Математический анализ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Математический анализ"

Транскрипт

1 Математический анализ

2 Предел функции Математический анализ (лекция 4) / 49

3 Предел функции Определение Число A называется пределом функции y = f (x) при x, стремящемся к бесконечности, если для любого сколь угодно малого числа ε > 0 существует такое число M = M(ε) > 0, что для всех x таких, что x > M, верно неравенство f (x) A < ε. Математический анализ (лекция 4) / 49

4 Предел функции Обозначение: lim f (x) = A x или f (x) A при x. Математический анализ (лекция 4) / 49

5 Предел функции Если в сформулированном определении условие x > M заменить на условие x > M (x < M), то получим определение предела функции при x + (x ). Математический анализ (лекция 4) / 49

6 Предел функции Обозначение: lim f (x) = A x + или f (x) A при x + ( lim x f (x) = A или f (x) A при x ). Математический анализ (лекция 4) / 49

7 Предел функции Геометрический смысл lim x f (x) = A Число A есть предел функции y = f (x) при x, стремящемся к бесконечности, если для любого сколь угодно малого числа ε > 0 существует такое число m = m(ε) > 0, что для всех x таких, что x > m, соответствующие значения функции f (x) будут принадлежать ε- окрестности точки A. Математический анализ (лекция 4) / 49

8 Предел функции Определение Число A называется пределом функции y = f (x) при x, стремящемся к x 0, если для любого сколь угодно малого числа ε > 0 существует такое число δ = δ(ε) > 0, что для всех x x 0, удовлетворяющих условию x x 0 < δ, верно неравенство f (x) A < ε. Математический анализ (лекция 4) / 49

9 Предел функции Обозначение: lim f (x) = A x x 0 или f (x) A при x x 0. Математический анализ (лекция 4) / 49

10 Предел функции Если в сформулированном определении условия x x 0 и x x 0 < δ заменить на условие x 0 < x < x 0 + δ (x 0 δ < x < x 0 ), то получим определение правостороннего (левостороннего) или предела справа (слева), т.е. предела функции при x x 0 + (x x 0 ). Математический анализ (лекция 4) / 49

11 Предел функции Обозначение: lim f (x) = A x x 0 + или f (x) A при x x 0 + ( lim x x 0 f (x) = A или f (x) A при x x 0 ). Математический анализ (лекция 4) / 49

12 Предел функции Геометрический смысл lim x x0 f (x) = A. Число A есть предел функции y = f (x) при x, стремящемся к x 0, если для любого сколь угодно малого числа ε > 0 найдется такая δ- окрестность (δ = δ(ε)) точки x 0, что для всех x x 0 из этой окрестности соответствующие значения функции f (x) будут принадлежать ε- окрестности точки A. Математический анализ (лекция 4) / 49

13 Предел функции Определение Функция y = f (x) имеет бесконечный предел при x, стремящемся к бесконечности (функция y = f (x) стремится к бесконечности при x, стремящемся к бесконечности), если для любого сколь угодно большого числа M > 0 существует такое число m = m(m) > 0, что для всех x таких, что x > m, верно неравенство f (x) > M. Математический анализ (лекция 4) / 49

14 Предел функции Обозначение: lim f (x) = x или f (x) при x. Математический анализ (лекция 4) / 49

15 Предел функции Если в сформулированном определении условие x > M заменить на условие x > M (x < M), то получим определение предела функции при x + (x ). Математический анализ (лекция 4) / 49

16 Предел функции Обозначение: lim f (x) = x + или f (x) при x + ( lim x f (x) = или f (x) при x ). Математический анализ (лекция 4) / 49

17 Предел функции Определение Функция y = f (x) имеет бесконечный предел при x, стремящемся к x 0 (функция y = f (x) стремится к бесконечности при x, стремящемся к x 0 ), если для любого сколь угодно большого числа M > 0 существует такое число δ = δ(m) > 0, что для всех x x 0, удовлетворяющих условию x x 0 < δ, верно неравенство f (x) > M. Математический анализ (лекция 4) / 49

18 Предел функции Обозначение: lim f (x) = x x 0 или f (x) при x x 0. Математический анализ (лекция 4) / 49

19 Предел функции Если в сформулированном определении условия x x 0 и x x 0 < δ заменить на условие x 0 < x < x 0 + δ (x 0 δ < x < x 0 ), то получим определение правостороннего (левостороннего) или предела справа (слева), т.е. предела функции при x x 0 + (x x 0 ). Математический анализ (лекция 4) / 49

20 Предел функции Обозначение: lim f (x) = x x 0 + или f (x) при x x 0 + ( lim x x 0 f (x) = или f (x) при x x 0 ). Математический анализ (лекция 4) / 49

21 Основные теоремы о пределах Математический анализ (лекция 4) / 49

22 Основные теоремы о пределах Теорема Если функция имеет предел при x x 0 (x ), то этот предел единственный. Математический анализ (лекция 4) / 49

