Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E,

Размер: px
Начинать показ со страницы:

Download "Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы. AB = BA = E,"

Транскрипт

1 31 Обратная матрица Параграф посвящен вопросу о существовании матрицы, обратной к данной, и способам вычисления такой матрицы 1 Критерий существования и свойства обратной матрицы Определение Пусть A квадратная матрица порядка n Тогда матрица B называется обратной к A, если AB = BA = E, где E единичная матрица Квадратная матрица называется обратимой, если существует обратная к ней матрица Легко понять, что если матрица, обратная к A, существует, то она является квадратной матрицей того же порядка, что и A Матрица E, конечно, тоже будет иметь тот же порядок Теорема Если A = 0, то обратной к A матрицы не существует Если A 0, то обратная матрица существует и единственна Доказательство Обозначим порядок матрицы через n Первое утверждение доказывается несложно Действительно, если A = 0, то r(a < n, поскольку единственный минор порядка n матрицы A (те A равен нулю Но r(e = n (так как E 0, и потому равенство AB = E противоречит теореме из 30 Пусть A 0 Единственность обратной матрицы установить несложно Предположим, что есть матрицы B 1 и B 2 такие, что AB 1 = B 1 A = E и AB 2 = B 2 A = E Рассмотрим матрицу B 2 (AB 1 С одной стороны, С другой стороны, B 2 (AB 1 = B 2 E = B 2 B 2 (AB 1 = (B 2 AB 1 = EB 1 = B 1 Следовательно, B 1 = B 2 Докажем существование обратной матрицы Положим d = A Обозначим через A матрицу, составленную из алгебраических дополнений элементов матрицы A (Алгебраические дополнения расположены на тех же местах, что и соответствующие элементы Транспонируем матрицу A и

2 полученную матрицу разделим на d Убедимся в том, что полученная матрица и есть обратная к A Действительно, рассмотрим произведение a 11 a 12 a 1n A 11 A 21 A n1 a 21 a 22 a 2n 1 d A 12 A 22 A n2 a n1 a n2 a nn A 1n A 2n A nn Если элемент произведения стоит на диагонали, скажем в i-й строке и i-м столбце, то он равен 1 d (a i1a i1 + a i2 A i2 + + a in A in = 1 d d = 1, поскольку в скобках записано разложение определителя A по i-й строке Если же этот элемент стоит в i-й строке и j-м столбце и i j, то он равен 1 d (a i1a j1 + a i2 A j2 + + a in A jn = 1 d 0 = 0 (см свойство 8 в 13 Мы проверили, что AB = E Равенство BA = E проверяется аналогично Теорема доказана В частности, из доказанной теоремы вытекает Следствие 1 Квадратная матрица обратима тогда и только тогда, когда она невырожденна Матрицу, обратную к матрице A = (a ij, будем обозначать через A 1 Положим A = (A ij, где A ij алгебраическое дополнение к элементу a ij В процессе доказательства теоремы мы вывели следующую формулу для вычисления матрицы, обратной к A (в предположении, что A 0: A 1 = 1 A (A (1 Вычислим, пользуясь этой формулой, матрицу, обратную к матрице A = Ее определитель равен 3, поэтому A 1 существует (и единственна Составим матрицу A : A = Транспонируем A и все элементы транспонированной матрицы разделим на A Получим 5/3 1 4/3 A 1 = /3 1 2/3

3 Матрица, обратная к A, должна удовлетворять двум равенствам: AB = E и BA = E Однако, используя доказанную выше теорему, легко показать, что на практике достаточно проверять одно из них Более точно, справедливо следующее утверждение Следствие 2 Пусть A квадратная матрица, а матрица B такова, что AB = E Тогда BA = E, матрица A обратима и B = A 1 Доказательство Из свойства 7 произведения матриц (см с 238 вытекает, что A B = AB = E = 1 В частности, отсюда вытекает, что A 0 В силу доказанной выше теоремы матрица A обратима Умножая обе части равенства AB = E слева на A 1, получим A 1 AB = A 1 E Но A 1 AB = EB = B, а A 1 E = A 1 Таким образом, B = A 1 Умножая обе части последнего равенства справа на A, получим BA = A 1 A = E Следствие 2 доказано Укажем теперь свойства операции обращения матрицы Если A и B невырожденные квадратные матрицы одного и того же порядка, а t ненулевое число, то: 1 (A 1 1 = A; 2 (AB 1 = B 1 A 1 ; 3 (ta 1 = 1 t A 1 ; 4 (A 1 = (A 1 ; 5 A 1 = 1 A Свойство 1 непосредственно вытекает из определения обратной матрицы, свойство 2 из следствия 2 и равенств (AB(B 1 A 1 = A(BB 1 A 1 = AEA 1 = AA 1 = E, а свойство 3 из следствия 2 и равенств ( ( 1 (ta t A 1 = t 1 (AA 1 = 1 E = E t Свойство 4 легко вытекает из формулы (1 и того факта, что при транспонировании матрицы ее определитель не меняется (см свойство 9 в 13 Наконец, свойство 5 следует из того, что A A 1 = AA 1 = E = 1 (мы использовали здесь свойство 7 произведения матриц см с 238

