модуль

Подробнее

1 = = 0. (1) R + 1 = C, (2) 1(R)

1 = = 0. (1) R + 1 = C, (2) 1(R) . Электростатика. Электростатика Урок 7 Разделение переменных в сферической и цилиндрической системах координат Оператор Лапласа в сферической системе координат записывается в виде = 2 = 2 ) + sin θ )

Подробнее

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации Теория деформированного состояния Понятие о тензоре деформаций, главные деформации Обобщенный закон Гука для изотропного тела Деформация объема при трехосном напряженном состоянии Потенциальная энергия

Подробнее

IX Электростатика. Метод суперпозиции и теорема Гаусса. Диэлектрики

IX Электростатика. Метод суперпозиции и теорема Гаусса. Диэлектрики IX Электростатика. Метод суперпозиции и теорема Гаусса. Диэлектрики Обладать зарядом - одно из свойств материи, такое же, как обладать массой. Заряженные тела создают вокруг себя особый вид материальной

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ. 1.Изучить условия возникновения продольной стоячей волны в упругой среде.

ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ. 1.Изучить условия возникновения продольной стоячей волны в упругой среде. Цель работы: ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ 1.Изучить условия возникновения продольной стоячей волны в упругой среде..измерить скорость распространения упругих

Подробнее

Лабораторная работа 8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ. Краткая теория

Лабораторная работа 8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ. Краткая теория Лабораторная работа 8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МЕТОДОМ КРУТИЛЬНЫХ КОЛЕБАНИЙ. Цель работы: определить модуль сдвига материала проволоки методом крутильных колебаний. Краткая теория. Деформация кручения

Подробнее

ПЛАСТИЧЕСКОЕ ТЕЧЕНИЕ БЫСТРОВРАЩАЮЩЕЙСЯ КОНИЧЕСКОЙ ТРУБЫ. (Институт механики НАН РА)

ПЛАСТИЧЕСКОЕ ТЕЧЕНИЕ БЫСТРОВРАЩАЮЩЕЙСЯ КОНИЧЕСКОЙ ТРУБЫ. (Институт механики НАН РА) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 007 Задоян М А ПЛАСТИЧЕСКОЕ ТЕЧЕНИЕ БЫСТРОВРАЩАЮЩЕЙСЯ КОНИЧЕСКОЙ ТРУБЫ (Институт механики НАН РА) Исследуется предельное пластическое состояние

Подробнее

ОГЛАВЛЕНИЕ. Предисловие... 3 ЧАСТЬ ПЕРВАЯ

ОГЛАВЛЕНИЕ. Предисловие... 3 ЧАСТЬ ПЕРВАЯ ОГЛАВЛЕНИЕ Предисловие... 3 ЧАСТЬ ПЕРВАЯ Глава первая Растяжение и сжатие......6 1.1. Продольная сила...6 1.2. Нормальные напряжения, абсолютное удлинение и потенциальная энергия...8 1.3. Поперечная деформация

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

ЛЕКЦИЯ 8. Столкновения. Понятие столкновения. Упругое и неупругое столкновения. Векторные диаграммы. Самопроизвольный распад частиц.

ЛЕКЦИЯ 8. Столкновения. Понятие столкновения. Упругое и неупругое столкновения. Векторные диаграммы. Самопроизвольный распад частиц. ЛЕКЦИЯ 8 Столкновения Понятие столкновения Упругое и неупругое столкновения Векторные диаграммы Самопроизвольный распад частиц Элементарная теория удара Удар явление, при котором за ничтожно малый промежуток

Подробнее

Глава 4 Механика твердого тела 14. Момент инерции. При изучении вращения твердого тела пользуются понятием момента инерции.

Глава 4 Механика твердого тела 14. Момент инерции. При изучении вращения твердого тела пользуются понятием момента инерции. При изучении вращения твердого тела пользуются понятием момента инерции Глава 4 Механика твердого тела 4 Момент инерции Моментом инерции системы (тела) относительно оси вращения называется физическая величина,

Подробнее

1. ВВЕДЕНИЕ. Физика это наука о наиболее общих свойствах и формах движения материи.