23 Основные теоремы о пределах Теорема lim C = C (C постоянная). x x 0 ( ) Математический анализ (лекция 4) / 49

24 Основные теоремы о пределах Теорема Если lim x x 0 ( ) lim x x 0 ( ) lim x x 0 ( ) lim x x 0 ( ) lim f (x) = A, x x 0 ( ) g(x) = B, то: (f (x) ± g(x)) = A ± B; (f (x) g(x)) = A B; f (x) g(x) = A B (B 0). Математический анализ (лекция 4) / 49

25 Основные теоремы о пределах Теорема Если lim x x 0 ( ) lim x x 0 ( ) lim x x 0 ( ) lim x x 0 ( ) lim f (x) = A, x x 0 ( ) g(x) = B, то: (f (x) ± g(x)) = A ± B; (f (x) g(x)) = A B; f (x) g(x) = A B (B 0). Математический анализ (лекция 4) / 49

26 Основные теоремы о пределах Теорема Если lim x x 0 ( ) lim x x 0 ( ) lim x x 0 ( ) lim x x 0 ( ) lim f (x) = A, x x 0 ( ) g(x) = B, то: (f (x) ± g(x)) = A ± B; (f (x) g(x)) = A B; f (x) g(x) = A B (B 0). Математический анализ (лекция 4) / 49

27 Основные теоремы о пределах Теорема Если lim x x 0 ( ) lim x x 0 ( ) lim x x 0 ( ) lim x x 0 ( ) lim f (x) = A, x x 0 ( ) g(x) = B, то: (f (x) ± g(x)) = A ± B; (f (x) g(x)) = A B; f (x) g(x) = A B (B 0). Математический анализ (лекция 4) / 49

28 Основные теоремы о пределах Теорема Если lim f (y) = A, lim g(x) = y 0, y y0 x x0 то: lim x x0 f (g(x)) = A. Математический анализ (лекция 4) / 49

29 Раскрытие неопределенностей. Замечательные пределы Математический анализ (лекция 4) / 49

30 Раскрытие неопределенностей. Замечательные пределы Неопределенность 1 типа. f (x) lim с неопределенностью вида x ( g(x), f (x) и g(x) сложные ) степенные или показательные функции. Математический анализ (лекция 4) / 49

31 Раскрытие неопределенностей. Замечательные пределы В случае степенных функций необходимо вынести за скобку в числителе и знаменателе дроби x с наибольшим среди всех слагаемых дроби показателем степени. Математический анализ (лекция 4) / 49

32 Раскрытие неопределенностей. Замечательные пределы В случае показательных функций за скобку выносится наиболее быстро возрастающее среди всех слагаемых дроби слагаемое. После сокращения дроби неопределенность устраняется. Математический анализ (лекция 4) / 49

33 Раскрытие неопределенностей. Замечательные пределы Неопределенность 2 типа. f (x) lim с неопределенностью вида x x ( ) 0 g(x) 0. 0 Математический анализ (лекция 4) / 49

34 Раскрытие неопределенностей. Замечательные пределы В этом случае необходимо разложить на множители и числитель и знаменатель дроби или домножить и числитель и знаменатель дроби на одно и то же выражение, приводящее к формулам сокращенного умножения. При сокращении дроби неопределенность устраняется. Математический анализ (лекция 4) / 49

35 Раскрытие неопределенностей. Замечательные пределы Неопределенность 3 типа. (f (x) g(x)) с lim x x 0 ( ) неопределенностью вида ( ). Математический анализ (лекция 4) / 49

36 Раскрытие неопределенностей. Замечательные пределы Если функция, стоящая под знаком предела, представляет собой алгебраическую сумму дробей, то неопределенность устраняется или приводится ко второму типу после приведения дробей к общему знаменателю. Математический анализ (лекция 4) / 49

37 Раскрытие неопределенностей. Замечательные пределы Если функция, стоящая под знаком предела, представляет собой алгебраическую сумму иррациональных выражений, то неопределенность или устранится или приводится к первому типу путем домножения и деления функции на одно и то же (например, сопряженное) выражение, приводящее к формулам сокращенного умножения. Математический анализ (лекция 4) / 49

38 Раскрытие неопределенностей. Замечательные пределы Первый замечательный предел: sin x lim = 1. x 0 x Математический анализ (лекция 4) / 49

39 Раскрытие неопределенностей. Замечательные пределы Второй замечательный предел: ( ) x = e. x lim x lim x 0 (1 + x)1 x = e. Математический анализ (лекция 4) / 49

40 Раскрытие неопределенностей. Замечательные пределы Неопределенность 4 типа. lim x x 0 ( ) (f (x))g(x) с неопределенностью вида (1 ). Математический анализ (лекция 4) / 49