4 2 Нахождение обратной матрицы с помощью элементарных преобразований Способ вычисления обратной матрицы, указанный выше, требует выполнения большого объема вычислений, который к тому же быстро растет с ростом порядка матрицы: если матрица A имеет порядок n, то необходимо сосчитать один определитель n-го порядка и n 2 определителей (n 1-го порядка Существует способ нахождения обратной матрицы, который не требует вычисления определителей и сложность которого очень медленно растет с ростом порядка матрицы Ясно, что если A невырожденная квадратная матрица порядка n, то обратная к ней матрица (которая существует и единственна в силу теоремы является решением матричного уравнения AX = E, где E единичная матрица порядка n Учитывая сказанное в 30 (см с 244, получаем следующее правило Пусть дана невырожденная квадратная матрица A порядка n Запишем матрицу порядка n 2n, в которой в первых n столбцах стоит матрица A, а в последних n столбцах единичная матрица С помощью элементарных преобразований всей этой матрицы приведем ее левую часть (те первые n столбцов к единичному виду В правой части (те в последних n столбцах полученной матрицы будет записана матрица A 1 Этот алгоритм можно символически изобразить следующим образом: (A E (E A 1 Описанным алгоритмом можно пользоваться и для того, чтобы выяснить, существует ли матрица A 1 В самом деле, в процессе приведения левой части матрицы (A E к единичному виду мы сначала приведем ее к ступенчатому виду Матрица A 1 существует тогда и только тогда, когда ступенчатая матрица, которая возникнет в этот момент в левой части преобразовываемой матрицы, не содержит нулевых строк В самом деле, обозначим эту ступенчатую матрицу через B, а порядок матрицы A через n В силу алгоритма нахождения ранга матрицы, изложенного на с 227, отсутствие нулевых строк в матрице B равносильно тому, что ранг матрицы A равен n Это, в свою очередь, эквивалентно тому, что единственный минор порядка n матрицы A, а именно ее определитель, отличен от 0 Остается сослаться на следствие 1 Проиллюстрируем сказанное на примере рассмотренной выше матрицы A =

5 Имеем /3 1 4/ /3 1 2/3 Следовательно, 5/3 1 4/3 A 1 = /3 1 2/3 Ответ, разумеется, совпал с тем, что мы нашли раньше другим способом 3 Обратная матрица и системы линейных уравнений С помощью обратных матриц можно решать крамеровские системы линейных уравнений, основная матрица которых невырожденна В самом деле, пусть AX = B такая система В силу невырожденности матрицы A существует матрица A 1 Умножая обе части равенства AX = B слева на A 1 и учитывая, что A 1 (AX = (A 1 AX = EX = X, получаем, что наша система имеет единственное решение, которое выражается формулой X = A 1 B (2 Решим указанным способом систему линейных уравнений x 1 + 2x 2 + x 3 = 2, 2x 2 + 3x 3 = 5 2x 1 + x 2 x 3 = 7 (3 Здесь A = , а B = Матрица A 1 была дважды вычислена выше Используя формулу (2, имеем 5/3 1 4/3 X = A 1 B = = 1 2 4/3 1 2/3 7 3

