Тема 1. Элементы теории погрешностей

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Тема 1. Элементы теории погрешностей"

Транскрипт

1 - 1 - Тема 1 Элементы теории погрешностей 11 Источники и классификация погрешностей Численное решение любой задачи, как правило, осуществляется приближенно, те с некоторой точностью Это может быть обусловлено неточностью исходных данных, конечной разрядностью вычислений (вручную или на ЭВМ), и т п Главная задача численных методов нахождение решения с требуемой или, по крайней мере, оцениваемой точностью Отклонение истинного решения от приближенного называется погрешностью Полная погрешность вычислений состоит из двух составляющих: 1) неустранимая погрешность - погрешность математической модели (несоответствие математической модели изучаемому реальному явлению) и погрешность исходных данных; не может быть уменьшена в процессе вычислений; ) устранимая погрешность - состоит из двух составляющих: а) погрешность метода (аппроксимации); б) погрешность вычислений Эти составляющие могут быть уменьшены выбором более точных методов и увеличением разрядности вычислений Чтобы получить представление о точности окончательного результата, необходим анализ погрешностей всех видов Численный метод может считаться удачно выбранным, если его погрешность в несколько раз меньше неустранимой погрешности, а вычислительная погрешность в несколько раз меньше погрешности метода С другой стороны, при решении большинства задач нет особого смысла применять метод решения с погрешностью, существенно меньшей, чем величина неустранимой погрешности, то есть оценка величины неустранимой погрешности может служить удобным поводом для понижения требований к точности последующих вычислений 1 Абсолютная и относительная погрешность числа Под абсолютной ошибкой или абсолютной погрешностью приближенного числа a понимается разность A a (11) Здесь a приближенное число, A точное число Пусть длина отрезка измеряется линейкой с точностью до 05 см Тогда если получилось l 154 см, то пишут l см Здесь 0 5см

2 Для оценки точности величин понятия абсолютной погрешности недостаточно Например, если абсолютная погрешность 1 мм получилась при измерении расстояний в 100 метров и 1 метр, то ясно, что в первом случае измерения выполнены с более высокой точностью Более показательна в этом примере относительная ошибка Относительной погрешностью приближенного числа a называется отношение (1) A Пример Скорость света в вакууме c ( ) 10 км / сек Определить относительную погрешность измерения Решение: Очевидно км / сек 5, тогда Относительную погрешность часто измеряют в процентах: (а) % = (а) 100% В приведенном выше примере относительная погрешность измерений составляет 3*10 - % Недостатком применения относительной погрешности является то, что она не определена при A = 0 и очень велика, если значение A близко к нулю, хотя абсолютная ошибка может быть мала Поэтому на практике для оценки точности величин используют как абсолютную, так и относительную погрешности - - На практике точное значение величины обычно неизвестно, поэтому погрешность приближенного числа а определить нельзя Тем не менее, почти всегда можно указать число, оценивающее эту погрешность Число (a), удовлетворяющее неравенству A а = (а) (a), (13) называется предельной абсолютной погрешностью или верхней границей абсолютной погрешности приближенного числа а В качестве предельной абсолютной погрешности (a) берут по возможности наименьшее из чисел, удовлетворяющих неравенству (13)

3 - 3 - Если известна предельная погрешность (a), то можно утверждать, что точное значение числа A гарантированно находится в интервале а (a) A а + (a) (14а) Или, в другой форме записи: A = а (a) (14б) Например, запись х = 3,14 0,0 означает, что истинное значение числа х находится между 3,1 и 3,16 Предельной относительной погрешностью или верхней границей относительной погрешности приближенного числа а называется величина A a A ( a) ( a) (15) При таком определении (a) имеют место соотношения: ( a) ( a) (16) A или на практике ( a) ( a) (17) a В дальнейшем мы чаще всего не будем уточнять, о погрешности или ее верхней границе идет речь Это будет ясно из контекста Замечание 1 Абсолютную и относительную погрешность принято записывать с одной значащей цифрой и в особо важных случаях с двумя А для их практического использования достаточно знать их порядок Большая точность для данных величин не имеет смысла, тк они обычно являются довольно грубыми оценками истинных значений погрешности Пример = Лучше взять = А скорее всего = 10-6 Замечание В записи A = а (a) Числа a и (a) указываются с одинаковыми последними разрядами Пример Пусть a = 1648, (a) = Тогда следует писать a = а не a = Здесь смысла нет

4 13 Верные цифры числа Известно, что всякое положительное число a может быть представлено в виде конечной или бесконечной десятичной дроби m m1 mn1 m1 mn1 a , (18) m где - цифры числа a в -ом разряде причем m 0 ; m- старший десятичный разряд числа a (некоторое целое число) Например: a Значащей цифрой приближенного числа называется всякая цифра в его десятичном изображении, отличная от нуля, и нуль, если он содержится между значащими цифрами или является представителем сохраненного десятичного разряда Пример a здесь первые три нуля не являются значащими цифрами, так как они служат для установки десятичных разрядов других цифр Остальные два нуля являются значащими Встает вопрос, сколько из значащих цифр приближенного числа правильные? Для оценки этого существует понятие верных цифр числа Определение n первых значащих цифр (десятичных знаков) приближенного числа являются верными в узком (широком) смысле; если абсолютная погрешность этого числа не превышает половины (единицы) разряда, выражаемого n-ой значащей цифрой, считая слева направо Пример Дано приближенное число, все цифры которого верные 1) a ; Тогда: АП в узком смысле, АП в широком смысле ) a ; Тогда: АП в узком смысле, АП в широком смысле