41 Раскрытие неопределенностей. Замечательные пределы В этом случае выражение, стоящее под знаком предела, представляет собой степенно-показательную функцию, в основании которой необходимо выделить целую часть дроби, равную единице. Математический анализ (лекция 4) / 49

42 Раскрытие неопределенностей. Замечательные пределы Неопределенность устраняется путем сведения ко второму замечательному пределу. Математический анализ (лекция 4) / 49

43 Раскрытие неопределенностей. Замечательные пределы Неопределенность 5 типа. f (x) lim с неопределенностью вида x x ( ) 0 g(x) 0, сводится к первому 0 замечательному пределу. Математический анализ (лекция 4) / 49

44 Раскрытие неопределенностей. Замечательные пределы Неопределенность 6 типа. (f (x) g(x)) с lim x x 0 ( ) неопределенностью вида (0 ). Математический анализ (лекция 4) / 49

45 Раскрытие неопределенностей. Замечательные пределы Сводится к рассмотренным ( ) выше 0 ( неопределенностям и 0 ) следующим образом: Математический анализ (лекция 4) / 49

46 Раскрытие неопределенностей. Замечательные пределы произведение f (x) g(x) следует записать в виде [ f (x) ] или [ g(x) ] и 1 g(x) 1 f (x) получить ( ) неопределенность вида 0 ( или. 0 ) Математический анализ (лекция 4) / 49

47 Раскрытие неопределенностей. Замечательные пределы Неопределенность 7 типа. lim x x 0 ( ) (f (x))g(x) с неопределенностью вида ( 0 0). Математический анализ (лекция 4) / 49

48 Раскрытие неопределенностей. Замечательные пределы Сводится к рассмотренным ( ) выше 0 ( неопределенностям и. 0 ) Математический анализ (лекция 4) / 49

49 Раскрытие неопределенностей. Замечательные пределы Находят предел натурального логарифма выражения, содержащего данную неопределённость. После нахождения предела от него берут экспоненту: lim (f x x 0 ( ) (x))g(x) = e lim g(x) ln f (x) x x 0 ( ). Математический анализ (лекция 4) / 49

50 Раскрытие неопределенностей. Замечательные пределы Неопределенность 8 типа. lim x x 0 ( ) (f (x))g(x) с неопределенностью вида ( 0). Математический анализ (лекция 4) / 49

51 Раскрытие неопределенностей. Замечательные пределы Сводится к рассмотренным ( ) выше 0 ( неопределенностям и. 0 ) Математический анализ (лекция 4) / 49

52 Раскрытие неопределенностей. Замечательные пределы Находят предел натурального логарифма выражения, содержащего данную неопределенность. После нахождения предела от него берут экспоненту: lim (f x x 0 ( ) (x))g(x) = e lim g(x) ln f (x) x x 0 ( ). Математический анализ (лекция 4) / 49

Тема: Предел функции. Свойства пределов 1. Предел функции

Тема: Предел функции. Свойства пределов 1. Предел функции Тема: Предел функции. Свойства пределов 1. Предел функции Пусть f(x) функция, определенная на множестве Х; А и а числа. Опр. Число А называется пределом функции f(x) при xa, если >0 такая -окрестность

Подробнее

Тема 3. ПРЕДЕЛЫ ФУНКЦИЙ

Тема 3. ПРЕДЕЛЫ ФУНКЦИЙ Тема ПРЕДЕЛЫ ФУНКЦИЙ Число А называется пределом функции у=f), при х стремящемся к бесконечности, если для любого, сколь угодно малого числа ε>, найдется такое положительное числоs, что при всех >S, выполняется

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики ФУНКЦИЯ И ЕЕ

Подробнее

Ответы к заданию

Ответы к заданию Ответы к заданию.. понятия одного аргумента.. Основные элементарные.. элементарных функций.4. предела f в точке. х Х Если каждому элементу х из множества Х поставлен в соответствие определенный элемент

Подробнее

2. Предел функции. изменении аргумента. С помощью предела можно выяснить, имеет ли

2. Предел функции. изменении аргумента. С помощью предела можно выяснить, имеет ли . Предел функции. Актуальность изучения темы Теория пределов играет основополагающую роль в математическом анализе, позволяет определить характер поведения функции при заданном изменении аргумента. С помощью

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и

Подробнее

2 Предел функции. , определенная на множестве всех натуральных чисел N 1,2,3,..., n,... . Значения функции f1, f2,..., fn,...

2 Предел функции. , определенная на множестве всех натуральных чисел N 1,2,3,..., n,... . Значения функции f1, f2,..., fn,... Предел функции. Предел числовой последовательности Определение. Бесконечной числовой последовательностью (или просто числовой последовательностью называется функция f f (, определенная на множестве всех

Подробнее

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ Министерство образования и науки Российской Федерации «ТАМБОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ФГБОУ ВПО «ТГТУ» ВАСИЛЬЕВ ВВ, ЛАНОВАЯ АВ, ЩЕРБАКОВА АВ ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ

Подробнее

Предел функции. 4 1 Понятие предела функции

Предел функции. 4 1 Понятие предела функции Глава 4 Предел функции 4 1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы

Подробнее

Последовательность. n n

Последовательность. n n Последовательность. Определение. Если каждому натуральному числу ( N ) по некоторому закону приведено в соответствие число { }, то этим определена числовая последовательность,,,... (или просто последовательность).