6 Следовательно, система (3 имеет единственное решение: x 1 = 1, x 2 = 2, x 3 = 3 Как отмечалось в 30, системы линейных уравнений являются частным случаем матричных уравнений вида AX = B Сказанное выше можно использовать и в этом, более общем, случае Пусть A невырожденная квадратная матрица, а B произвольная матрица Как отмечалось в 30, если число строк в матрицах A и B различно, то уравнение AX = B решений не имеет Предположим теперь, что что матрицы A и B имеют одинаковое число строк Рассуждая также, как при выводе формулы (2, получаем, что в этом случае уравнение AX = B имеет единственное решение, которое выражается указанной формулой Решим с помощью этой формулы рассмотренное выше уравнение Здесь A = ( X = ( 2 1, а B = 1 0 ( Найдем матрицу A 1 по формуле (1 Имеем ( 0 1 A = 1, A = 1 2 Используя формулу (2, имеем ( 0 1 X = A 1 B = 1 2 ( , и потому A 1 = ( = ( ( Ответ совпал с найденным выше другим способом С помощью обратных матриц можно решать не только уравнения вида AX = B, но и другие матричные уравнения Укажем два из них: уравнения вида XA = B, где A невырожденная квадратная матрица, и уравнения вида AXB = C, где A и B невырожденные квадратные матрицы Легко понять, что первое из этих уравнений имеет единственное решение X = BA 1 при условии, что матрицы A и B имеют одинаковое число столбцов, и не имеет решений в противном случае, а второе имеет единственное решение X = A 1 CB 1 при условии, что матрицы A и C имеют одинаковое число строк, а матрицы B и C одинаковое число столбцов, и не имеет решений в противном случае


A A. Убедимся в том, что матрица B является обратной к A. В самом деле, рассмотрим произведение матриц A и B:

A A. Убедимся в том, что матрица B является обратной к A. В самом деле, рассмотрим произведение матриц A и B: Лекция 3. Обратная матрица. Определитель произведения квадратных матриц. Обратная матрица, определение, основные свойства. Критерий обратимости матрицы. Элементарные преобразования матриц. Нахождение обратных

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÀÍÀËÈÒÈ

Подробнее

Глава 4. Матрицы. Лекция Основные понятия.

Глава 4. Матрицы. Лекция Основные понятия. Лекция 0. Глава 4. Матрицы. В этой главе мы рассмотрим основные виды матриц, операции над ними, понятие ранга матрицы и их приложения к решению систем линейных алгебраических уравнений. 4.. Основные понятия.

Подробнее

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет

4. ОБРАТНАЯ МАТРИЦА. Рассмотрим проблему определения операции, обратной умножению матриц., определитель которой отличен от нуля, имеет ОБРАТНАЯ МАТРИЦА ОПРЕДЕЛЕНИЕ, СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ ОБРАТНОЙ МАТРИЦЫ Рассмотрим проблему определения операции, обратной умножению матриц Пусть квадратная матрица порядка n Матрица, удовлетворяющая

Подробнее

Матрицы и определители. Обратная матрица. Линейная алгебра (лекция 3) 2 / 23

Матрицы и определители. Обратная матрица. Линейная алгебра (лекция 3) 2 / 23 Линейная алгебра Матрицы и определители Обратная матрица Линейная алгебра (лекция 3) 2 / 23 Квадратная матрица называется вырожденной (или особенной), если ее определитель равен нулю, и невырожденной (или

Подробнее

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса.

Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Теорема Кронекера-Капелли. Решение СЛАУ методом Гаусса. Ранг матрицы. Рассмотрим прямоугольную матрицу имеющую m строк и столбцов: A. m m m Выделим в этой матрице произвольные строк и столбцов. Элементы

Подробнее

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En

4. Обратная матрица. , где Е п единичная матрица порядка п. Матрица С называется левой обратной для матрицы А, если CA En 4 Обратная матрица Понятие обратной матрицы Существование и единственность обратной матрицы Присоединенная матрица Определение 4 Пусть А квадратная матрица порядка п Матрица B называется правой обратной

Подробнее

Лекция 10: Умножение матриц

Лекция 10: Умножение матриц Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции вводится операция умножения матриц, изучаются

Подробнее

Пространство арифметических векторов. Лекции 2-3

Пространство арифметических векторов. Лекции 2-3 Пространство арифметических векторов Лекции 2-3 1 Пространство Rn арифметических векторов Рассмотрим множество упорядоченных наборов из n чисел x ( x 1, x 2, x ). Каждый такой набор x n будем называть

Подробнее

Тема 3: Определители

Тема 3: Определители Тема 3: Определители А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров Начало

Подробнее

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством

Пусть дана квадратная матрица второго порядка. a11 a A = Определитель второго порядка, соответствующий матрице (1), определяется равенством Пусть дана квадратная матрица второго порядка ( ) a11 a A = 12 a 21 a 22 (1) Определитель второго порядка, соответствующий матрице (1), определяется равенством a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21

Подробнее

Тема 2: Матрицы и действия над ними

Тема 2: Матрицы и действия над ними Тема 2: Матрицы и действия над ними А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для физиков-инженеров

