Элементарная поверхность. Гладкая поверхность. Кривые на поверхности. Касательная плоскость. поверхности

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Элементарная поверхность. Гладкая поверхность. Кривые на поверхности. Касательная плоскость. поверхности"

Транскрипт

1 МОДУЛЬ ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ ПОВЕРХНОСТЕЙ Структурно логическая схема модуля Явное задание Способы задания Элементарная поверхность Квадратичные формы Векторная параметризация Параметризация Регулярная параметризация I квадратичная форма II квадратичная форма Внутренние уравнения кривой Векторфункция двух скалярных аргументов Гладкая поверхность Угол между кривыми Нормальная кривизна, аси мпт линии Координатные линии Кривые на Длина кривой Средняя и гауссова кривизны Нормальное сечение Нормаль Касательная плоскость Площадь Главные кривизны и направления Микроцели изучения модуля В результате изучения данного раздела студенты должны знать: понятие, гладких поверхностей; определение криволинейных координат точки на ; понятие касательной плоскости и нормали ; первую и вторую квадратичные формы ; понятие главных направлений, нормальной, главной, средней и полной кривизны, формулы для их нахождения; типы точек на ; уметь: выполнять действия над вектор-функциями двух скалярных аргументов; определять, является ли поверхность гладкой; строить параметризацию поверхностей; находить уравнения нормали и касательной плоскости к ; находить длину дуги кривой на, угол между кривыми на, площадь ; находить первую и вторую квадратичные формы ; полную кривизну Основные термины Элементарная поверхность, параметризация, координатные функции параметризации, явное задание, регулярная параметризация, гладкая поверхность, вектор функция двух переменных, векторная параметризация, предел вектор функции, непрерывность вектор функции, операции над вектор функциями, частные производные вектор функции, дифференцируемость и интегрируемость вектор функции, векторное уравнение кривой, внутренние координаты точки, внутренние уравнения кривой, координатные линии на, касательная плоскость к гладкой в точке, направление на, нормальное сечение, первая 4

2 квадратичная форма и ее коэффициенты, длина кривой на, угол между кривыми на, площадь, кривизна кривой на, вторая квадратичная форма и ее коэффициенты, нормальная кривизна, главные кривизны, главные направления на, формула Эйлера, гауссова кривизна, средняя кривизна, асимптотические линии Практическое занятие 6 Тема: Вектор функция двух переменных Кривые на гладкой Касательная плоскость План занятия Способы задания элементарной Вектор функция двух переменных Кривые на гладкой Касательная плоскость Способы задания элементарной Вектор функция двух переменных Основные факты Множество Ф в евклидовом пространстве R называется элементарной поверхностью, если при проекции на некоторую плоскость оно взаимно однозначно и взаимно непрерывно отображается на открытую область в этой плоскости (рис 9) Если в пространстве ввести систему координат Охуz так, чтобы плоскость Оху совпадала с плоскостью проекций, то поверхность можно задать явно уравнением: (5) z=f (,y) Если элементарная поверхность Ф является образом плоской области U при непрерывном взаимно однозначном отображении F: U R, то это отображение F называется параметризацией Ф Рис 9 Пусть на плоскости, содержащей область U введены координаты (u, Положение любой точки Р на Ф полностью определяется значенииями параметров u и : Р=F(u, Числа u и называются внутренними координатами точки Р Если в пространстве задана система координат Охуz, то координаты х, у, z каждой точки являются функциями параметров u и : х = f ( u, (6) y = f ( u, z = f ( u, Непрерывные числовые функции f, f, f, заданные в области U, называются координатными функциями параметризации F Уравнения (6) называются параметрическими уравнениями Параметризация F:U R называется регулярной, если функции f, f, f непрерывно дифференцируемы и при каждом значении параметров u и в точке (u, не обращается в нуль по крайней мере один из трех определителей (Якобианов):,, 44

3 Поверхность, обладающая регулярной параметризацией, называется гладкой Если каждой точке (u, U поставлен в соответствие вектор трехмерного евклидова пространства, то говорят, что в области U определена вектор функция (u, Координаты вектора (u, являются числовыми функциями от параметров u и : (u, ( (u,, (u,, (u,) Эти функции называются координатными функциями вектор функции (u, Если F: U R некоторая параметризация Ф, то ей соответствует вектор функция f (u,, определенная по формуле: f (u,= OF ( u, Вектор функция f (u, называется векторной параметризацией Ф (рис ) Рис Если радиус вектор OF ( u, обозначить через r, то равенство (7) r = f (u, называется векторным уравнением F Понятие предела, непрерывности, производной, интеграла и алгебраические операции над вектор функциями двух переменных вводятся по аналогии с соответствующими понятиями для вектор функций одной переменной f Задача f Частные производные вектор функции f (u, будем обозначать f u, f или, Примеры решения типовых задач Найти частные производные f u, f, f uu, f, f u вектор функции: f (u,=(е u, ln(u+, u + ) Координаты производной вектор функции f (u, равны производным ее соответствующих координат u f u =(е u,, ), f =(uе u,, ), u + u + u + u + f uu =( е u,, ), ( u + ( u + 45