Подробнее

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 7 Предел функции СОДЕРЖАНИЕ: Предел функции в точке Предел функции на бесконечности Основные теоремы о пределах функций Бесконечно

Подробнее

Пределы. 6.1 Определение предела последовательности и

Пределы. 6.1 Определение предела последовательности и Студент должен знать: определение предела функции; свойства пределов; понятие бесконечно малых функций; понятие ограниченных и бесконечно больших функций; определение непрерывности функции в точке; сравнение

Подробнее

Предел и непрерывность функции одной переменной

Предел и непрерывность функции одной переменной Министерство образования и науки Российской Федерации Московский государственный университет геодезии и картографии МЕЧанга Предел и непрерывность функции одной переменной Рекомендовано учебно-методическим

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

lim ПРЕДЕЛ ФУНКЦИИ Методические указания

lim ПРЕДЕЛ ФУНКЦИИ Методические указания Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ) ПРЕДЕЛ ФУНКЦИИ Методические

Подробнее

Федеральное агентство по образованию. Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

Федеральное агентство по образованию. Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Федеральное агентство по образованию Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» Методы вычисления пределов Методические указания к решению задач Санкт-Петербург Издательство

Подробнее

Математический анализ

Математический анализ С.Н. Зиненко Математический анализ Предел и непрерывность функций одной переменной (теория к задачам) 4 Предел функции f( ), при, a нестрого означает, что становится почти равной (стремится, приближается

Подробнее

Основы алгебры. Числовые множества. Глава 1

Основы алгебры. Числовые множества. Глава 1 Глава 1 Основы алгебры Числовые множества Рассмотрим основные числовые множества. Множество натуральных чисел N включает числа вида 1, 2, 3 и т. д., которые используются для счета предметов. Множество

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА ГОУВПО КЫРГЫЗСКО-РОССИЙСКИЙ СЛАВЯНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ Л.Г. Лелевкина, И.В. Гончарова, Н.М. Комарцов ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ НЕПРЕРЫВНОГО АРГУМЕНТА Учебно-методическое

Подробнее

Пределы и непрерывность

Пределы и непрерывность Пределы и непрерывность. Предел функции Пусть функция = f ) определена в некоторой окрестности точки = a. При этом в самой точке a функция не обязательно определена. Определение. Число b называется пределом

Подробнее

Методические рекомендации по решению задач на тему «пределы функции» для студентов специальности «Производство летательных аппаратов»

Методические рекомендации по решению задач на тему «пределы функции» для студентов специальности «Производство летательных аппаратов» Государственное бюджетное профессиональное учреждение Московской области «Авиационный техникум имени В.А. Казакова» Рассмотрено на заседании предметной цикловой комиссии «Общеобразовательных, математических

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики. Занятие. Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.. Вспомнить свойства степени с рациональным показателем. a a a a a для натурального раз

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Коршикова Т. И., Калиниченко

Подробнее

Кафедра экономической теории и моделирования экономических процессов ПРЕДЕЛЫ

Кафедра экономической теории и моделирования экономических процессов ПРЕДЕЛЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии.

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии. ЛЕКЦИЯ Числовые последовательности Бесконечно большие и бесконечно малые последовательности Основные свойства бесконечно малых последовательностей Числовые последовательности Если каждому из множества

Подробнее

Математический анализ

Математический анализ Математический анализ 02.03.2013 Элементарные функции. Преобразование графиков функций Математический анализ (лекция 3) 02.03.2013 2 / 50 Тригонометрические функции Математический анализ (лекция 3) 02.03.2013

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ПРЕДЕЛ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

Подробнее

Пределы функций. Теория пределов это один из разделов математического анализа. Что такое предел.

Пределы функций. Теория пределов это один из разделов математического анализа. Что такое предел. Пределы функций. Теория пределов это один из разделов математического анализа. Что такое предел. Любой предел состоит из трех частей: 1) Всем известного значка предела. 2) Записи под значком предела,.

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОУ СПО «ЛЕНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ» Практическое пособие по изучению раздела

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОУ СПО «ЛЕНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ» Практическое пособие по изучению раздела ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОУ СПО «ЛЕНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНО-ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ» Практическое пособие по изучению раздела Теория пределов Составила: Миргородская Ирина Николаевна,

Подробнее

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности Математический анализ (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности 1 Предварительные сведения о действительных (вещественных) числах Рациональное число m Q, m, -целые числа.