Подробнее

9. Крамеровские системы линейных уравнений

9. Крамеровские системы линейных уравнений 9. Крамеровские системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение крамеровской системы Определение

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

Лекция 1: Определители второго и третьего порядков

Лекция 1: Определители второго и третьего порядков Лекция 1: Определители второго и третьего порядков Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы начинаем

Подробнее

КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ

КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ ЛЕКЦИЯ 9 ОБРАТНЫЕ МАТРИЦЫ КЛАССЫ ЭКВИВАЛЕНТНОСТИ МАТ- РИЦ ВЫЧИСЛЕНИЕ ОБРАТНОЙ МАТРИ- ЦЫ ПРОСТРАНСТВО РЕШЕНИЙ 1 ОБРАТНЫЕ МАТРИЦЫ Для данной матрицы A M n (R) можно попробовать найти такую матрицу A M n

Подробнее

2. Решение произвольных систем линейных алгебраических уравнений

2. Решение произвольных систем линейных алгебраических уравнений Решение произвольных систем линейных алгебраических уравнений Выше рассматривались в основном квадратные системы линейных уравнений число неизвестных в которых совпадает с числом уравнений В настоящем

Подробнее

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ, СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ Метод окаймляющих миноров нахождения ранга матрицы A = m m m минора Минором k порядка k матрицы А называется любой определитель k-го порядка этой матрицы,

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.2

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.2 Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Лекция 12 Аннотация Вырожденные и невырожденные матрицы Приведение квадратной невырожденной матрицы к единичной с помощью элементарных

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

1. Крамеровские системы линейных алгебраических уравнений

1. Крамеровские системы линейных алгебраических уравнений Крамеровские системы линейных алгебраических уравнений Матричная форма записи системы линейных уравнений Пусть дана система из т линейных уравнений с п неизвестными : () С введением понятия матриц и операций

Подробнее

Аналитическая геометрия. Лекция 1.3

Аналитическая геометрия. Лекция 1.3 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы.

тема 1. МАТРИЦЫ квадратная матрица n-го порядка, квадратной матрицы А называются диагональными, а их совокупность главной диагональю матрицы. Линейная алгебра заочное обучение тема МАТРИЦЫ ) Основные определения теории матриц Определение Матрицей размерностью называется прямоугольная таблица чисел состоящая из строк и столбцов Эта таблица обычно

Подробнее

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ

ЛЕКЦИЯ 4 ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ. РАНГ МАТРИЦЫ ЛЕКЦИЯ ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ РАНГ МАТРИЦЫ Элементарные преобразования матриц Эквивалентные матрицы Получение обратной матрицы с помощью элементарных преобразований Линейная зависимость (независимость)

Подробнее

Линейная алгебра Лекция 3. Обратная матрица. Ранг матрицы

Линейная алгебра Лекция 3. Обратная матрица. Ранг матрицы Линейная алгебра Лекция Обратная матрица Ранг матрицы Обратная матрица Определение Матрица А - называется обратной по отношению к квадратной матрице если при умножении этой матрицы на данную матрицу как

Подробнее

Тема 1-7: Определители

Тема 1-7: Определители Тема 1-7: Определители А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (1 семестр) Перестановки

Подробнее

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса

Лекция 1.6. Методы решения СЛАУ: матричный и Гаусса Лекция 6 Методы решения СЛАУ: матричный и Гаусса Аннотация: Доказывается теорема о базисном миноре Кратко излагается суть метода Гаусса Приводятся пример решения системы этим методом Доказывается теорема

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Лекция 1.5. Действия над матрицами. Обратная матрица. Ранг матрицы

Лекция 1.5. Действия над матрицами. Обратная матрица. Ранг матрицы Лекция 5 Действия над матрицами Обратная матрица Ранг матрицы Аннотация: Вводятся операции алгебры матриц Доказывается что всякая невырожденная матрица имеет обратную Выводится формула решения СЛАУ с помощью

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Обратная матрица Раздел электронного учебника для сопровождения лекции Изд. 3-е, испр. и доп. e-mail:

Подробнее

4. Системы линейных уравнений 1. Основные понятия

4. Системы линейных уравнений 1. Основные понятия 4. Системы линейных уравнений. Основные понятия Уравнение называется линейным если оно содержит неизвестные только в первой степени и не содержит произведений неизвестных т.е. если оно имеет вид + + +

Подробнее

Лекция 12: Ранг матрицы

Лекция 12: Ранг матрицы Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В данной лекции изучается важная числовая характеристика матрицы

Подробнее

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида...