4 f =(u е u,, ), ( u + 4 ( u + u f u =((+uе u,, ) ( u + ( u + Кривые на гладкой Основные факты Пусть Ф гладкая поверхность, заданная уравнением (7), где f : U R регулярная параметризация Пусть кривая С ~ в области U задана параметрическими уравнениями: u = ϕ( t) (8) = ϕ ( t) На Ф кривой С ~ соответствует кривая С= f (С ~ ), которая в пространстве задается векторным уравнением r =ϕ (t), где ϕ (t)= f (ϕ (t),ϕ (t)) (рис ) Рис Теорема Если кривая С ~ гладкая, то и кривая С гладкая Уравнения (8) называются внутренними уравнениями кривой С на Ф Образы отрезков в области U, параллельным осям координат, называются координатными линиями на параметризованной Ф (рис ) Рис Образы отрезков, параллельных координатной оси u, называются u линиями и имеют внутренние уравнения: u=t, =const Образы отрезков, параллельных координатной оси, называются линиями и имеют внутренние уравнения: u=const, =t 46

5 Частные производные f u и f являются касательными векторами к линиям и u линиям соответственно Касательная плоскость Основные факты Говорят, что прямая l касается гладкой Ф в точке Р, если она является касательной прямой в точке Р некоторой кривой, принадлежащей Ф и проходящей через точку Р (рис ) Все прямые, которые касаются Ф в точке Р, образуют плоскость, которая называется касательной плоскостью Ф в точке Р Эта плоскость обозначается Т Р Ф (9) ( r f (u, ), f u (u, ), f (u, ))= векторное уравнение касательной плоскости Х х Y y Z z () f( u, f( u, f( u, = уравнение касательной плоскости f ( u, ) f ( u, ) f ( u, ) в координатах, где =f (u, ), y = f (u, ), z =f (u, ) Рис Рис 4 Единичный вектор нормали (рис 4) к Ф в точке Р определяется по fu f формуле: n = fu f Теорема (геометрическое свойство касательной плоскости)при стремлении точки Q Ф к точке Р этой отношение расстояния h от точки Q до касательной плоскости Т Р Ф к расстоянию от Q до Р стремится к нулю: lim h = Касательная плоскость единственная плоскость,обладающая этим свойством (рис Q P QP 5) Рис 5 Рис 6 47

6 Пусть l некоторая прямая, проходящая через точку Р и лежащая в касательной плоскости Т Р Ф Говорят, что кривая С на проходит через точку Р в направлении прямой l, если l касательная кривой С в точке Р Пересечение достаточно малой окрестности точки Р на Ф с плоскостью, которая перпендикулярна касательной плоскости Т Р Ф и пересекает ее по прямой l, проходящей через точку Р, является гладкой кривой Эта кривая называется нормальным сечением Ф в точке Р в направлении прямой l (рис 6) Примеры решения типовых задач Задача Найти вектор нормали, нормаль и касательную плоскость в произвольной точке М (u, ), заданной вектор функцией: f (u,=(u,, u ), (u, R f u =(,, ), f =(,, u В точке (u, ): f u =(,, ), f =(,, u ) i f u f = j k u Найдем вектор нормали : =(, u, ); f u f = + u fu f n = = (, u, ) 4 fu f + 4u + Каноническое уравнение нормали в точке М (, u, ) имеет вид: х u y z u = = u Векторы f u и f принадлежат направляющему подпространству касательной плоскости, поэтому уравнение касательной плоскости в точке М (, u, ) имеет вид: u y z u u =, или +u y z u = Задача Найти нормаль и касательную плоскость в произвольной точке М (х,у,z ), заданной уравнением: + + = (эллипсоид) Для, заданной уравнением F(,y,z)=, вектор нормали в точке F F F М (х,у,z ) коллинеарен градиенту grad F =(,, ) Найдем: y z y z 4 grad F (х,у,z )=(,, ), grad F 4y 4z (х,у,z ) = Каноническое уравнение нормали имеет вид: 48

7 х a y y = y b z z = z c Вектор grad F является нормальным вектором касательной плоскости, поэтому y z касательная плоскость имеет уравнение: ( )+ (y y )+ (z z )= Так как точка М принадлежит данной, то уравнение касательной плоскости принимает вид: yy zz + + = Задача 4 Поверхность задана уравнением + = (однополостный гиперболоид) Найти уравнение нормали к этой, параллельной прямой х + y + z = = 6 4 Из условия задачи следует, что направляющий вектор нормали (6, 4,) Этот вектор коллинеарен градиенту в точке (,y,z ): grad F =(,, ) То- 9 8 y z y z гда существует λ: =6λ, = 4λ, =λ 9 8 Подставив эти равенства в уравнение, получим: λ= 6 или λ= 6 Поэтому х =, у =, z =4 или х =, у =, z = 4 Следовательно, условию задачи удовлетворяют две прямые: х y z 4 х + y + z + 4 = = и = = Задача 5 Поверхность задана уравнением +y +z = Написать уравнение касательной плоскости, параллельной плоскости х+4у+6z= Из условия задачи следует, что нормальный вектор касательной плоскости: (,4,6) Этот вектор коллинеарен градиенту в точке (,y,z ): grad F =(,4y,6z ) Значит, существует λ: λ=х =у =z Подставив полученные выражения в уравнение, получим: λ= или λ= Поэтому искомая плоскость касается в точке с координатами: х =, у =, z = или х =, у =, z = Следовательно, условию задачи удовлетворяют две плоскости: ( )+4(y )+6(z )=, или х+4у+6z = и (+)+4(y+)+6(z+)=, или х+4у+6z+= 49