1. ВВЕДЕНИЕ. Физика это наука о наиболее общих свойствах и формах движения материи. 1. ВВЕДЕНИЕ Физика это наука о наиболее общих свойствах и формах движения материи. В механической картине мира под материей понималось вещество, состоящее из частиц, вечных и неизменных. Основные законы,

Подробнее

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ УДК 539.3 АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ к.ф.-м.н. 1 Чигарев А.В., асп. 2 Покульницкий А.Р. 1 Белорусский национальный технический университет,

Подробнее

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3.. Напряжения Уровень оценки прочности по нагрузке отличают простота и доступность. Расчеты при этом чаще всего минимальны - требуется определить только саму нагрузку. Для

Подробнее

В.А. МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В КОНСТРУКЦИЯХ РЭС ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ УДАРНОМ ВОЗБУЖДЕНИИ МОДЕЛИ

В.А. МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В КОНСТРУКЦИЯХ РЭС ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ УДАРНОМ ВОЗБУЖДЕНИИ МОДЕЛИ Таньков Г.В., Селиванов В.Ф., Трусов В.А. МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В КОНСТРУКЦИЯХ РЭС ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ УДАРНОМ ВОЗБУЖДЕНИИ МОДЕЛИ Действие динамических внешних нагрузок на радиоэлектронные

Подробнее

МОДУЛЬ 1. ТЕПЛОПРОВОДНОСТЬ Специальность «Техническая физика» Температурное поле с цилиндрической стенке при граничных условиях первого рода

МОДУЛЬ 1. ТЕПЛОПРОВОДНОСТЬ Специальность «Техническая физика» Температурное поле с цилиндрической стенке при граничных условиях первого рода МОДУЛЬ ТЕПЛОПРОВОДНОСТЬ Специальность 300 «Техническая физика» Лекция 4 Теплопроводность цилиндрической стенки без внутренних источников тепла Температурное поле с цилиндрической стенке при граничных условиях

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Подробнее

А.И. ЧАНЫШЕВ, И.М.АБДУЛИН. Институт горного дела СО РАН, Россия ЗАПРЕДЕЛЬНОЕ ДЕФОРМИРОВАНИЕ ГОРНЫХ ПОРОД В ЗАДАЧАХ ПЛОСКОГО ДЕФОРМИРОВАННОГО СОСТОЯНИЯ

А.И. ЧАНЫШЕВ, И.М.АБДУЛИН. Институт горного дела СО РАН, Россия ЗАПРЕДЕЛЬНОЕ ДЕФОРМИРОВАНИЕ ГОРНЫХ ПОРОД В ЗАДАЧАХ ПЛОСКОГО ДЕФОРМИРОВАННОГО СОСТОЯНИЯ СОВРЕМЕННЫЕ ПРОБЛЕМЫ МЕХАНИКИ СПЛОШНЫХ СРЕД Выпуск тринадцатый 0 г АИ ЧАНЫШЕВ ИМАБДУЛИН Институт горного дела СО РАН Россия ЗАПРЕДЕЛЬНОЕ ДЕФОРМИРОВАНИЕ ГОРНЫХ ПОРОД В ЗАДАЧАХ ПЛОСКОГО ДЕФОРМИРОВАННОГО

Подробнее

ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы)

ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы) В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы) 1 Классификация внутренних силовых факторов

Подробнее

ОБЩАЯ ТЕОРИЯ УПРУГОСТИ

ОБЩАЯ ТЕОРИЯ УПРУГОСТИ Глава 1 ОБЩАЯ ТЕОРИЯ УПРУГОСТИ 1.1 ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ 1.1.1 Упругость. Сплошная среда Опыт показывает, что твердое тело под влиянием внешних воздействий изменяет свою форму. К внешним воздействиям

Подробнее

Динамика вращательного движения. Лекция 1.4.

Динамика вращательного движения. Лекция 1.4. Динамика вращательного движения Лекция 1.4. План лекции 1. Динамика вращения точки и тела вокруг постоянной оси, понятие о моменте инерции материальной точки и тела.. Изменение момента инерции тела при

Подробнее

ВВЕДЕНИЕ. Кафедра ТПМ ДонНАСА

ВВЕДЕНИЕ. Кафедра ТПМ ДонНАСА ВВЕДЕНИЕ Условие каждого задания расчетно-графической работы сопровождается десятью рисунками и двумя таблицами числовых значений заданных величин. Выбор вариантов совершается согласно с шифром студента.