5 - 5 - Таким образом, если для приближенного числа (18), заменяющее точное A, известно, что 1 mn1 A a 10 в узком смысле, (19) mn1 A a 10 в широком смысле, то по определению, первые n цифр m, m1,, mn1 этого числа являются верными Пример 1 Для точного числа A число a является приближенным с тремя верными цифрами, так как mn1 A a (m-n+1 =-1, где m=1, отсюда n=3) Замечание Термин n верных знаков не следует понимать буквально, те так, что в данном приближенном числе a, имеющем n верных знаков, n первых значащих цифр его совпадают с соответствующими цифрами точного числа A Пример Дано приближенное число a = 9996, заменяющее точное число A Количество верных цифр: = A a = = 1 Отсюда получаем систему уравнений: m n 1 m 0 n 3 10 = 1 mn 1 10 Мы получили 3 верные цифры, ни одна из которых не совпадает с соответствующими цифрами точного числа Результат можно записать, например, в виде: A = или, округлив до трех верных цифр a = 1000 В последнем случае наблюдается совпадение первых трех цифр Еще раз отметим, что точность приближенного числа зависит не от количества значащих цифр, а от количества верных значащих цифр В тех случаях, когда приближенное число содержит излишнее количество неверных (сомнительных) цифр, прибегают к округлению

6 Пример 3 На калькуляторе вычисляем 1 / 3 = Большинство студентов именно такой результат и приводят в качестве ответа, однако 1) если известно, что делимое и делитель заданы точно, результат можно оставить целиком; ) если известно, что у частного по три значащие цифры, те 10 / 30 результат следует округлить примерно до двух значащих цифр: 10 / 30 = 091 В последнем случае мы говорим примерно, поскольку определение точного числа верных цифр результата рассматривается в следующей теме Алгоритм округления числа (используемый в вычислительной математике): Чтобы округлить число до n значащих цифр, отбрасывают все цифры, стоящие справа от n-ой значащей цифры, или если это нужно для сохранения разрядов заменяют их нулями При этом 1 Если первая из отброшенных цифр < 5, то оставшиеся десятичные знаки сохраняются без изменения Если первая из отброшенных цифр > 5, то к последней оставшейся цифре прибавляется единица 3 Если первая из отброшенных цифр = 5 и среди остальных отброшенных цифр имеются ненулевые, то последняя оставшаяся цифра увеличивается на единицу 4 Если первая из отброшенных цифр = 5 и все остальные отброшенные цифры являются нулями, то последняя оставшаяся цифра сохраняется неизменной если она четная, и увеличивается на единицу, если она нечетная (правило четной суммы) Таким образом, погрешность округления не превосходит половины единицы десятичного разряда, определяемого последней оставленной значащей цифрой

7 Связь относительной погрешности приближенного числа с количеством верных знаков этого числа Установим связь относительной погрешности с количеством верных цифр Докажем следующую теорему Теорема 1 Если положительное приближенное число a имеет n верных десятичных знаков (верных значащих цифр) в узком смысле, то относительная погрешность этого числа удовлетворяет следующему неравенству n1 1 1 m 10, (110) где m - первая значащая цифра числа a Доказательство: (см Демидович, Марон Основы, стр 5-6) Замечание Если приближенное число a имеет n верных знаков в широком смысле, то оценку (110) следует увеличить в раза Пример 1 Какова относительная погрешность числа, если вместо взять a Решение: Имеем m 3; n=3 Следовательно % Итак, приведенная теорема дает возможность по числу верных знаков приближенного числа m m1 a m m1 определить его относительную погрешность Для решения обратной задачи определения количества верных знаков n числа a, если известна его относительная погрешность, можно воспользоваться формулой n ~ 1 lg( ) (111) m и в качестве n взять ближайшее к n ~ целое число Пример Со сколькими десятичными верными знаками надо взять 30, чтобы 0 1% Решение: Так как , то m 5 Из (18) имеем n ~ 1 lg(5 0001) 33; n 3 Таким образом, получим a

8 15 Общая формула вычисления погрешности Постановка задачи Известны погрешности некоторых величин Определить погрешность заданной произвольной функции U от этих величин и Теорема Пусть задана дифференцируемая функция U f x1, x,, x n x - предельные абсолютные погрешности аргументов функции Тогда предельная абсолютная погрешность функции f U x (11) x Следствие 1 Предельная относительная погрешность функции: 1 f U x (113) U x Следствие Предельная относительная погрешность функции: U lnu x (114) x Примечание Используя (11-114), легко получить выражения для погрешностей всех арифметических операций в случае малых погрешностей 314 Пример Найти АП и ОП объема шара V V d 1 V d 3 если d см, 6 3 Решение: V d d d d Из условия задачи известно, что d 0 05, Тогда V см Поскольку V 1 d , то объем шара можно представить в виде V 1 d 3 (65 09) см 3 V ; V V ,