Системы линейных алгебраических уравнений. Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида... Системы линейных алгебраических уравнений Основные понятия Системой линейных алгебраических уравнений (СЛАУ) называется система вида a a a, a a a,, a a a Ее можно представить в виде матричного уравнения

Подробнее

3. Ранг матрицы ба- зисным минором Рангом матрицы A

3. Ранг матрицы ба- зисным минором Рангом матрицы A 3. Ранг матрицы ОПРЕДЕЛЕНИЕ. Минор M k матрицы называется ее базисным минором, если он отличен от нуля, а все миноры матрицы более высокого порядка k+, k+,, t равны нулю. ОПРЕДЕЛЕНИЕ. Рангом матрицы называется

Подробнее

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений

ЗАНЯТИЕ 3 Метод Крамера и матричный метод решения систем линейных уравнений ЗАНЯТИЕ Метод Крамера и матричный метод решения систем линейных уравнений Сведения из теории Уравнение называется линейным, если оно содержит неизвестные только в первой степени и не содержит произведений

Подробнее

где А матрица коэффициентов системы (основная матрица):

где А матрица коэффициентов системы (основная матрица): Лекции Глава Системы линейных уравнений Основные понятия Системой m линейных уравнений с неизвестными называется система вида: m + + + + + m + + + + m = = = m () где неизвестные величины числа ij (i =

Подробнее

Тема 2-3: Базис и размерность линейного пространства

Тема 2-3: Базис и размерность линейного пространства Тема 2-3: Базис и размерность линейного пространства А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Лекция 13: Пространство решений однородной системы линейных уравнений

Лекция 13: Пространство решений однородной системы линейных уравнений Лекция 13: Пространство решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания

Подробнее

23. Базис векторного пространства

23. Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение базиса Определение Базисом векторного пространства называется упорядоченная

Подробнее

РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ

РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ ЛЕКЦИЯ 11 РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ С УГ- ЛОМ НУЛЕЙ ОПРЕДЕЛИТЕЛЬ ПРОИЗВЕДЕНИЯ 1 РАЗЛОЖЕНИЕ ОПРЕДЕЛИТЕЛЯ ПО СТРОКЕ ИЛИ СТОЛБЦУ Определение 1. Определитель матрицы,

Подробнее

Тема 2-5: Ранг матрицы

Тема 2-5: Ранг матрицы Тема 2-5: Ранг матрицы А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков (2 семестр) В

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени ВН КАРАЗИНА ЮМ ДЮКАРЕВ, ИЮ СЕРИКОВА ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений Учебно-методическое

Подробнее

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы.

Ранг также не меняется при вычеркивании из матрицы нулевой строки и при транспонировании матрицы. .4. Ранг матрицы. В матрице А выделим k строк и столбцов из элементов, стоящих на их пересечении составим определитель. Будем называть его минором k-того порядка. Если минор k-того порядка отличен от нуля,

Подробнее

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров.

M 23 = 1 0 = 1 ( 3) 0 ( 5) = 3 Очевидно, что для квадратной матрицы порядка n=3 вычисляется девять миноров. Лекция 2. Определители Миноры и алгебраические дополнения. Рекуррентное определение определителя n-го порядка. Соответствие между общим определением и правилом Саррюса при n=3. Основные свойства определителей.

Подробнее

Практикум по линейной алгебре

Практикум по линейной алгебре Министерство образования и науки РФ Нижегородский государственный университет им. Н.И. Лобачевского В.К. Вильданов Практикум по линейной алгебре Учебно-методическое пособие Нижний Новгород Издательство

Подробнее

Аналитическая геометрия. Лекция 1.2

Аналитическая геометрия. Лекция 1.2 Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция

Подробнее

28. Фундаментальная система решений однородной системы линейных уравнений

28. Фундаментальная система решений однородной системы линейных уравнений 28. Фундаментальная система решений однородной системы линейных уравнений Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Размерность

Подробнее

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40

Матрицы и определители. Ранг матрицы. Линейная алгебра (лекция 4) 2 / 40 Линейная алгебра Матрицы и определители Ранг матрицы Линейная алгебра (лекция 4) 2 / 40 Выберем в матрице A размера m n произвольные k строк и k столбцов, k min(m, n). Линейная алгебра (лекция 4) 3 / 40