Подробнее

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ДИНАМИЧЕСКИЕ ДЕФОРМАЦИИ ЗАМКНУТЫХ ЦИЛИНДРИЧЕСКИХ СОСУДОВ

ПРЕДЕЛЬНО ДОПУСТИМЫЕ ДИНАМИЧЕСКИЕ ДЕФОРМАЦИИ ЗАМКНУТЫХ ЦИЛИНДРИЧЕСКИХ СОСУДОВ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 1. Т. 51 N- 4 183 УДК 539.3 ПРЕДЕЛЬНО ДОПУСТИМЫЕ ДИНАМИЧЕСКИЕ ДЕФОРМАЦИИ ЗАМКНУТЫХ ЦИЛИНДРИЧЕСКИХ СОСУДОВ Ю. В. Немировский Институт теоретической и прикладной

Подробнее

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Глава 8 СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 8.1. Шарнирно закрепленное твердое тело на упругих стержнях Постановка задачи. Определить усилия в стержнях статически неопределимой системы, состоящей из шарнирно

Подробнее

Лекции 10. Тензор напряжений

Лекции 10. Тензор напряжений Тензор напряжений Лекции Упругие напряжения и обратимые деформации Тензор напряжений. Самые простые операции с тензорами. Тензор деформаций. Закон Гука. Соотношения Дюамеля-Неймана. Термодинамическое обоснование

Подробнее

Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» А. А. Мироненко

Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» А. А. Мироненко Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» А А Мироненко ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ДИНАМИКА ОПРЕДЕЛЕНИЕ ДОПОЛНИТЕЛЬНЫХ ДИНАМИЧЕСКИХ РЕАКЦИЙ ПОДШИПНИКОВ

Подробнее

Лабораторная работа 5.2 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА

Лабораторная работа 5.2 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Глава 5. Упругие деформации Лабораторная работа 5. ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Цель работы Определение модуля Юнга материала равнопрочной балки и радиуса кривизны изгиба из измерений стрелы

Подробнее

Новосибирский государственный технический университет, Новосибирск

Новосибирский государственный технический университет, Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 3. Т. 44, N- 4 35 УДК 539.3 ФУНДАМЕНТАЛЬНЫЕ РЕШЕНИЯ В ЗАДАЧАХ ИЗГИБА АНИЗОТРОПНЫХ ПЛАСТИН В. Н. Максименко, Е. Г. Подружин Новосибирский государственный технический

Подробнее

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЖИДКОСТИ, ЧАСТИЧНО ЗАПОЛНЯЮЩЕЙ ВРАЩАЮЩИЙСЯ ЦИЛИНДР С РАДИАЛЬНО РАСПОЛОЖЕННЫМИ РЕБРАМИ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЖИДКОСТИ, ЧАСТИЧНО ЗАПОЛНЯЮЩЕЙ ВРАЩАЮЩИЙСЯ ЦИЛИНДР С РАДИАЛЬНО РАСПОЛОЖЕННЫМИ РЕБРАМИ 100 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2011. Т. 52, N- 4 УДК 531.3 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЖИДКОСТИ, ЧАСТИЧНО ЗАПОЛНЯЮЩЕЙ ВРАЩАЮЩИЙСЯ ЦИЛИНДР С РАДИАЛЬНО РАСПОЛОЖЕННЫМИ РЕБРАМИ И.

Подробнее

Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я.

Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я. www.ychina.pro Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я. Вспоминаем: Оболочка это тело, один из размеров которого много меньше двух других. Этот наименьший размер

Подробнее

1.3. Теорема Гаусса.

1.3. Теорема Гаусса. 1 1.3. Теорема Гаусса. 1.3.1. Поток вектора через поверхность. Поток вектора через поверхность одно из важнейших понятий любого векторного поля, в частности электрического d d. Рассмотрим маленькую площадку

Подробнее

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск 138 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2003. Т. 44, N- 5 УДК 539.3 НЕКОТОРЫЕ ОБРАТНЫЕ ЗАДАЧИ О ДЕФОРМИРОВАНИИ И РАЗРУШЕНИИ ФИЗИЧЕСКИ НЕЛИНЕЙНЫХ НЕОДНОРОДНЫХ СРЕД И. Ю. Цвелодуб Институт гидродинамики

Подробнее

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика»

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика» Вопросы к вступительным экзаменам в аспирантуру по специальности «05.23.17 Строительная механика» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Основные понятия 1. Задачи сопротивления материалов. Стержень. Основные гипотезы

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

ЛЕКЦИЯ 5 ДИЭЛЕКТРИКИ. ОБЪЕМНЫЕ ТОКИ

ЛЕКЦИЯ 5 ДИЭЛЕКТРИКИ. ОБЪЕМНЫЕ ТОКИ ЛЕКЦИЯ 5 ДИЭЛЕКТРИКИ. ОБЪЕМНЫЕ ТОКИ 1. Диэлектрики Задача 3.53. Заряженный непроводящий шар радиуса R = 4 см разделен пополам. Шар находится во внешнем однородном поле E 0 = 300 В/см, направленному перпендикулярно