8 Задачи для самостоятельного решения 46 Найти вектор нормали, нормаль и касательную плоскость в произвольной точке X ( u, ) M, заданной вектор-функцией r ( u, : а) r( u, = ( u,, u ), ( u, R ; б) r( u, = ( Rcossinu, Rcoscosu, Rsinu), R >, u <, < < π ; в) π r( u, = ( au,sin u, b, a, b, ( u, R ; r u, = (( a + bcoscosu,( a + bcossinu, bsin, a >, b >, u < π, < г) ( π 47 Найти вектор нормали, нормаль и касательную плоскость в произвольной точке P (, y, z ) M, заданной уравнением: + + = (эллипсоид); + = (однополостный гиперболоид); + = (двуполостный гиперболоид); y = a b (гиперболический параболоид); yz = a а) б) в) г) z д) 48 Найти нормаль и касательную плоскости, заданной уравнением F (, y, z) =, в точке P : а) z y =, P (,,5) ; 6 y z 9 8 y + z б) + =, z, P (4,,4) ; в) + zr =, P ( Rcosα, Rsinα, R) ; y y г) z e sin =, P (, y, e sin ) 49 Поверхность M задана уравнением + = y + z этой, параллельной прямой = = 6 4 y 5 Поверхность M задана уравнением = z Найти уравнение нормалей, параллельных следующим прямым y + z + а) = = ; 6 + y z + б) = = 4 5 Поверхность M задана уравнением + y + z = + 4 y + 6z = б) 4 y + z = 5 Найти уравнение нормали к Написать уравнения касательных плоскостей, параллельных плоскостям: а),

9 Вопросы для самоподготовки Дайте определение элементарной Какие существуют способы задания? В каком случае параметризация называется регулярной? Какая поверхность называется гладкой? Дайте определение вектор функции двух переменных Как с помощью вектор функции задать поверхность? 4 Дайте определение предела, непрерывности, частных производных вектор функции двух переменной Перечислите основные алгебраические операции над вектор функциями и правила дифференцирования 5 Какие уравнения называются внутренними уравнениями кривой на гладкой? Какие кривые называются координатными линиями на? Каков геометрический смысл векторов частных производных векторной параметризации? 6 Дайте определение касательной прямой и касательной плоскости к в точке Каким геометрическим свойством обладает касательная плоскость? Напишите уравнение касательной плоскости в векторной и координатной форме 7 В каком случае говорят, что кривая на проходит в направлении данной прямой? Что называется нормальным сечением? 5

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ

ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Лекция 4 ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ КРИВЫХ Тема: Элементарная кривая Касательная Длина кривой План лекции Понятие и способы задания элементарной кривой Вектор-функция одного переменного Касательная к кривой

Подробнее

Дисциплина «Алгебра и геометрия»

Дисциплина «Алгебра и геометрия» Методические материалы для преподавателей. Примерные планы лекционных занятий. Раздел «Алгебра: основные алгебраические структуры, линейные пространства и линейные отображения» Лекция 1 по теме «Комплексные

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

Свойства определителя квадратной матрицы. Обратная

Свойства определителя квадратной матрицы. Обратная 3. СОДЕРЖАНИЕ КУРСА ЛЕКЦИЙ. Раздел 1. Векторная и линейная алгебра. 10 часов. Лекция 1. Матрицы, операции над ними. Определители. Определение матрицы. Обозначения матрицы. Элементы, строки, столбцы. Порядок

Подробнее

Свойства определителя квадратной матрицы. Обратная

Свойства определителя квадратной матрицы. Обратная СОДЕРЖАНИЕ КУРСА ЛЕКЦИЙ 1 Семестра Раздел 1. Векторная и линейная алгебра. 10 часов. Лекция 1. Матрицы, операции над ними. Определители. Определение матрицы. Обозначения матрицы. Элементы, строки, столбцы.

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

n = или k = k n называется единичным вектором

n = или k = k n называется единичным вектором Лекция 5 Тема: Кривизна и кручение кривой Репер Френе План лекции Кривизна кривой Кручение кривой Репер Френе Формулы Френе Натуральные уравнения кривой Кривизна кривой Соприкасающаяся плоскость Пусть

Подробнее

Лекция 7. Формулы Стокса и Гаусса-Остроградского

Лекция 7. Формулы Стокса и Гаусса-Остроградского С. А. Лавренченко www.lawenceno.u Лекция 7 Формулы Стокса и Гаусса-Остроградского Формулу Стокса можно рассматривать как трехмерный аналог формулы Грина. Формула Грина сводит двойной интеграл по плоской

Подробнее

( ) ( ) ( ) x x + y y + z z = R

( ) ( ) ( ) x x + y y + z z = R Глава II. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ Лекции 0-2 2. УРАВНЕНИЯ ПОВЕРХНОСТИ И ЛИНИИ В ПРОСТРАНСТВЕ 2.. Основные понятия Поверхность и ее уравнение Поверхность в пространстве можно рассматривать

Подробнее

Глава 4. Функции одной переменной 69

Глава 4. Функции одной переменной 69 ОГЛАВЛЕНИЕ Предисловие 3 Введение 5 Часть первая. Математический анализ функций одной переменной 10 Глава I. Вещественные числа 10 1. Множества. Обозначения. Логические символы 10 2. Вещественные числа