Подробнее

Управление дистанционного обучения и повышения квалификации. Линейная алгебра ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Управление дистанционного обучения и повышения квалификации. Линейная алгебра ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Математика» Набор тестов для студентов очной формы обучения всех специальностей Автор

Подробнее

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис

называется произведением матрицы A размера компонентам сомножителей матричного произведения иллюстрирует рис Тема 06 Произведение матриц и его свойства Обращение квадратных матриц и его свойства Детерминант квадратной матрицы -го порядка и его свойства Миноры дополнительные миноры и алгебраические дополнения

Подробнее

Тема : Общая теория систем линейных уравнений

Тема : Общая теория систем линейных уравнений Тема : Общая теория систем линейных уравнений А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Текст (самостоятельное изучение) Аннотация Понятие линейной зависимости строк или столбцов матрицы. Ранг матрицы, теорема о ранге

Подробнее

2. ОПРЕДЕЛИТЕЛИ. СВОЙСТВА. МЕТОДЫ ВЫЧИСЛЕНИЯ. порядка n > 1 называется число

2. ОПРЕДЕЛИТЕЛИ. СВОЙСТВА. МЕТОДЫ ВЫЧИСЛЕНИЯ. порядка n > 1 называется число ОПРЕДЕЛИТЕЛИ СВОЙСТВА МЕТОДЫ ВЫЧИСЛЕНИЯ ИНДУКТИВНОЕ ОПРЕДЕЛЕНИЕ Пусть квадратная матрица порядка Определитель (детерминант) квадратной матрицы это число det, которое ставится в соответствие матрице и вычисляется

Подробнее

1 Билинейная и квадратичная формы.

1 Билинейная и квадратичная формы. 1 Билинейная и квадратичная формы. Пусть ϕ(x, y) числовая функция, заданная на линейном пространстве, то есть ϕ : L L R. Если ϕ(x, y) линейна по каждому из своих аргументов, то её называют билинейной формой.

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ...

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m n называется прямоугольная таблица, имеющая m строк и n столбцов. ... ы ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Матрицы и действия над ними Матрицей размера m называется прямоугольная таблица, имеющая m строк и столбцов m m m суммы двух Суммой двух ( ) и ( ) строк и столбцов называется

Подробнее

Матрицы. Определители Л. В. Калиновская, Ю. Л. Калиновский, А. В. Стадник

Матрицы. Определители Л. В. Калиновская, Ю. Л. Калиновский, А. В. Стадник Матрицы. Определители Л. В. Калиновская, Ю. Л. Калиновский, А. В. Стадник Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего образования Московской

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий

ЛИНЕЙНАЯ АЛГЕБРА. Методические указания и варианты курсовых заданий Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им КЭЦиолковского ЛИНЕЙНАЯ

Подробнее

Лекция 1 МАТРИЦЫ. 1. Матрицы

Лекция 1 МАТРИЦЫ. 1. Матрицы Лекция 1 МАТРИЦЫ 1 Матрицы На этой лекции мы введём основное для всего курса аналитической геометрии понятие матрицы Необходимость введения понятия матрицы обусловлена, например, компактностью записи линейных

Подробнее

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел

Подробнее

3. РАНГ МАТРИЦЫ 3.1 ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ

3. РАНГ МАТРИЦЫ 3.1 ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ . РАНГ МАТРИЦЫ. ЛИНЕЙНАЯ ЗАВИСИМОСТЬ И ЛИНЕЙНАЯ НЕЗАВИСИМОСТЬ СТРОК (СТОЛБЦОВ) МАТРИЦЫ Матрицы-столбцы (матрицы-строки) будем называть далее просто столбцами (соответственно строками) и обозначать в этой

Подробнее

Линейная алгебра Вариант 4

Линейная алгебра Вариант 4 Линейная алгебра Вариант Задание. Систему уравнений привести к равносильной разрешенной системе, включив в набор разрешенных неизвестных,,. Записать общее решение, найти соответствующее базисное решение:

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 5 setgry 5 setgry Лекция 2 ОПРЕДЕЛИТЕЛИ СВОЙСТВА План лекции Свойство определителей Определение транспонированной матрицы 2 Свойство : A t = A 3 Свойство 2: A, B, C = A, C, B 4 Свойство 3: тоже для перестановки

Подробнее

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.2

Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.2 Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Лекция 12 Аннотация Вырожденные и невырожденные матрицы Присоединенная матрица Обратная матрица и ее свойства Вычисление обратной матрицы

Подробнее

Глава 2. Системы линейных равнений

Глава 2. Системы линейных равнений Глава истемы линейных равнений Метод Гаусса решения систем линейных алгебраических уравнений истема m линейных алгебраических уравнений (ЛАУ) с неизвестными имеет вид a a a b a a a b () am am am bm Здесь

Подробнее

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим.