9 16 Погрешность суммы Теорема Предельная абсолютная погрешность алгебраической суммы приближенных чисел не превышает суммы предельных абсолютных погрешностей слагаемых a b a b (115) Следствие 1 Абсолютная погрешность алгебраической суммы не может быть меньше абсолютной погрешности наименее точного из слагаемых, то есть слагаемого, имеющего наибольшую погрешность С какой бы точностью ни были бы определены остальные слагаемые, мы не можем за их счет увеличить точность суммы Теорема 3 Пусть a и b ненулевые числа одного знака Тогда справедливы неравенства где a b max a b p max p a, A B A B 1 max b, (116) Примечание (116) справедливо и для погрешностей и для предельных значений погрешностей Данные неравенства означают, что 1 При суммировании чисел одного знака потери точности не происходит При вычитании чисел одного знака относительная погрешность возрастает в p > 1 раз Если p >> 1, не исключена полная потеря точности где Пример x = A a, A = 1 точное число, a = приближенное число, все цифры верные При вычитании получаем x = 3*10-6,

10 те в процессе вычислений мы потеряли 5 верных цифр (a) (a) = 5*10-7, тк a 1 Отсюда x a x % 6 x x 310 Точность результата уменьшилась в 10 6 раз (миллион) Таким образом, чтобы избежать потери точности при вычитании, необходимо: 1) Либо вообще избегать такого вычитания, Например выражение лучше заменить на 01 = = Здесь точность повысилась в несколько раз ) Если все же приходится вычитать такие числа то следует брать их с (m+n) верными знаками, где m количество пропадающих старших разрядов; n количество верных знаков, которые мы хотим получить в разности 17 Погрешность произведения Теорема 4 Относительная погрешность произведения a b a b Следствие Операция произведения сопровождается потерей точности Следствие 3 Если y y k x, x y k x, где k - точный множитель, k 0, то То есть при умножении приближенного числа на точный множитель k относительная погрешность не меняется, а АП увеличивается в k раз Пример x 1 1, x Все цифры верные Найти произведение и число верных знаков Решение: Имеем ( x 1 ) 0 05 (в узком смысле), ( x ) 0 005

11 или U = U U U 36 4 U Определяем число верных знаков U: m n 1 1 m 1 10 n mn1 Результат следует записать в виде U 897 4, U = 90*10 1 Заметим, что количество верных знаков можно было найти также по формуле (111) (см тему 1): n ~ 1 lg( m ) 1 lg(8 0004) 49; n (ближайшее целое к n) 18 Погрешность частного Теорема 5 Относительная погрешность частного: a b a b Другими словами, относительная погрешность частного не превышает суммы относительных погрешностей делимого и делителя Следствие Операция деления сопровождается потерей точности 19 Погрешность степени Теорема 6 Относительная погрешность степени y x, p 0 x p p x p Если p > 1, при возведении в степень точность теряется При p < 1 точность растет

ЭЛЕМЕНТЫ ТЕОРИИ ПОГРЕШНОСТЕЙ

ЭЛЕМЕНТЫ ТЕОРИИ ПОГРЕШНОСТЕЙ ЭЛЕМЕНТЫ ТЕОРИИ ПОГРЕШНОСТЕЙ Основная задача теории погрешностей состоит в оценке погрешности результата вычислений при известных погрешностях исходных данных. Источники и классификация погрешностей результата

Подробнее

Приближенные числа и вычисления

Приближенные числа и вычисления ) Основные понятия ) Влияние погрешностей аргументов на точность функции 3) Понятие обратной задачи в теории погрешностей ) Основные понятия I Приближенные числа, их абсолютная и относительная погрешности

Подробнее

1 Погрешность результатов численных расчетов

1 Погрешность результатов численных расчетов 1 Погрешность результатов численных расчетов 1.1 Источники и классификация погрешностей Погрешность численных расчетов обуславливается следующими причинами: 1) математическое описание задачи является неточным:

Подробнее

ТЕОРИЯ ПОГРЕШНОСТЕЙ Источники и классификация погрешностей результата Погрешность математической модели Погрешность в исходных данных

ТЕОРИЯ ПОГРЕШНОСТЕЙ  Источники и классификация погрешностей результата Погрешность математической модели Погрешность в исходных данных (С) ИиКМ РХТУ февраль 00г. Калинкин Владимир Николаевич ТЕОРИЯ ПОГРЕШНОСТЕЙ Основная задача теории погрешностей состоит в оценке погрешности результата вычислений при известных погрешностях исходных данных.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Подробнее

Цель работы: Освоить методы приближенных вычислений в химии и химической технологии с помощью стандартных компьютерных программ

Цель работы: Освоить методы приближенных вычислений в химии и химической технологии с помощью стандартных компьютерных программ 2 Содержание 1 Элементы теории погрешностей 4 1.1 Приближенные значения величин. Источники и 4 классификация погрешностей 1.2 Абсолютная и относительная погрешности 5 1.3. Верные значащие цифры приближенного

Подробнее

Источники погрешности. 1. Математическая модель 2. Исходные данные 3. Приближенный метод 4. Погрешности вычислений

Источники погрешности. 1. Математическая модель 2. Исходные данные 3. Приближенный метод 4. Погрешности вычислений Погрешности Источники погрешности 1. Математическая модель 2. Исходные данные 3. Приближенный метод 4. Погрешности вычислений 1. Погрешность мат. модели Математические формулировки редко точно отражают

Подробнее

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики. Занятие. Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.. Вспомнить свойства степени с рациональным показателем. a a a a a для натурального раз

Подробнее

Алгебра: 7 класс. Урок 2. Числовые выражения. Выражения с переменными. Добрый день, ребята!