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

ЗАДАНИЕ N 1 Формула вычисления определителя третьего порядка следующие произведения: 1) aek 2) cdk 3) bfd 4) adf

ЗАДАНИЕ N 1 Формула вычисления определителя третьего порядка следующие произведения: 1) aek 2) cdk 3) bfd 4) adf ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Б1.ДВ.2.1 Аналитическая геометрия Примерные тестовые задания Тест 1 ЗАДАНИЕ N 1 Формула вычисления

Подробнее

Билет 6 1. Дифференциалы высших порядков функции нескольких переменных. Формула Тейлора. 2. Интегрирующий множитель, его нахождение в частных случаях.

Билет 6 1. Дифференциалы высших порядков функции нескольких переменных. Формула Тейлора. 2. Интегрирующий множитель, его нахождение в частных случаях. Математика 2 Билет 1 Лектор Конев В.В. 1. Дифференцирование сложной функции нескольких переменных. 2. Дифференциальные уравнения 1-го порядка, основные понятия (определение, решение уравнения, общее и

Подробнее

ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1. ПОНЯТИЕ ВЕКТОРА

ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1. ПОНЯТИЕ ВЕКТОРА ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1 ПОНЯТИЕ ВЕКТОРА Вектором называется направленный прямолинейный отрезок Длину отрезка в установленном масштабе называют модулем вектора Векторы считаются

Подробнее

1 Задачи механики. 2 Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и

1 Задачи механики. 2 Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и 1 Задачи механики. Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и полное ускорения. Структура механики Механика Механика Кинематика

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

Комплексные числа на плоскости.

Комплексные числа на плоскости. 1 Расположение точек на комплексной плоскости Определим для функций двух действительных переменных основные геометрические понятия, связанные с расположением точек на плоскости. Определения будем давать

Подробнее

1 раздел. Матрицы и определители.

1 раздел. Матрицы и определители. Министерство образования и науки РФ еверный (рктический) федеральный университет им МЛомоносова Кафедра математики Примерные задания к экзамену по математике ( часть) для студентов 9 группы ИЭИТ направление

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 8.1. Функции нескольких переменных. Частные производные П л а н 1. Понятие функции двух и нескольких переменных.. Предел и непрерывность

Подробнее

6.1 Определения, предварительные сведения

6.1 Определения, предварительные сведения 6. Неявные функции 6.1 Определения, предварительные сведения Зависимость одной переменной от другой (или от других) не обязательно может быть выражена при помощи так называемого явного представления, когда

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия 5.. Прямая на плоскости Различные способы задания прямой на плоскости. Общее уравнение прямой на плоскости. Расположение прямой относительно системы координат. Геометрический смысл

Подробнее

Интегральное исчисление функции нескольких переменных

Интегральное исчисление функции нескольких переменных Интегральное исчисление функции нескольких переменных интегралов двойного тройного криволинейного по длине дуги (первого рода) поверхностного по площади поверхности (первого рода) Пусть функция f() определена

Подробнее

, и в этом случае линия является графиком функции f( x ). Пример 5.1. На оси Ox найти точку, одинаково удаленную от двух точек

, и в этом случае линия является графиком функции f( x ). Пример 5.1. На оси Ox найти точку, одинаково удаленную от двух точек ГЛАВА 5. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 5.. Уравнение линии на плоскости Уравнение вида F( x, y) 0 называется уравнением линии, если этому уравнению удовлетворяют координаты любой точки, лежащей на данной плоской

Подробнее

~ 1 ~ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Уравнения линии и поверхности.

~ 1 ~ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Уравнения линии и поверхности. ~ ~ АНАЛИТИЧЕКАЯ ГЕОМЕТРИЯ Уравнения линии и поверхности. Определение: Уравнение f, называется уравнением линии на плоскости, если координата любой точки этой линии удовлетворяет данному уравнению. Определение:

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

1.Дивергенция векторного поля.

1.Дивергенция векторного поля. ЛЕКЦИЯ N Дивергенция векторного поля Циркуляция Ротор отенциальные соленоидальные гармонические поля Операторы Лапласа и Гамильтона Дивергенция векторного поля Соленоидальные поля Циркуляция 4Формула Стокса

Подробнее

Предел. Непрерывность.

Предел. Непрерывность. Функция. 1 1. Какие числа образуют множество действительных чисел? 2. Что называется числовой осью? 3. Что называется интервалом? 4. Определить понятие окрестности точки. 5. Что называется абсолютной величиной?

Подробнее

1. Поверхности второго порядка

1. Поверхности второго порядка 1 1. Поверхности второго порядка Здесь мы познакомимся с некоторыми вопросами теории поверхностей второго порядка, уравнения которых будут иметь вид A + B + Cz 2 + Dxy + Eyz + F yz + Gx + Hy + Kz + L =

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

и с боковой поверхностью, имеющей образующую, парал- лельную оси OZ т.е. ( )

и с боковой поверхностью, имеющей образующую, парал- лельную оси OZ т.е. ( ) 8 и с боковой поверхностью, имеющей образующую, парал- поверхностью z = f(, лельную оси OZ т.е. f(, s= v ц ( D) 4 Вычисление интеграла по фигуре от скалярной функции в декартовой системе координат Вычисление

Подробнее

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ Билет 1 Дисциплина высшая математика Факультет нефтемеханический специальность АТ,ОБД семестр II.