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим. ПЕРЕСТАНОВКИ Определение 1 Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,, n в строчку одно за другим Например, 2, 4, 3, 1, 5 Это перестановка пятой степени Вообще

Подробнее

Теорема Кронекера-Капелли

Теорема Кронекера-Капелли Установить совместность и решить систему линейных уравнений 5xx x xx 5x 0 x4x x 0 а) по формулам Крамера, б) матричным способом, в) методом Гаусса Совместность Совместность системы можно установить: а)

Подробнее

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными

Матрицы. Примеры решения задач. 1. Даны матрицы и. 2. Дана система m линейных уравнений с n неизвестными Матрицы 1 Даны матрицы и Найти: а) А + В; б) 2В; в) В T ; г) AВ T ; д) В T A Решение а) По определению суммы матриц б) По определению произведения матрицы на число в) По определению транспонированной матрицы

Подробнее

1. Основные понятия и определения Определение. Матрицей (точнее, числовой матрицей) размера m n называется прямоугольная таблица

1. Основные понятия и определения Определение. Матрицей (точнее, числовой матрицей) размера m n называется прямоугольная таблица Матрицы и определители.. Матрицы и операции над ними. Основные понятия и определения Определение. Матрицей (точнее, числовой матрицей) размера m n называется прямоугольная таблица K A K m K m K K K n состоящая

Подробнее

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица.

ЛЕКЦИЯ N9. Общая теория систем линейных уравнений. 1.Системы линейных уравнений. - A / - расширенная матрица. ЛЕКЦИЯ N9. Общая теория систем линейных уравнений..системы линейных уравнений....правило Крамера.... 3.Ранг матрицы. Базисный минор.... 3 4.Однородные системы.... 4 5.Матричное решение систем линейных

Подробнее

Решение систем линейных уравнений

Решение систем линейных уравнений Решение систем линейных уравнений Л. В. Калиновская, Ю. Л. Калиновский Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего образования Московской области

Подробнее

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. 1. Матрицы и операции над ними. 2. Определители и их свойства. Вычисление определителей. А =

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ. 1. Матрицы и операции над ними. 2. Определители и их свойства. Вычисление определителей. А = ЭЛЕМЕНТЫ ЛИНЕЙНОЙ ЛГЕБРЫ. Матрицы и операции над ними.. Определители и их свойства. Вычисление определителей. Матрицы и операции над ними Определение. Матрицей размера m n, где m- число строк, n- число

Подробнее

И называется число находимое следующим образом:

И называется число находимое следующим образом: Определители. Теория матриц и определителей является введением в линейную алгебру. Наиважнейшим применением этой теории является решение систем линейных уравнений. Понятие определителя ввел в году немецкий

Подробнее

3. Определители высших порядков

3. Определители высших порядков Определители высших порядков Понятие определителя п-го порядка и его основные свойства Понятие определителя п-го порядка вводится на основе изучения структуры определителей -го и -го порядков Так например

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 3. Элементы линейной алгебры (матрицы, определители, системы линейных уравнений и формулы Крамера) 1 Тема 1: Матрицы 1.1. Понятие

Подробнее

Лекция 1. Определение матрицы. Определение 1.1. Матрицей называется прямоугольная таблица чисел... a1 A =... =...

Лекция 1. Определение матрицы. Определение 1.1. Матрицей называется прямоугольная таблица чисел... a1 A =... =... Лекция Определение матрицы Определители второго и третьего порядков, их основные свойства Миноры и алгебраические дополнения, разложение определителя по строке (столбцу) Методы вычисления определителей

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю.

ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. ЛИНЕЙНАЯ АЛГЕБРА Матрицы и определители. Системы линейных алгебраических уравнений. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Широкое использование математических методов в современном

Подробнее

сайты:

сайты: Федеральное агентство по образованию Уральский государственный экономический университет Ю. Б. Мельников Ранг матрицы Раздел электронного учебника для сопровождения лекции Изд. 3-е, испр. и доп. e-mail:

Подробнее

2 5 8 A = a) A = 2 3. ; b) B =

2 5 8 A = a) A = 2 3. ; b) B = Занятие 1 Определители 11 Матричные обозначения Основные определения Матрицей размера m n, или m n-матрицей, называется таблица чисел (или других математических выражений с m строками и n столбцами Матрица