Алгебра: 7 класс. Урок 2. Числовые выражения. Выражения с переменными. Добрый день, ребята! Алгебра: 7 класс. Урок 2. Числовые выражения. Выражения с переменными Добрый день, ребята! На прошлом уроке мы повторили темы, изученные в 6 классе. Вспомнили, как выполнять действия с обыкновенными и

Подробнее

А. П. ИВАНОВ, Л. Т. ПОЗНЯК ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ ВЫЧИСЛЕНИЕ ФУНКЦИЙ

А. П. ИВАНОВ, Л. Т. ПОЗНЯК ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ ВЫЧИСЛЕНИЕ ФУНКЦИЙ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ, Л. Т. ПОЗНЯК ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ ВЫЧИСЛЕНИЕ ФУНКЦИЙ Методические указания Санкт-Петербург

Подробнее

ПРАВИЛА ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

ПРАВИЛА ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ ПРАВИЛА ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ Терминология Цифры знаки для записи чисел. В десятичной системе счисления, которой мы, в основном, пользуемся, это 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Всего десять цифр. 0 (ноль)

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

4. Дифференциал функции и его применение в приближенных вычислениях

4. Дифференциал функции и его применение в приближенных вычислениях 4. Дифференциал функции и его применение в приближенных вычислениях Актуальность темы Таким же важным, как и понятие производной в математическом анализе, является и понятие дифференциала функции. В приложениях

Подробнее

Пределы и непрерывность

Пределы и непрерывность Пределы и непрерывность. Предел функции Пусть функция = f ) определена в некоторой окрестности точки = a. При этом в самой точке a функция не обязательно определена. Определение. Число b называется пределом

Подробнее

КОМПЛЕКСНЫЕ ЧИСЛА. Определение 3. Комплексное число. называются равными ( ) тогда и только тогда, когда равны их действительные и мнимые части: и.

КОМПЛЕКСНЫЕ ЧИСЛА. Определение 3. Комплексное число. называются равными ( ) тогда и только тогда, когда равны их действительные и мнимые части: и. 1 КОМПЛЕКСНЫЕ ЧИСЛА Комплексные числа в алгебраической форме 1Основные понятия Определение 1 Комплексным числом в алгебраической форме называется выражение вида, где и действительные числа, а так называемая

Подробнее

Практическое занятие 1 I. О записи чисел. Округление приближённых значений

Практическое занятие 1 I. О записи чисел. Округление приближённых значений Практическое занятие 1 I. О записи чисел Числовые значения состоят из некоторого количества цифр, десятичного разделителя (точки или запятой) и знака числа плюса или минуса. Цифры до десятичного разделителя

Подробнее

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 4.0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных

Подробнее

Математика 8 класс Многочлены

Математика 8 класс Многочлены МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 8 класс Многочлены Новосибирск Многочлены Рациональными

Подробнее

Дополнительные материалы по курсу математики 6-го класса.

Дополнительные материалы по курсу математики 6-го класса. Дополнительные материалы по курсу математики 6-го класса. Дистанционное обучение проводит учитель гимназии Акаёмова Ольга Тимофеевна. Цель обучения расширение и углубление знаний учеников по математике.

Подробнее

В тесте проверяются теоретическая и практическая части.

В тесте проверяются теоретическая и практическая части. 8.3 класс, Математика (учебник Макарычев) 2017-2018 уч.год Тема модуля 2 «Целые Делимость чисел» В тесте проверяются теоретическая и практическая части. ТЕМА Знать Уметь Знать определение пересечения и

Подробнее

В тесте проверяются теоретическая и практическая части.

В тесте проверяются теоретическая и практическая части. 8.3 класс, Математика (учебник Макарычев) 2016-2017 уч.год Тема модуля 2 «Целые Делимость чисел» В тесте проверяются теоретическая и практическая части. ТЕМА Знать Уметь Знать определение пересечения и

Подробнее

РАЦИОНАЛЬНЫЕ АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ

РАЦИОНАЛЬНЫЕ АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ РАЦИОНАЛЬНЫЕ АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ Оглавление РАЦИОНАЛЬНЫЕ АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ I Рациональные алгебраические уравнения Равносильность уравнений Равносильность уравнений на множестве Равносильность

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее

Предел функции. 4 1 Понятие предела функции

Предел функции. 4 1 Понятие предела функции Глава 4 Предел функции 4 1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

Отображение произвольных численных значений на множество машинных чисел

Отображение произвольных численных значений на множество машинных чисел Конспекты лекций по курсу «Введение в информатику и системы программирования», семестр С.А. Немнюгин, направление «Прикладные математика и физика») Лекция 0 Архитектура ЭВМ Форматы хранения данных. Машинная

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Coa Компьютерная алгебра

Coa Компьютерная алгебра 6. Быстрые алгоритмы деления Деление чисел методом Ньютона Для определенности будем считать, что делимое a = ( a,, am) и делитель b = ( b,, b ) записаны в позиционной системе счисления по основанию ( ).