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ Билет 1 Дисциплина высшая математика Факультет нефтемеханический специальность АТ,ОБД семестр II. Билет 1 1 Определители -го и -го порядка, их свойства и способы вычисления Решение систем линейных уравнений методом Крамера Решить систему уравнений методам Гаусса и матричного исчисления: Найти координаты

Подробнее

Глава 9 Кривые на плоскости. Кривые второго порядка

Глава 9 Кривые на плоскости. Кривые второго порядка Глава 9 Кривые на плоскости. Кривые второго порядка 9. Основные понятия Говорят, что кривая Г в прямоугольной системе координат Оху имеет уравнение F (, )=0, если точка М(х, у) принадлежит кривой в том

Подробнее

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу 1. Дайте определение конечного предела последовательности. Приведите пример последовательности,

Подробнее

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =.

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =. ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) Определение векторного поля Определение векторной линии Задача о работе силового поля Полем называется множество, элементы которого удовлетворяют

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

I(G i, M i ) = f(ξ i, η i ) Δs i, Диаметром ограниченного множества G точек назовем точную верхнюю грань

I(G i, M i ) = f(ξ i, η i ) Δs i, Диаметром ограниченного множества G точек назовем точную верхнюю грань Двойные интегралы Основные понятия и теоремы 1. Определение двойного интеграла. Пусть G квадрируемая (и, следовательно, ограниченная) область (открытая или замкнутая) на плоскости и пусть в области G определена

Подробнее

). Частной производной функции f по переменной x k в точке x. ). Полным дифференциалом функции f

). Частной производной функции f по переменной x k в точке x. ). Полным дифференциалом функции f ГЛАВА 7 Дифференциальное исчисление функций нескольких переменных 1 Частные производные и полный дифференциал функции нескольких переменных Опр711 Пусть М (, y ), : O(М, ) Рассмотрим функцию 1 = 1 ()=

Подробнее

Найти х из уравнений:

Найти х из уравнений: Методические указания для обучающихся по освоению дисциплины (модуля) Планы практических занятий Матрицы и определители, системы линейных уравнений Матрицы Операции над матрицами Обратная матрица Элементарные

Подробнее

1 Кривизна кривой. k = lim. s (x) ( x) (x) = lim 1 + = 1 + (f. (x)) 2 = 1 + y 2. = lim. 1 + (f (x)) 2 = y

1 Кривизна кривой. k = lim. s (x) ( x) (x) = lim 1 + = 1 + (f. (x)) 2 = 1 + y 2. = lim. 1 + (f (x)) 2 = y 1 Кривизна кривой Пусть кривая дана как график функции y f(x). Двигаясь вдоль кривой, в каждой точке скорость движения направлена по касательной. Касательная прямая зависит от рассматриваемой точки. При

Подробнее

Лекция 13. Формула Стокса. Понятие ротора. Оператор Гамильтона. Основные виды векторных полей. Формула Стокса.

Лекция 13. Формула Стокса. Понятие ротора. Оператор Гамильтона. Основные виды векторных полей. Формула Стокса. Лекция 13 Формула Стокса Понятие ротора Оператор Гамильтона Основные виды векторных полей Формула Стокса Для установления связи между криволинейными интегралами с поверхностными интегралами проведем согласование

Подробнее

Лекция 1.02 Кинематика точки

Лекция 1.02 Кинематика точки Лекция 0 Кинематика точки Кинематика точки Векторный метод определения движения точки Далее всегда будем предполагать что существует неподвижная система отсчета - декартова система координат выбор которой

Подробнее

Тройной интеграл. 1 Понятие тройного интеграла. Волченко Ю.М. Содержание лекции. f (P i ) V i (1) i=1

Тройной интеграл. 1 Понятие тройного интеграла. Волченко Ю.М. Содержание лекции. f (P i ) V i (1) i=1 Тройной интеграл Волченко Ю.М. Содержание лекции Понятие тройного интеграла. Условия его существования. Теорема о среднем. Вычисление тройного интеграла в декартовых и криволинейных координатах. Тройной

Подробнее

Ж.В. Иванова, Т.Л. Сурин, С.В. Шерегов МАТЕМАТИЧЕСКИЙ АНАЛИЗ: Поверхностные интегралы. Элементы теории поля Курс лекций

Ж.В. Иванова, Т.Л. Сурин, С.В. Шерегов МАТЕМАТИЧЕСКИЙ АНАЛИЗ: Поверхностные интегралы. Элементы теории поля Курс лекций Министерство образования Республики Беларусь Учреждение образования «Витебский государственный университет имени П.М. Машерова» Кафедра геометрии и математического анализа Ж.В. Иванова, Т.Л. Сурин, С.В.