Подробнее

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева

МАТЕМАТИКА. Составитель: старший преподаватель Н. А. Кривошеева МАТЕМАТИКА Методические рекомендации и задания контрольной работы для студентов, обучающихся по заочной форме по направлениям «Менеджмент», «Экономика» Составитель: старший преподаватель Н А Кривошеева

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию. Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» Российский государственный технологический университет им. К.Э. Циолковского

Подробнее

Линейная алгебра Лекция 5. Системы линейных уравнений

Линейная алгебра Лекция 5. Системы линейных уравнений Линейная алгебра Лекция 5 Системы линейных уравнений Основные понятия и определения Математика является инструментом для описания окружающего нас мира Линейные уравнения дают некоторые простейшие описания

Подробнее

1. Линейные системы и матрицы

1. Линейные системы и матрицы 1. Линейные системы и матрицы 1. Дать определение умножения матриц. Коммутативна ли эта операция? Ответ пояснить. Произведение C матриц A и B определяется как m p m p A B ij = A ik B kj. Операция не коммутативна.

Подробнее

ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА 66 ГЛАВА 6 ЛИНЕЙНЫЕ ПРОСТРАНСТВА Определение линейного пространства В гл 5 n-мерное векторное пространство было определено как упорядоченная система n чисел Для n-мерных векторов были введены операции

Подробнее

ОСНОВЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ОСНОВЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Д. З. Ильязова

Подробнее

АЛГЕБРА И ГЕОМЕТРИЯ. АЛГЕБРА МАТРИЦ

АЛГЕБРА И ГЕОМЕТРИЯ. АЛГЕБРА МАТРИЦ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

1. Требования к знаниям, умениям, навыкам

1. Требования к знаниям, умениям, навыкам ПРИЛОЖЕНИЯ Требования к знаниям умениям навыкам Страницы даны по учебнику «Математика в экономике» [] Дополнительные задачи по данному курсу можно найти в учебных пособиях [ 6] Векторы Владеть понятиями:

Подробнее

ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ

ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ ЛЕКЦИЯ 2 СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ ОПРЕДЕЛИТЕЛИ МАЛЫХ ПОРЯД- КОВ 1 ЭКВИВАЛЕНТНОСТЬ ЛИНЕЙНЫХ СИСТЕМ Пусть нам дана еще одна линейная система того же размера a 11x 1 + a 12x 2 + + a 1nx n = b 1, a 21x 1

Подробнее

образуют главную диагональ матрицы. Вторую диагональ матрицы называют побочной.

образуют главную диагональ матрицы. Вторую диагональ матрицы называют побочной. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ МАТРИЦ Матрицы При решении ряда прикладных задач используются специальные математические выражения, называемые матрицами О п р е д е л е н и е Матрицей размерности m n называется

Подробнее

13. Билинейные и квадратичные функции

13. Билинейные и квадратичные функции 95 Билинейные и квадратичные функции Билинейная функция Определение Билинейной функцией (билинейной формой) на линейном пространстве L называется функция от двух векторов из L линейная по каждому из своих

Подробнее

Линейная алгебра Лекция 2. Определители квадратных матриц

Линейная алгебра Лекция 2. Определители квадратных матриц Линейная алгебра Лекция. Определители квадратных матриц Введение Определитель или детерминант одно из основных понятий линейной алгебры. Определитель матрицы является многочленом от элементов квадратной

Подробнее

МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ НГ ЧЕРНЫШЕВСКОГО Кафедра дифференциальных уравнений и прикладной математики АС Суслова МАТРИЦЫ И СИСТЕМЫ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ Учебное пособие

Подробнее

Определение 1.1. Таблица чисел (вещественных или комплексных) Число строк и столбцов матрицы А, если это необходимо, можно указать так:

Определение 1.1. Таблица чисел (вещественных или комплексных) Число строк и столбцов матрицы А, если это необходимо, можно указать так: Матрицы Определение и виды матриц Определение Таблица чисел (вещественных или комплексных) () состоящая из строк и столбцов называется прямоугольной матрицей размера Число строк и столбцов матрицы А если

Подробнее

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Д.К. Агишева, С.А. Зотова, В.Б. Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ ДК Агишева СА Зотова ВБ Светличная МАТРИЦЫ И ИХ ПРИМЕНЕНИЕ К РЕШЕНИЮ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ Волгоград Тема Матрицы Основные действия над ними Обратная матрица Матричный способ решения систем линейных

Подробнее