Подробнее

РГУ НЕФТИ И ГАЗА им. И.М. ГУБКИНА. Кафедра физики. В.Г. Бекетов МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОБРАБОТКЕ РЕЗУЛЬТАТОВ РАСЧЕТОВ И ИЗМЕРЕНИЙ

РГУ НЕФТИ И ГАЗА им. И.М. ГУБКИНА. Кафедра физики. В.Г. Бекетов МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОБРАБОТКЕ РЕЗУЛЬТАТОВ РАСЧЕТОВ И ИЗМЕРЕНИЙ РГУ НЕФТИ И ГАЗА им. И.М. ГУБКИНА Кафедра физики В.Г. Бекетов МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОБРАБОТКЕ РЕЗУЛЬТАТОВ РАСЧЕТОВ И ИЗМЕРЕНИЙ ПРИ РЕШЕНИИ ЗАДАЧ И ВЫПОЛНЕНИИ ЛАБОРАТОРНЫХ РАБОТ ПО ФИЗИКЕ Для студентов

Подробнее

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) ПЕРЕСТАНОВКИ Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел

Подробнее

РГУ нефти и газа им. И.М. ГУБКИНА

РГУ нефти и газа им. И.М. ГУБКИНА РГУ нефти и газа им. И.М. ГУБКИНА ЛЕКЦИИ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ ФАКУЛЬТЕТА ЭКОНОМИКИ И УПРАВЛЕНИЯ Автор профессор Бекетов В.Г. ВВОДНАЯ ЧАСТЬ ТОЧНОСТЬ. ЗНАЧАЩИЕ ЦИФРЫ ЧИСЛА Результаты измерений и расчетов

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Математика. Учебник. для профессий и специальностей социально-экономического профиля НАЧАЛЬНОЕ И СРЕДНЕЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ

Математика. Учебник. для профессий и специальностей социально-экономического профиля НАЧАЛЬНОЕ И СРЕДНЕЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ НАЧАЛЬНОЕ И СРЕДНЕЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАНИЕ В. А. Гусев, С. Г. григорьев, С. В. Иволгина Математика для профессий и специальностей социально-экономического профиля Учебник Рекомендовано Федеральным

Подробнее

A, называется рангом матрицы и обозначается rg A.

A, называется рангом матрицы и обозначается rg A. Тема 7 Ранг матрицы Базисный минор Теорема о ранге матрицы и ее следствия Системы m линейных уравнений с неизвестными Теорема Кронекера- Капелли Фундаментальная система решений однородной системы линейных

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Основы алгебры. Числовые множества. Глава 1

Основы алгебры. Числовые множества. Глава 1 Глава 1 Основы алгебры Числовые множества Рассмотрим основные числовые множества. Множество натуральных чисел N включает числа вида 1, 2, 3 и т. д., которые используются для счета предметов. Множество

Подробнее

В тесте проверяются теоретическая и практическая части.

В тесте проверяются теоретическая и практическая части. 8., 8., 8. класс, Математика (учебник Макарычев) 07-08 уч.год Тема модуля «Делимость чисел. Действительные числа, квадратный корень» В тесте проверяются теоретическая и практическая части. ТЕМА Знать Уметь

Подробнее

Интерполирование функций

Интерполирование функций Постановка задачи, основные понятия Конечные разности и их свойства Интерполяционные многочлены Оценка остаточного члена интерполяционных многочленов Постановка задачи, основные понятия Пусть, то есть

Подробнее

МОДУЛЬ 7 «Показательная и логарифмическая функции»

МОДУЛЬ 7 «Показательная и логарифмическая функции» МОДУЛЬ 7 «Показательная и логарифмическая функции». Обобщение понятия степени. Корень й степени и его свойства.. Иррациональные уравнения.. Степень с рациональным показателем.. Показательная функция..

Подробнее

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f( x ) слева при стремлении x к a, если для любого числа существует такое число

Подробнее

Вопросы к смотру знаний по математике. 5-6 класс.

Вопросы к смотру знаний по математике. 5-6 класс. Вопросы к смотру знаний по математике. 5-6 класс. 1. Определение натуральных, целых, рациональных чисел. 2. Признаки делимости на 10, на 5, на 2. 3. Признаки делимости на 9, на 3. 4. Основное свойство

Подробнее

1. Рекуррентный способ Выпишите первые десять членов последовательности, заданной рекуррентно. 10) а 1 = 2, 7) а 1 = 1, a = a + 1

1. Рекуррентный способ Выпишите первые десять членов последовательности, заданной рекуррентно. 10) а 1 = 2, 7) а 1 = 1, a = a + 1 Глава 0 ПОСЛЕДОВАТЕЛЬНОСТИ Алгоритмы А- Задание числовых последовательностей А- Арифметическая прогрессия А- Геометрическая прогрессия А- Суммирование А-5 Бесконечно убывающая геометрическая прогрессия

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим.