Подробнее

Поверхности второго порядка

Поверхности второго порядка Поверхности второго порядка Поверхностью второго порядка называется геометрическая фигура, которая в некоторой декартовой системе координат описывается уравнением 2 2 2 (1) 0. При этом предполагается,

Подробнее

Поверхностные интегралы 1-го типа (продолжение)

Поверхностные интегралы 1-го типа (продолжение) Глава 5 Поверхностные интегралы -го типа (продолжение) 5 Задачи в классе Задача 5 (4349) Вычислить интеграл где часть поверхности конуса z d, x = ρ cos ϕ sin α, y = ρ sin ϕ sin α, z = ρ cos α ( ( ρ h,

Подробнее

ГЕОМЕТРИЯ. Методические рекомендации для студентов III курса математического факультета Часть 1

ГЕОМЕТРИЯ. Методические рекомендации для студентов III курса математического факультета Часть 1 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Уральский государственный педагогический университет» Математический факультет Кафедра

Подробнее

Лекция 1. Криволинейные интегралы первого рода

Лекция 1. Криволинейные интегралы первого рода С. А. Лавренченко www.lwreceko.ru Лекция Криволинейные интегралы первого рода На этой лекции мы познакомимся с интегралом, похожим на определенный интеграл, который мы изучили в модуле «Интегральное исчисление»,

Подробнее

Справедливо и обратное утверждение.

Справедливо и обратное утверждение. Понятие комплексного переменного Предел и непрерывность комплексного переменного Пусть дано два множества комплексных чисел D и Δ и каждому числу z D поставлено в соответствие число ω Δ которое обозначается

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Задачи, приводящие к понятию определённого интеграла J n d lm n m Δõ ξ Δ Геометрический смысл определённого интеграла площадь криволинейной трапеции Физический смысл определённого

Подробнее

8 Теорема Остроградского Гаусса

8 Теорема Остроградского Гаусса 36 8 Теорема Остроградского Гаусса Теорема (Остроградского - Гаусса Если векторная функция a = a( P непрерывно дифференцируема в области (V, ограниченной замкнутой поверхностью (Q, то поток векторного

Подробнее

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр 2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр I Элементы линейной алгебры 1. Понятие определителей 2-го и 3-го порядка, их вычисление и

Подробнее

УТВЕРЖДАЮ зав. кафедрой физикоматематических. Е.Н.Кирюхова 20 г, протокол

УТВЕРЖДАЮ зав. кафедрой физикоматематических. Е.Н.Кирюхова 20 г, протокол УТВЕРЖДАЮ зав. кафедрой физикоматематических дисциплин Е.Н.Кирюхова 20 г, протокол Вопросы к экзамену по дисциплине «Математика» Специальности «Информационные системы и технологии» заочной формы получения

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

.3 Вычисление длины кривой. Длина дуги плоской кривой в прямоугольной системе координат. Пусть функция y = f( x)

.3 Вычисление длины кривой. Длина дуги плоской кривой в прямоугольной системе координат. Пусть функция y = f( x) 6 3 Вычисление длины кривой Длина дуги плоской кривой в прямоугольной системе координат Пусть функция = f определена и непрерывна на отрезке [ ; ] и кривая l график этой функции Требуется найти длину дуги

Подробнее

Лекция 6 Поверхности второго порядка. Эллиптический тип

Лекция 6 Поверхности второго порядка. Эллиптический тип Лекция 6 Поверхности второго порядка Пространственным аналогом кривых второго порядка являются поверхности второго порядка, имеющие уравнение вида F(x,y,z) =, где F(x,y,z) многочлен второй степени от x,y,z.

Подробнее

СОДЕРЖАНИЕ. ВВЕДЕНИЕ.. 5 Тема 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 1. Пространство R..

СОДЕРЖАНИЕ. ВВЕДЕНИЕ.. 5 Тема 1 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 1. Пространство R.. СОДЕРЖАНИЕ ВВЕДЕНИЕ 5 Тема ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция Пространство R 6 Лекция Предел и непрерывность функции нескольких переменных 5 Лекция 3 Функции многих переменных

Подробнее

Математика Цель и задачи дисциплины. Место дисциплины в структуре основной профессиональной образовательной программы.

Математика Цель и задачи дисциплины. Место дисциплины в структуре основной профессиональной образовательной программы. Математика 1. Требования ФГОС ВО к результатам освоения основной профессиональной образовательной программы 1.1. Цель и задачи дисциплины Место дисциплины в структуре основной профессиональной образовательной

Подробнее

Скалярное поле. Лабораторные и практические занятия. Методические указания

Скалярное поле. Лабораторные и практические занятия. Методические указания МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) Скалярное поле Лабораторные

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Задачи, приводящие к понятию определённого интеграла

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Задачи, приводящие к понятию определённого интеграла ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Задачи, приводящие к понятию определённого интеграла J n lm n m Δх 0 f ξ Δ Геометрический смысл определённого интеграла площадь криволинейной трапеции Физический смысл определённого

Подробнее

Задание 18 0;1. y 2 2. x y 2;3. Вебинар 17 ( ) 3. Найдите все значения параметра a, при каждом из которых множество значений функции

Задание 18 0;1. y 2 2. x y 2;3. Вебинар 17 ( ) 3. Найдите все значения параметра a, при каждом из которых множество значений функции Вебинар 7 (6-7) Тема: Параметры ЕГЭ Профиль Задание 8 Найдите все значения параметра, при каждом из которых множество значений функции 5 5 5 содержит отрезок Найдите все значения параметра, для каждого

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Мы определяли функцию одного вещественного аргумента как отображение f : D R некоторого подмножества D R действительных чисел в действительные числа. Аналогичное определение можно

Подробнее

1.Последовательности комплексных чисел. Предел.