Подробнее

1.4. Предел функции Нахождение предела функции с использованием замечательных

1.4. Предел функции Нахождение предела функции с использованием замечательных 1.4. Предел функции 4.1. Нахождение предела функции с использованием замечательных пределов. ТЕОРИЯ Определение предельной точки. Точку p R называют предельной точкой (или точкой сгущения) множества X

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь-

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь- Последовательности. Числовая последовательность. Виды последовательностей Предел числовой последовательности Предельный переход в неравенствах Предел монотонной ограниченной последовательности. Число e.

Подробнее

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА

Пензенский государственный университет. Физико-математический факультет. «Очно-заочная физико-математическая школа» МАТЕМАТИКА Пензенский государственный университет Физико-математический факультет «Очно-заочная физико-математическая школа» МАТЕМАТИКА Тождественные преобразования. Решение уравнений. Треугольники Задание 1 для

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

Математический анализ Лекция 5. Математический анализ, Лекция 5 1 / 16

Математический анализ Лекция 5. Математический анализ, Лекция 5 1 / 16 Математический анализ Лекция 5 Математический анализ, Лекция 5 1 / 16 Общие свойства пределов Математический анализ, Лекция 5 2 / 16 Общие свойства пределов Теорема (локальная ограниченность функции) Математический

Подробнее

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ. Методические указания для студентов заочной формы обучения. Составители М.В. Зголич

ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ. Методические указания для студентов заочной формы обучения. Составители М.В. Зголич Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный

Подробнее

5. Предел функции. ( ε > 0 δ > 0 x (a δ, a + δ), x a) f(x) l < ε. или так:

5. Предел функции. ( ε > 0 δ > 0 x (a δ, a + δ), x a) f(x) l < ε. или так: 5. Предел функции Определение. Точку p R называют предельной точкой (или точкой сгущения) множества X R, для любого r > 0 существует отличная от p точка x X такая, что x p < r. Говорят, что + (соответственно

Подробнее

ПОДГОТОВКА К ТЕСТИРОВАНИЮ ПО МАТЕМАТИКЕ

ПОДГОТОВКА К ТЕСТИРОВАНИЮ ПО МАТЕМАТИКЕ РОСЖЕЛДОР Федеральное государственное бюджетное образовательное учреждение высшего образования «Ростовский государственный университет путей сообщения» ФГБОУ ВО РГУПС ЕВ Пиневич, ВА Липович, ИС Стасюк

Подробнее

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...}

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...} Тема Теория пределов Как мы понимаем слово «предел»? В повседневной жизни мы часто употребляем термин «предел», не углубляясь в его сущность В нашем представлении чаще всего предел отождествляется с понятием

Подробнее

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3 Вариант Найти область определения функции : y arccos Область определения данной функции определяется неравенством Умножим неравенство на и освободимся от знака модуля: Из левого неравенства находим или

Подробнее

3. Бесконечно большие функции

3. Бесконечно большие функции 3 Бесконечно большие функции Пусть функция f ( определена в некоторой окрестности точки R, кроме, может быть, самой точки ОПРЕДЕЛЕНИЕ (на языке ε δ Функцию f ( называют бесконечно большой при (в точке

Подробнее

Тест по алгебре Арифметический квадратный корень I вариант 8В класс, 24 октября 2007

Тест по алгебре Арифметический квадратный корень I вариант 8В класс, 24 октября 2007 I вариант 8В класс, 4 октября 007 1 Вставьте пропущенные слова: Определение 1 Арифметическим квадратным корнем из число, которого равен a из числа a (a 0) обозначается так: выражением Действие нахождения

Подробнее

e называют экспонентой.

e называют экспонентой. МОДУЛЬ 8 «Производная показательной и логарифмической функции». Производная показательной функции. Число e.. Определение натурального логарифма. Формула производной показательной функции.. Первообразная

Подробнее

Бесконечно малые величины. Бесконечно большие величины. Математический анализ (лекция 5) / 52

Бесконечно малые величины. Бесконечно большие величины. Математический анализ (лекция 5) / 52 Бесконечно большие величины Математический анализ (лекция 5) 16.03.2013 2 / 52 Определение Функция α(x) называется бесконечно малой величиной при x x 0 (x ), если lim α(x) = 0 ( x x0 ) lim α(x) = 0 x.