ПЕРЕСТАНОВКИ. Определение 1. Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,..., n в строчку одно за другим. ПЕРЕСТАНОВКИ Определение 1 Перестановкой степени n называется любая упорядоченная запись натуральных чисел 1, 2, 3,, n в строчку одно за другим Например, 2, 4, 3, 1, 5 Это перестановка пятой степени Вообще

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и

Подробнее

Лекция 2.4. Непрерывность функции. Классификация точек разрыва

Лекция 2.4. Непрерывность функции. Классификация точек разрыва Лекция 4 Непрерывность функции Классификация точек разрыва Аннотация: Рассматриваются свойства функции, непрерывной на отрезке Приводится пример использования этих свойств при решении нелинейных уравнений

Подробнее

Практическая работа 13 Вычисление абсолютной и относительной погрешности

Практическая работа 13 Вычисление абсолютной и относительной погрешности Практическая работа 3 Вычисление абсолютной и относительной погрешности Цель работы: научиться производить вычисления с использованием абсолютной и относительной погрешности. Содержание работы. Основные

Подробнее

Последовательность. n n

Последовательность. n n Последовательность. Определение. Если каждому натуральному числу ( N ) по некоторому закону приведено в соответствие число { }, то этим определена числовая последовательность,,,... (или просто последовательность).

Подробнее

Решение уравнений в целых числах

Решение уравнений в целых числах Решение уравнений в целых числах Линейные уравнения. Метод прямого перебора Пример. В клетке сидят кролики и фазаны. Всего у них 8 ног. Узнать сколько в клетке тех и других. Укажите все решения. Решение.

Подробнее

q и пишут a b. Число b называют делителем

q и пишут a b. Число b называют делителем ДЕЛИМОСТЬ ЧИСЕЛ. Определение. Говорят, что целое число a нацело делится на целое число b, если a b q и пишут a b. Число b называют делителем существует такое целое число q, что числа a. виде Определение.

Подробнее

и q 2 целые числа. Следовательно, a + b = c(q 1 +q 2 ), а a b= c(q 1 q 2

и q 2 целые числа. Следовательно, a + b = c(q 1 +q 2 ), а a b= c(q 1 q 2 Делимость целых чисел. Часть 1. Определение целое число а делится на не равное нулю целое число b, если существует такое число q, что a = bq. В таком случае число a называется делимым, b делителем, а q

Подробнее

ИНЖЕНЕРНЫЕ РАСЧЕТЫ В ЭЛЕКТРОТЕХНИКЕ

ИНЖЕНЕРНЫЕ РАСЧЕТЫ В ЭЛЕКТРОТЕХНИКЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ ГУМАНИТАРНО-ТЕХНОЛОГИЧЕСКАЯ

Подробнее

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ После изучения данной темы вы сможете: проводить численное решение задач линейной алгебры. К решению систем линейных уравнений сводятся многочисленные практические задачи, решение

Подробнее

Представление чисел в компьютере

Представление чисел в компьютере Представление чисел в компьютере ГОУ СОШ с углубленным изучением математики, информатики, физики 444 Числа Целые Вещественные Без знака Со знаком Прямой код Положительные Отрицательные Прямой код = Дополнительный

Подробнее

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.»

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Министерство образования Республики Беларусь Министерство образования Республики Беларусь Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Кафедра теоретичской и прикладной математики.

Подробнее

от перемены мест слагаемых a b b a сложения сумма не меняется сочетательный закон не важно, в каком порядке сложения

от перемены мест слагаемых a b b a сложения сумма не меняется сочетательный закон не важно, в каком порядке сложения 1 Прикладная математика Лекция 1 Числа. Корни. Степени. Логарифмы Различные виды чисел: натуральные, целые, рациональные, действительные. Действия над числами: сложение, вычитание, умножение, деление.

Подробнее

Владимирова Ю.С., Рамиль Альварес Х. Алгоритм деления по модулю в симметричных системах счисления

Владимирова Ю.С., Рамиль Альварес Х. Алгоритм деления по модулю в симметричных системах счисления Владимирова Ю.С., Рамиль Альварес Х. Алгоритм деления по модулю в симметричных системах счисления В ряде публикаций (например, [1]-[3]) приведены алгоритмы деления по модулю в троичной симметричной системе

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Ф И Л И А Л «С Е В М А Ш В Т У З» Г О С У Д А Р С Т В Е Н Н О Г О О Б Р А З О В А Т Е Л Ь Н О Г О У Ч Р Е Ж Д Е Н И Я В Ы С Ш Е Г О П Р О Ф Е С С И О Н А Л Ь Н О Г

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь-

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь- Последовательности. Числовая последовательность. Виды последовательностей Предел числовой последовательности Предельный переход в неравенствах Предел монотонной ограниченной последовательности. Число e.

Подробнее

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности.

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности. Methods.doc Методы приближенных вычислений Стр.1 из 6 Общее условие задачи: Двумя заданными численными методами вычислить приближенное значение корня 1 функционального уравнения вида f()=0 для N значений

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC.

ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC. ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC. Машкова Е.Г., Покришка О.И. Донской Государственный Технический Университет (ДГТУ) Ростов-на-Дону,

Подробнее

1. Числовой последовательностью называется бесконечное множество чисел

1. Числовой последовательностью называется бесконечное множество чисел 1. Числовой последовательностью называется бесконечное множество чисел (1) следующих одно за другим в определенном порядке и построенных по определенному закону, с помощью которого задается как функция

Подробнее

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения:

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения: МНОЖЕСТВА Множество В математике понятие множество используется для описания совокупности предметов или объектов При этом предполагается, что предметы (объекты) данной совокупности можно отличить друг

Подробнее

1., 2., 3., где а, d постоянные числа.