1.Последовательности комплексных чисел. Предел. ЛЕКЦИЯ N33. Функции комплексного переменного. Пределы. Непрерывность. Элементарные функции. Дифференцирование ФКП. Свойства производных. 1.Последовательности комплексных чисел. Предел.... 1.Ограниченные

Подробнее

Образцы базовых задач по ЛА

Образцы базовых задач по ЛА Образцы базовых задач по ЛА Метод Гаусса Определенные системы линейных уравнений Решите систему линейных уравнений методом Гаусса x 6 y 6 8, 6 x 6 y 6 Решите систему линейных уравнений методом Гаусса 6

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. - дифференцируемые функции, то сложная функция y f ( g( тоже дифференцируема, причѐм:

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. - дифференцируемые функции, то сложная функция y f ( g( тоже дифференцируема, причѐм: ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Дифференцирование сложных и неявных функций Приложения понятия частных производных(производная по направлению, градиент функции) Дифференцирование

Подробнее

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Тема ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Лекция.. Прямые на плоскости П л а н. Метод координат на плоскости.. Прямая в декартовых координатах.. Условие параллельности и перпендикулярности

Подробнее

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения»

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Государственное образовательное учреждение Среднего профессионального образования «Котовский индустриальный техникум» МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Котовск, 4 г. Учебное

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Подробнее

3 Евклидовы и псевдоевклидовы пространства

3 Евклидовы и псевдоевклидовы пространства Евклидовы и псевдоевклидовы пространства Тема 8 Системы координат Школьная геометрия изучает различные метрические свойства простейших геометрических фигур то есть в основном находит соотношения между

Подробнее

16.2.Н. Производная.

16.2.Н. Производная. 6..Н. Производная 6..Н. Производная. Оглавление 6..0.Н. Производная Введение.... 6..0.Н. Производная сложной функции.... 5 6..0.Н. Производные от функций с модулями.... 7 6..0.Н. Возрастание и убывание

Подробнее

Тема 1. Множества точек пространства R. 1. Определения Сформулируйте определение шаровой окрестности точки пространства m

Тема 1. Множества точек пространства R. 1. Определения Сформулируйте определение шаровой окрестности точки пространства m МГУ им МВЛомоносова Физический факультет кафедра математики Тема Множества точек пространства R Определения Сформулируйте определение шаровой окрестности точки пространства R Сформулируйте определение

Подробнее

1. ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА Вычисление площадей плоских фигур.

1. ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА Вычисление площадей плоских фигур. . ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА.. Вычисление площадей плоских фигур. Прямоугольные координаты Как уже было установлено, площадь криволинейной трапеции, расположенной «выше» оси абсцисс

Подробнее

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ:

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: 11 Функциональная связь Предел функции 1 Производная функции 1 Механический физический и геометрический смысл производной 14 Основные

Подробнее

Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич

Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич План занятия. Содержание раздела «Аналитическая геометрия» Уравнение прямой на плоскости: с угловым коэффициентом общее

Подробнее

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механико - математический факультет ШАПУКОВ Б.Н.

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механико - математический факультет ШАПУКОВ Б.Н. КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механико - математический факультет ШАПУКОВ Б.Н. ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ И ОСНОВЫ ТЕНЗОРНОГО АНАЛИЗА Специальность 010500 Механика 2 ОГЛАВЛЕНИЕ Введение. I. ТЕОРИЯ

Подробнее

Лекция 1.3. Уравнения плоскости и прямой

Лекция 1.3. Уравнения плоскости и прямой Лекция.. Уравнения плоскости и прямой Аннотация: Помимо векторного, общего, нормального и в отрезках дается еще и параметрическое уравнение плоскости, с целью обобщения в дальнейшем понятия плоскости в

Подробнее

f (ϕ 1 (t), ϕ 2 (t)).

f (ϕ 1 (t), ϕ 2 (t)). Практическое занятие 7 Тема: Первая квадратичная форма поверхности и ее приложения План занятия Первая квадратичная форма поверхности и ее коэффициенты Длина кривой на поверхности Угол между кривыми на

Подробнее

Домашнее задание: [1] 13: 1(4), 2(4), 6(3), 11(3), 12(5), 14(3), 19; 14: 1(2), 2(6), 3(6), 4(7), 5(6), 6(6), 7(7), 8(8)

Домашнее задание: [1] 13: 1(4), 2(4), 6(3), 11(3), 12(5), 14(3), 19; 14: 1(2), 2(6), 3(6), 4(7), 5(6), 6(6), 7(7), 8(8) Содержание лекций и текущие домашние задания по курсу «Математический анализ-3» для студентов 2-го курса (группы БПМИ 144 и БМПИ145) направления подготовки «Прикладная математик и информатика», факультет

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ Российский государственный технологический

Подробнее

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ.