Подробнее

Тема: Интегрирование рациональных дробей

Тема: Интегрирование рациональных дробей Математический анализ Раздел: Неопределенный интеграл Тема: Интегрирование рациональных дробей Лектор Пахомова Е.Г. 0 г. 5. Интегрирование рациональных дробей ОПРЕДЕЛЕНИЕ. Рациональной дробью называется

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Введение в математический анализ Предел последовательности и функции. Раскрытие неопределенностей в пределах. Производная функции. Правила дифференцирования. Применение производной

Подробнее

. Преобразуем функцию:, если x

. Преобразуем функцию:, если x Вариант Найти область определения функции : + + + Неравенство + выполняется всегда Поэтому область определения данной функции определяется следующими неравенствами:, те, и, те Решением системы этих неравенств

Подробнее

ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ ОДНОГО АРГУМЕНТА

ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИИ ОДНОГО АРГУМЕНТА ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Т.В. Тарбокова, В.М. Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ

Подробнее

МАТЕМАТИКА ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

МАТЕМАТИКА ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В.Н.Думачев С.А.Телкова МАТЕМАТИКА ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ Учебное пособие Воронеж - 06 ББК. Д8 Рассмотрено и одобрен на заседании кафедры математики и моделирования систем. Протокол от.09.06. Рассмотрен

Подробнее

Пределы. Решение контрольной работы

Пределы. Решение контрольной работы Пределы. Решение контрольной работы Нахождение предела по определению Задача. Доказать, что a a 5 + 5, 5 a a (указать N(ε)) Нужно показать, что для любого ε > найдется такое N ( ε ), что для всех a > N

Подробнее

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию:

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию: Вариант 7 Найти область определения функции : y + / lg Область определения данной функции определяется следующими условиями:, >, те > / Далее, знаменатель не должен обращаться в нуль: или Объединяя результаты,

Подробнее

13. Экспонента и логарифм

13. Экспонента и логарифм 13. Экспонента и логарифм Для завершения доказательства предложения 12.8 нам остается дать одно определение и доказать одно предложение. Определение 13.1. Ряд a i называется абсолютно сходящимся, если

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

Экзаменационный билет 2

Экзаменационный билет 2 Экзаменационный билет 1 1. Преобразование обычных дробей в десятичные и наоборот. Действия с дробями. 2. Определение функции. Способы задания, область определения, область значений функции. 2 x 1 x x 1

Подробнее

Тема: Пределы. Краткие теоретические сведения. Непосредственное вычисление пределов.

Тема: Пределы. Краткие теоретические сведения. Непосредственное вычисление пределов. Тема: Пределы Краткие теоретические сведения Непосредственное вычисление пределов si Первый замечательный предел: Второй замечательный предел: ( ) 5 5 5 9 si si cos cos si si 5 5 9 6 6 6 8 8 si si 5 5

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ Пределы Методические указания

Подробнее

Семинар 1 Введение в анализ. Теоретические вопросы для самостоятельного изучения: 3. Функции чётные и нечётные; периодические функции.

Семинар 1 Введение в анализ. Теоретические вопросы для самостоятельного изучения: 3. Функции чётные и нечётные; периодические функции. Семинар 1 Введение в анализ Теоретические вопросы для самостоятельного изучения: 1. Функция, области определения, способ задания. 2. Понятие сложной и обратной функции. 3. Функции чётные и нечётные; периодические

Подробнее

ПРЕДЕЛЫ Методическое пособие для студентов вузов

ПРЕДЕЛЫ Методическое пособие для студентов вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики и кибернетики Кафедра теории вероятностей и математической статистики ПРЕДЕЛЫ Методическое

Подробнее

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y)

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y) I Множества Основные понятия Отображение множеств Множество одно из основных понятий математики, которое не определяется Множество состоит из элементов Всякая совокупность элементов произвольного рода

Подробнее

17. Дополнения. Доказательство. Зададимся числом " > 0. Покажем для начала, что существует такое x 0, что. < " при x > x 0. (17.1)

17. Дополнения. Доказательство. Зададимся числом  > 0. Покажем для начала, что существует такое x 0, что. <  при x > x 0. (17.1) 17. Дополнения На этой сокращенной лекции последней лекции первого семестра мы осветим два вопроса, на которые не хватило времени в прошлый раз. Мы видели, что для раскрытия неопределенности вида 0=0,

Подробнее

4 Разложите рациональную дробь на простейшие дроби

4 Разложите рациональную дробь на простейшие дроби Разложите рациональную дробь на простейшие дроби Выполните упражнение согласно выбранным вариантам. Сравните результат с ОТВЕТОМ. Протокол работы поместите в отчет. Рациональная дробь 7 6 67 87 7 ) ( )

Подробнее

Разложение функции в ряд Тейлора

Разложение функции в ряд Тейлора 82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Подробнее

ПРАКТИКА ВЫЧИСЛЕНИЯ ПРЕДЕЛОВ

ПРАКТИКА ВЫЧИСЛЕНИЯ ПРЕДЕЛОВ Министерство сельского хозяйства Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Казанская государственная академия ветеринарной

Подробнее

Министерство общего и профессионального образования Российской Федерации РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Е. Я. Файн МЕТОДИЧЕСКОЕ ПОСОБИЕ

Министерство общего и профессионального образования Российской Федерации РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Е. Я. Файн МЕТОДИЧЕСКОЕ ПОСОБИЕ Министерство общего и профессионального образования Российской Федерации РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Е. Я. Файн МЕТОДИЧЕСКОЕ ПОСОБИЕ по курсу ЭЛЕМЕНТАРНАЯ МАТЕМАТИКА для студентов первого курса

Подробнее

Решение уравнений в целых числах

Решение уравнений в целых числах Решение уравнений в целых числах Линейные уравнения. Метод прямого перебора Пример. В клетке сидят кролики и фазаны. Всего у них 8 ног. Узнать сколько в клетке тех и других. Укажите все решения. Решение.