1., 2., 3., где а, d постоянные числа. ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь

Подробнее

Ответ. Вопрос. Что такое классы и разряды в записи чисел? Как называют числа при сложении?

Ответ. Вопрос. Что такое классы и разряды в записи чисел? Как называют числа при сложении? Вопрос Какие числа называют натуральными? Ответ Натуральными называют числа, которые используют при счете Что такое классы и разряды в записи чисел? Как называют числа при сложении? Сформулируйте сочетательный

Подробнее

Системы счисления. Двоичная система счисления.

Системы счисления. Двоичная система счисления. Системы счисления. Двоичная система счисления. 1 Система счисления это знаковая система, определяющая способ записи (изображения) чисел. Все системы счисления, которые существовали раньше и которые используются

Подробнее

2 Предел функции. , определенная на множестве всех натуральных чисел N 1,2,3,..., n,... . Значения функции f1, f2,..., fn,...

2 Предел функции. , определенная на множестве всех натуральных чисел N 1,2,3,..., n,... . Значения функции f1, f2,..., fn,... Предел функции. Предел числовой последовательности Определение. Бесконечной числовой последовательностью (или просто числовой последовательностью называется функция f f (, определенная на множестве всех

Подробнее

Указания, решения, ответы. нет, поэтому уравнение b 4ac имеет решений в целых числах. Третье решение. Перепишем уравнение УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ

Указания, решения, ответы. нет, поэтому уравнение b 4ac имеет решений в целых числах. Третье решение. Перепишем уравнение УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ Указания, решения, ответы УРАВНЕНИЯ В ЦЕЛЫХ ЧИСЛАХ. Уравнение с одной неизвестной.. Решение. Подставим в уравнение. Получим равенство ( 4a b 4) (a b 8) 0. Равенство A B 0, где А и В целые, выполняется,

Подробнее

Задания С6 ЕГЭ олимпиадного характера

Задания С6 ЕГЭ олимпиадного характера Задания С6 ЕГЭ олимпиадного характера 1. Все члены конечной последовательности являются натуральными числами. Каждый член этой последовательности, начиная со второго, либо в 11 раз больше, либо в 11 раз

Подробнее

, (1.2) где π ij некоторые числа, i, j = 1,..., s; здесь значения x i1,..., x in выбраны произвольным

, (1.2) где π ij некоторые числа, i, j = 1,..., s; здесь значения x i1,..., x in выбраны произвольным 1. КОНЕЧНЫЕ ОДНОРОДНЫЕ ЦЕПИ МАРКОВА Рассмотрим последовательность случайных величин ξ n, n 0, 1,..., каждая из коорых распределена дискретно и принимает значения из одного и того же множества {x 1,...,

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Лекция 1. Работа с матрицами. ( ) Количество строк и столбцов матрицы называется размерностью. ( )

Лекция 1. Работа с матрицами. ( ) Количество строк и столбцов матрицы называется размерностью. ( ) Лекция 1 Работа с матрицами. 1. Основные понятия. Определение. Матрицей размерности чисел, содержащая строк и столбцов. называется таблица пронумерованных Исходя из такого определения матрицы, можно сделать

Подробнее

Методы и алгоритмы приближённых вычислений. 1. Парадоксы машинных вычислений.

Методы и алгоритмы приближённых вычислений. 1. Парадоксы машинных вычислений. Методы и алгоритмы приближённых вычислений.. Парадоксы машинных вычислений... «От перемены мест слагаемых сумма изменяется!» Как же так? Ведь со школьной скамьи мы помним, что наоборот: «От перемены мест

Подробнее

ЛЕКЦИЯ 1 ПОГРЕШНОСТЬ ВЫЧИСЛЕНИЙ

ЛЕКЦИЯ 1 ПОГРЕШНОСТЬ ВЫЧИСЛЕНИЙ ЛЕКЦИЯ 1 ПОГРЕШНОСТЬ ВЫЧИСЛЕНИЙ В наши дни, ни один крупный технический проект не обходится без различных расчетов и вычислений, начиная с очень простых алгебраических моделей, заканчивая сложнейшими научными

Подробнее

Область определения левой части этих формул может быть шире области определения

Область определения левой части этих формул может быть шире области определения 7 ПОКАЗАТЕЛЬНЫЕ ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ И НЕРАВЕНСТВА Комментарий При решении логарифмических уравнений также как в случае иррациональных уравнений возможно появление посторонних корней Причина их появления

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Пояснительная записка

Пояснительная записка Пояснительная записка Рабочая программа по математике составлена на основе следующих нормативных документов и методических рекомендаций: 1.Федеральнфй государственный образовательный стандарт основного

Подробнее

Заочный физико-математический лицей «Авангард» Е. Н. Филатов АЛГЕБРА. Экспериментальный учебник. Часть 1 МОСКВА 2016