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Подробнее

ПРОГРАМММА вступительных испытаний (собеседование) на магистерское направление Прикладная математика и информатика

ПРОГРАМММА вступительных испытаний (собеседование) на магистерское направление Прикладная математика и информатика МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Челябинский государственный университет» (ФГБОУ ВО «ЧелГУ») УТВЕРЖДАЮ: Председатель приемной комиссии,

Подробнее

ξ i; i высота. Тогда площадь каждой полоски

ξ i; i высота. Тогда площадь каждой полоски Тема КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ Лекция КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ ПЕРВОГО РОДА Задачи приводящие к понятию криволинейного интеграла первого рода Определение и свойства криволинейного интеграла первого рода Вычисление

Подробнее

Уравнение плоскости. Шульц Денис Сергеевич

Уравнение плоскости. Шульц Денис Сергеевич Уравнение плоскости. Шульц Денис Сергеевич План занятия. Общее уравнение плоскости Взаимное расположение плоскостей Расстояние от точки до плоскости Типовые задачи Общее уравнение плоскости. Ax+By+Cz+D=0

Подробнее

Тема: Применение определенного интеграла.

Тема: Применение определенного интеграла. Математический анализ Раздел: Определенный интеграл Тема: Применение определенного интеграла. Приближенное вычисление определенного интеграла Лектор Пахомова Е.Г. 013 г. II Плоская кривая, заданная параметрическими

Подробнее

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА. КАЛЕНДАРНЫЙ ПЛАН дисциплины "дифференциальное исчисление,

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА. КАЛЕНДАРНЫЙ ПЛАН дисциплины дифференциальное исчисление, Номер недели РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА им. И.М. ГУБКИНА КАЛЕНДАРНЫЙ ПЛАН дисциплины "дифференциальное исчисление, УЧЕБНЫЙ ПЛАН : Факультет линейная алгебра и аналитическая геометрия"

Подробнее

Кинематика. Кинематика часть механики, которая изучает движение тела с геометрической точки зрения.

Кинематика. Кинематика часть механики, которая изучает движение тела с геометрической точки зрения. Кинематика Кинематика часть механики, которая изучает движение тела с геометрической точки зрения. Кинематика точки Материальная точка тело размерами, которого можно пренебречь. Движение изменение положения

Подробнее

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА»

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ВАРИАНТ Даны вершины треугольника А ( ) В ( ) С ( ) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма

Подробнее

Тема: Тройной интеграл

Тема: Тройной интеграл Математический анализ Раздел: Интегрирование ФНП Тема: Тройной интеграл Лектор Рожкова С.В. 013 г. 8. Тройной интеграл 1. Задача приводящая к понятию тройного интеграла Пусть V замкнутая ограниченная область

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН Западно-Казахстанский государственный университет им.м.утемисова РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА Элективной дисциплины Аналитическая геометрия (код и наименование

Подробнее

ВЫСШИЙ КОЛЛЕДЖ СВЯЗИ

ВЫСШИЙ КОЛЛЕДЖ СВЯЗИ ВЫСШИЙ КОЛЛЕДЖ СВЯЗИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ по дисциплине «ВЫСШАЯ МАТЕМАТИКА» часть V для студентов-заочников всех специальностей МИНСК 999 4 Составители Гладков Л.Л. Назарова И.В.

Подробнее

Тема: Криволинейный интеграл II рода

Тема: Криволинейный интеграл II рода Математический анализ Раздел: Интегрирование ФНП Тема: Криволинейный интеграл II рода Лектор Пахомова Е.Г. 2013 г. 10 10. Криволинейный Криволинейный интеграл интеграл II II рода рода по по координатам

Подробнее

АННОТАЦИЯ. к рабочей программе дисциплины «Математика» Направление подготовки (специальность) Государственное и муниципальное управление

АННОТАЦИЯ. к рабочей программе дисциплины «Математика» Направление подготовки (специальность) Государственное и муниципальное управление АННОТАЦИЯ к рабочей программе дисциплины «Математика» Направление подготовки (специальность) 38.03.04 Государственное и муниципальное управление 1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ 1.1. Цели дисциплины: развитие

Подробнее

Математический анализ

Математический анализ 1. Цель и задачи дисциплины Математический анализ Целью освоения дисциплины «Математический анализ» является формирование у будущих специалистов знаний и умения применять математический аппарат и математические

Подробнее

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ Вектором называется количественная характеристика, имеющая не только числовую величину, но и направление Иногда говорят, что вектор это направленный отрезок Векторная система

Подробнее

МОСКОВСКАЯ АКАДЕМИЯ ЭКОНОМИКИ И ПРАВА

МОСКОВСКАЯ АКАДЕМИЯ ЭКОНОМИКИ И ПРАВА МОСКОВСКАЯ АКАДЕМИЯ ЭКОНОМИКИ И ПРАВА Институт экономики Козлова В.А. МАТЕМАТИКА Программа вступительных испытаний для поступающих в Московскую академию экономики и права Автор: доктор педагогических наук,

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл Задачи, приводящие к понятию производной Определение Касательной S к линии y f (x) в точке A x ; f (

Подробнее

Занятие 1. Глава 1. Предел и непрерывность фукнции одной переменной 1. Построение графиков (1) Построить графики функций: (а) f(x) = 3x+2

Занятие 1. Глава 1. Предел и непрерывность фукнции одной переменной 1. Построение графиков (1) Построить графики функций: (а) f(x) = 3x+2 Занятие 1 Глава 1. Предел и непрерывность фукнции одной переменной 1. Построение графиков (1) Построить графики функций: (а) f(x) = 3x+2 2x 3, (б) f(x) = 6 cos 2x + 8 sin 2x. Занятие 2 2. Мат индукция.

Подробнее