Подробнее

МАТЕМАТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

МАТЕМАТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Е. А. ТРОФИМОВА С. В. ПЛОТНИКОВ Д. В. ГИЛËВ МАТЕМАТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА Учебное пособие Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента

Подробнее

Область определения данной функции определяется неравенством x 3x 2. 0 являются числа x =, x 4. Так как ветви

Область определения данной функции определяется неравенством x 3x 2. 0 являются числа x =, x 4. Так как ветви Вариант Найти область определения функции Область определения данной функции определяется неравенством > Корнями уравнения являются числа Так как ветви параболы направлены вверх то неравенство > выполняется

Подробнее

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ УЧЕБНОГО КУРСА. В результате изучения курса ученик должен

ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ УЧЕБНОГО КУРСА. В результате изучения курса ученик должен ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ УЧЕБНОГО КУРСА В результате изучения курса ученик должен знать/понимать как используются математические формулы, уравнения и неравенства; примеры их применения для решения

Подробнее

Замечание. Теорема дает второе определение предельной точки, теорема определение открытого множества, теорема определение замыкания.

Замечание. Теорема дает второе определение предельной точки, теорема определение открытого множества, теорема определение замыкания. ГЛАВА 3. Предел и непрерывность отображения 1. Предельные точки, открытые и замкнутые множества в метрических пространствах Опр. 3.1.1. Пусть (X, ) метрическое пространство, x X, >. Проколотой - окрестностью

Подробнее

ограниченные последовательности сходящиеся последовательности ательнос

ограниченные последовательности сходящиеся последовательности ательнос ограниченные последовательности Вычисление пределов числовых последовательностей Рассмотренные нами вопросы о числовых последовательностях содержат основные понятия и некоторые сведения о структуре множества

Подробнее

lim lim arctg x~ 1 cos x ~ (1 x) ~1 m Лекция ( ) Предел функции (продолжение) lim f(x) = b, то f(x) = b +

lim lim arctg x~ 1 cos x ~ (1 x) ~1 m Лекция ( ) Предел функции (продолжение) lim f(x) = b, то f(x) = b + Предел функции (продолжение) Лекция (..) Теорема (о связи функции, ее предела и бесконечно малой). Если, где б.м. при a. Доказательство. Пусть б.м. при +. f( = b, то f( = b + f ( = b. Рассмотрим функцию

Подробнее

15-е занятие. Ряды Лорана Матем. анализ, прикл. матем., 4-й семестр

15-е занятие. Ряды Лорана Матем. анализ, прикл. матем., 4-й семестр стр. из 0 5-е занятие. Ряды Лорана Матем. анализ, прикл. матем., 4-й семестр Разложить функции в ряды Лорана в окрестностях указанных точек возможно, в проколотых окрестностях) или в указанных кольцах.

Подробнее

, а всю числовую последовательность - y

, а всю числовую последовательность - y Лекции Глава Числовые последовательности Основные понятия Числовую функцию y f N y R заданную на множестве N натуральных чисел называют числовой последовательностью Число f называют -м элементом последовательности

Подробнее

Пределы. Производные. Функции нескольких переменных

Пределы. Производные. Функции нескольких переменных Московский авиационный институт (национальный исследовательский университете) Кафедра "Высшая математика" Пределы Производные Функции нескольких переменных Методические указания и варианты контрольных

Подробнее

Т. В. Тарбокова, В. М. Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ. Производная, и её приложения. Издание третье. / x

Т. В. Тарбокова, В. М. Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ. Производная, и её приложения. Издание третье. / x ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Т В Тарбокова, В М Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ

Подробнее

С.А. Лавренченко. Доказательство: Повести самостоятельно. Указание: Применить произведения, взяв

С.А. Лавренченко. Доказательство: Повести самостоятельно. Указание: Применить произведения, взяв Лекция 4 1 СА Лавренченко Вычисление пределов 1 Правила вычисления пределов Пусть действительная константа и целое положительное число При условии, что существуют оба предела и, имеют место следующие десять

Подробнее

3 1 Последовательности и их свойства

3 1 Последовательности и их свойства Глава 3 Предел 3 1 ПОНЯТИЕ ПОСЛЕДОВАТЕЛЬНОСТИ последовательности Последовательности представляют собой особый класс функций, для которых областью определения является множество натуральных чисел. В этой

Подробнее

Глава 1 ВВЕДЕНИЕ В АЛГЕБРУ

Глава 1 ВВЕДЕНИЕ В АЛГЕБРУ Глава ВВЕДЕНИЕ В АЛГЕБРУ.. КВАДРАТНЫЙ ТРЕХЧЛЕН... Вавилонская задача о нахождении двух чисел по их сумме и произведению. Одна из древнейших задач алгебры была предложена в Вавилоне, где была распространена

Подробнее

Замечательные пределы.