Заочный физико-математический лицей «Авангард» Е. Н. Филатов АЛГЕБРА. Экспериментальный учебник. Часть 1 МОСКВА 2016 Заочный физико-математический лицей «Авангард» Е. Н. Филатов АЛГЕБРА 8 Экспериментальный учебник Часть 1 МОСКВА 2016 СОДЕРЖАНИЕ 1. Делимость. 2. Чёт нечет 3. Множества. 4. Забавные задачи. 5. Комбинаторика

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА Пензенский государственный университет Физико-математический факультет «Очно-заочная физико-математическая школа» МАТЕМАТИКА Тождественные преобразования. Решение уравнений. Треугольники Задание 1 для

Подробнее

СПРАВОЧНИК. 1. Некоторые признаки делимости натуральных чисел Натуральные числа это числа, используемые для счёта:

СПРАВОЧНИК. 1. Некоторые признаки делимости натуральных чисел Натуральные числа это числа, используемые для счёта: СПРАВОЧНИК Некоторые признаки делимости натуральных чисел Натуральные числа это числа, используемые для счёта:,,,,, Натуральные числа образуют множество, называемое множеством натуральных чисел Множество

Подробнее

МАТЕМАТИКА. ВСЁ ДЛЯ УЧИТЕЛЯ! ДИДАКТИЧЕСКАЯ БИБЛИОТЕКА (51) март 2015

МАТЕМАТИКА. ВСЁ ДЛЯ УЧИТЕЛЯ! ДИДАКТИЧЕСКАЯ БИБЛИОТЕКА (51) март 2015 МАТЕМАТИКА. ВСЁ ДЛЯ УЧИТЕЛЯ! ДЕСЯТИЧНЫЕ ДРОБИ И ДЕЙСТВИЯ НАД НИМИ ДИДАКТИЧЕСКАЯ ДА ИЧЕС КАЯ БИБЛИОТЕКА БЛИО ИОТЕ Предлагаем дидактические материалы по теме «Десятичные дроби»: карточки для индивидуальной

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений

ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ имени ВН КАРАЗИНА ЮМ ДЮКАРЕВ, ИЮ СЕРИКОВА ЛИНЕЙНАЯ АЛГЕБРА Матрицы, определители, системы линейных уравнений Учебно-методическое

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

Делимость целых чисел в задачах

Делимость целых чисел в задачах Югорский физико-математический лицей В.П. Чуваков Делимость целых чисел в задачах Сборник задач Ханты-Мансийск 05 Делимость целых чисел в задачах: Сборник задач, - Ханты-Мансийск, Югорский физико-математический

Подробнее

Югорский физико-математический лицей В.П. Чуваков Задача С6 (Теория чисел на ЕГЭ)

Югорский физико-математический лицей В.П. Чуваков Задача С6 (Теория чисел на ЕГЭ) Югорский физико-математический лицей ВП Чуваков Задача С6 (Теория чисел на ЕГЭ) Учебно-методическое пособие Ханты-Мансийск 0 ВП Чуваков Задача С6 (Теория чисел на ЕГЭ): Учебнометодическое пособие, - Ханты-Мансийск,

Подробнее

3. Бесконечно большие функции

3. Бесконечно большие функции 3 Бесконечно большие функции Пусть функция f ( определена в некоторой окрестности точки R, кроме, может быть, самой точки ОПРЕДЕЛЕНИЕ (на языке ε δ Функцию f ( называют бесконечно большой при (в точке

Подробнее

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии.

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии. ЛЕКЦИЯ Числовые последовательности Бесконечно большие и бесконечно малые последовательности Основные свойства бесконечно малых последовательностей Числовые последовательности Если каждому из множества

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Численные методы Тема 2. Интерполяция

Численные методы Тема 2. Интерполяция Численные методы Тема 2 Интерполяция В И Великодный 2011 2012 уч год 1 Понятие интерполяции Интерполяция это способ приближенного или точного нахождения какой-либо величины по известным отдельным значениям

Подробнее

Тема 1 «Числовые выражения. Порядок действий. Сравнение чисел».

Тема 1 «Числовые выражения. Порядок действий. Сравнение чисел». Тема 1 «Числовые выражения. Порядок действий. Сравнение чисел». Числовым выражением называется одна или несколько числовых величин (чисел), соединенных между собой знаками арифметических действий: сложения,

Подробнее

1. Многочлен Лагранжа. Пусть из эксперимента получены значения неизвестной функции

1. Многочлен Лагранжа. Пусть из эксперимента получены значения неизвестной функции 1 Многочлен Лагранжа Пусть из эксперимента получены значения неизвестной функции ( x i = 01 x [ a b] i i i Возникает задача приближенного восстановления неизвестной функции ( x в произвольной точке x Для

Подробнее

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ

ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Лекции по Математике. Вып. ТММ-1 Ю. В. Чебраков ТЕОРИЯ МАГИЧЕСКИХ МАТРИЦ Санкт-Петербург, 010 УДК 511+51 ББК Ч345 Р е ц е н з е н т ы: Доктор физико-математических наук, профессор С.-Петерб. техн. ун-та

Подробнее

n q 1 a 1 a a q n A = n n q n m s 2

n q 1 a 1 a a q n A = n n q n m s 2 Лекция 5 Основы представления информации в цифровых автоматах Позиционные системы счисления Системой счисления называется совокупность приемов и правил для записи чисел цифровыми знаками. Любая предназначенная

Подробнее