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

Тема 1.2. Механика твёрдого тела. 1. Момент инерции. В случае непрерывного распределения масс эта сумма сводится к интегралу

Тема 1.2. Механика твёрдого тела. 1. Момент инерции. В случае непрерывного распределения масс эта сумма сводится к интегралу Тема 1.. Механика твёрдого тела План. 1. Момент инерции.. Кинетическая энергия вращения 3. Момент силы. Уравнение динамики вращательного движения твёрдого тела. 4. Момент импульса и закон его сохранения.

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 12 ОТНОСИТЕЛЬНОЕ ДВИЖЕНИЕ И РАВНОВЕСИЕ НАТУРАЛЬНОЙ СИСТЕМЫ, ВРАЩАЮЩЕЙСЯ РАВНОМЕРНО ВОКРУГ НЕПОДВИЖНОЙ ОСИ

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 12 ОТНОСИТЕЛЬНОЕ ДВИЖЕНИЕ И РАВНОВЕСИЕ НАТУРАЛЬНОЙ СИСТЕМЫ, ВРАЩАЮЩЕЙСЯ РАВНОМЕРНО ВОКРУГ НЕПОДВИЖНОЙ ОСИ ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СЕМЕСТР ЛЕКЦИЯ 1 ОТНОСИТЕЛЬНОЕ ДВИЖЕНИЕ И РАВНОВЕСИЕ НАТУРАЛЬНОЙ СИСТЕМЫ, ВРАЩАЮЩЕЙСЯ РАВНОМЕРНО ВОКРУГ НЕПОДВИЖНОЙ ОСИ Лектор: Батяев Евгений Александрович Батяев Е. А. (НГУ) ЛЕКЦИЯ

Подробнее

+ = ψ, то никакого разрыва напряжений

+ = ψ, то никакого разрыва напряжений Линии разрыва напряжений Итак, линия разрыва напряжений это некоторая линия (поверхность в теле, на которой напряжения терпят разрыв Выделим мысленно в теле слой толщины δ, включающий в себя линию разрыва

Подробнее

Тема 6. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ МЕХАНИЧЕСКОЙ СИСТЕМЫ. Задание 6

Тема 6. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ МЕХАНИЧЕСКОЙ СИСТЕМЫ. Задание 6 Тема 6. ТЕОРЕМА ОБ ИЗМЕНЕНИИ КИНЕТИЧЕСКОЙ ЭНЕРГИИ МЕХАНИЧЕСКОЙ СИСТЕМЫ Задание 6 Механическая система под действием сил тяжести приходит в движение из состояния покоя; начальное положение системы показано

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21 1 ЛЕКЦИЯ 21 Электростатика. Медленно меняющиеся поля. Уравнение Пуассона. Решение уравнения Пуассона для точечного заряда. Потенциал поля системы зарядов. Напряженность электрического поля системы зарядов.

Подробнее

Рис. 36. f(x, y) dx dy = dx f(x, y) dy

Рис. 36. f(x, y) dx dy = dx f(x, y) dy Двойные интегралы Примеры решения задач 1. Свести двойной интеграл f(x, y) dx dy к повторному двумя способами (по формуле (1) и по формуле (2)), если G область, ограниченная кривыми x = 1, y = x 2, y =

Подробнее

Лекция Продольно поперечный изгиб Концентрация напряжений Продольно поперечный изгиб.

Лекция Продольно поперечный изгиб Концентрация напряжений Продольно поперечный изгиб. Лекция 3 3 Продольно поперечный изгиб 3 Концентрация напряжений 3 Продольно поперечный изгиб Рассмотрим случай одновременного действия на стержень, например с шарнирно закрепленными концами, осевой сжимающей

Подробнее

понятие момента импульса L. Пусть материальная точка A, движущаяся по окружности радиуса r, обладает импульсом

понятие момента импульса L. Пусть материальная точка A, движущаяся по окружности радиуса r, обладает импульсом Лекция 11 Момент импульса Закон сохранения момента импульса твердого тела, примеры его проявления Вычисление моментов инерции тел Теорема Штейнера Кинетическая энергия вращающегося твердого тела Л-1: 65-69;

Подробнее