Замечательные пределы. Замечательные пределы. Первый замечательный предел Рассмотрим следующий предел: Согласно нашему правилу нахождения пробуем подставить ноль в функцию: в числителе у нас получается ноль (синус нуля равен

Подробнее

Практикум по курсу математического анализа

Практикум по курсу математического анализа ЯА Барлукова, СФ Долбеева Практикум по курсу математического анализа Часть II Улан- Удэ Министерство образования Российской Федерации Бурятский государственный университет ЯА Барлукова СФ Долбеева ПРАКТИКУМ

Подробнее

ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции.

ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции. ЛЕКЦИЯ N38. Поведение аналитической функции в бесконечности. Особые точки. Вычеты функции..окрестность бесконечно удаленной точки.....разложение Лорана в окрестности бесконечно удаленной точки.... 3.Поведение

Подробнее

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2 Вариант Найти область определения функции : y + Область определения данной функции определяется неравенством Кроме того знаменатель не должен обращаться в нуль Найдём корни знаменателя: Объединяя результаты

Подробнее

Решение типового варианта «Комплексные числа. Многочлены и рациональные дроби» (результат запишите в тригонометрической форме),

Решение типового варианта «Комплексные числа. Многочлены и рациональные дроби» (результат запишите в тригонометрической форме), типового варианта «Комплексные числа Многочлены и рациональные дроби» Задание Даны два комплексных числа и cos sn Найдите и результат запишите в алгебраической форме результат запишите в тригонометрической

Подробнее

Тождественные преобразования алгебраических выражений

Тождественные преобразования алгебраических выражений Тождественные преобразования алгебраических выражений Алгебраические выражения выражения, содержащие числа и буквы, связанные алгебраическими действиями: сложением, вычитанием, умножением, делением и возведением

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

Математика 8 класс Многочлены

Математика 8 класс Многочлены МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 8 класс Многочлены Новосибирск Многочлены Рациональными

Подробнее

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА Гущин Д. Д. http://www.mthnet.spb.ru ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА Основные факты. Показательными уравнениями (неравенствами) называются уравнения (неравенства), содержащие переменную в показателе

Подробнее

Введение в математический анализ. Теория пределов

Введение в математический анализ. Теория пределов Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

Непрерывность функции. Замечательные пределы. Лекция 2

Непрерывность функции. Замечательные пределы. Лекция 2 Непрерывность функции. Замечательные пределы Лекция 2 1 Определение непрерывности. Теорема о непрерывности суммы, произведения и частного функций Функция y f ( ) называется непрерывной в точке, если она

Подробнее

Календарно- тематическое планирование. тема дата

Календарно- тематическое планирование. тема дата 6 класс, 1 час в неделю, всего 36 часов Календарно- тематическое планирование тема дата п 1. Делимость чисел 3 1. Делители и кратные. Признаки делимости. 1. 2. Простые и составные числа. Разложение 2.

Подробнее

Математический анализ Раздел: Введение в анализ. Предел функции

Математический анализ Раздел: Введение в анализ. Предел функции Математический анализ Раздел: Введение в анализ Тема: Предел функции односторонние пределы, замечательные пределы, сравнение бесконечно малых и бесконечно больших Лектор Пахомова Е.Г. 22 г. 4. Односторонние

Подробнее

16. Формула Тейлора (продолжение)

16. Формула Тейлора (продолжение) 6. Формула Тейлора (продолжение Докажем единственность представления из теоремы 5.7. Предложение 6.. Пусть f : (p; q R функция класса C n, и пусть a (p; q. Предположим, что f(x = c 0 + c (x a + : : : +

Подробнее

Московский государственный технический университет имени Н.Э.Баумана. Ф.Х.Ахметова, А.В.Косова, И.Н.Пелевина

Московский государственный технический университет имени Н.Э.Баумана. Ф.Х.Ахметова, А.В.Косова, И.Н.Пелевина Московский государственный технический университет имени Н.Э.Баумана Ф.Х.Ахметова, А.В.Косова, И.Н.Пелевина ВВЕДЕНИЕ В АНАЛИЗ. ТЕОРИЯ ПРЕДЕЛОВ. Часть Методические указания к выполнению домашнего задания

Подробнее

Вариант 14 x. Область определения данной функции определяется неравенством > 0.

Вариант 14 x. Область определения данной функции определяется неравенством > 0. Вариант Найти область определения функции : lg 5 + Область определения данной функции определяется неравенством > 5+ Найдём корни знаменателя:, Так как ветви параболы 5+ направлены вверх, то 5+ 6< при

Подробнее