НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ"

Транскрипт

1 НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ

2 Отказы, возникающие в процессе испытаний или эксплуатации, могут быть различными факторами: рассеянием действующих нагрузок; отклонением от номинального значения механических характеристик материалов; неблагоприятным сочетанием допусков в местах сопряжения и т. п. В расчетах надежности различные параметры рассматривают как случайные величины.

3 Случайная величина величина, которая при многократных равноточных измерениях может принимать различные числовые значения. В основе обработки случайных величин лежат знания вероятностных закономерностей массовых однородных случайных событий, являющихся предметом теории вероятностей.

4 Данные знания позволяют построить закономерности изменения численных характеристик, описывающих данные события. Методы теории вероятностей широко применяются в различных отраслях науки, техники и технологии: теории автоматического управления, теории надежности, теории ошибок наблюдений, теории массового обслуживания и т.д.

5 Случайная величина Случайная величина Многомерная Одномерная Дискретная Непрерывная

6 Достоверное событие событие, которое обязательно произойдет при соблюдении определенной совокупности условий. Например, если в сосуде содержится вода при нормальном атмосферном давлении и температуре 20, то событие «вода в сосуде находится в жидком состоянии» достоверное, а совокупность условий атмосферное давление и температура воды. Невозможное событие событие, которое заведомо не может произойти при заданной совокупности условий. Для совокупности условий предыдущего примера событие «вода в сосуде находится в твердом состоянии» заведомо не произойдет.

7 Случайное событие событие, которое при осуществлении совокупности условий может либо произойти, либо не произойти. В случае подбрасывания монеты может выпасть либо «орел», либо «решка». Каждое из данных событий («выпадение орла» либо «выпадение решки») случайное. События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании. Примером может стать извлечение из ящика детали. Извлечение не бракованной детали исключает извлечение бракованной. События «извлечение не бракованной детали» и «извлечение бракованной детали» несовместные.

8 События называют равновозможными, если появление одного из них не является более возможным, чем появление другого. В примере с подбрасыванием монеты, предполагая, что она изготовлена из однородного материала, имеет правильную форму и чеканки не оказывает влияния на выпадение той или иной стороны монеты, появление орла или решки равновозможные события. Несколько событий образуют полную группу событий, если в результате испытания появится хотя бы одно из них, т.е. появление хотя бы одного из событий полной группы есть достоверное событие. Например, при стрельбе по цели обязательно произойдет одно из двух событий: попадание либо промах. Данные несовместные события образуют полную группу.

9 Испытания и события Испытанием (опытом) называется одно из сколь угодно большого числа раз воспроизводимого определённого перечня условий. Событие совокупность явлений, происходящих в результате испытания. Событие Достоверное Невозможное Случайное несовместные равновозможные

10 Случайную величину принято называть одномерной или скалярной, если в качестве результата эксперимента регистрируется одно число. При регистрации набора характеристик случайную величину называют многомерной или векторной. Одномерную случайную величину называют дискретной или непрерывной в зависимости от пространства элементарных событий, в котором она определена (в дискретном или в непрерывном): дискретная случайная величина может принимать только определенные числовые значения; непрерывная случайная величина принимает непрерывный ряд значений.

11 Генеральная совокупность и выборка Генеральная совокупность N полный набор всех возможных значений, которые может принимать случайная физическая величина. Может быть конечной или бесконечной. Выборкой объема называют набор n значений величин x i, полученный из генеральной совокупности N. Под выборкой можно понимать реально рассматриваемую совокупность значений (x 1, x 2,, x i ) случайной величины Х, а под генеральной совокупностью гипотетически существующую совокупность возможных значений. Цель обработки набора величин x i выборки определение закономерностей, описывающих генеральную совокупность.

12 Абсолютная и относительная частота. Вероятность Абсолютная частота случайной события А количество m проявления данного события, зафиксированного в объеме данных n. Относительная частота случайного события А: m k W( A), n где m k число появления данного события в серии испытаний; n общее число проведенных одинаковых испытаний.

13 При малом количестве испытаний в серии значения W k для разных серий испытаний различны. При большом числе испытаний значения появления события W k в различных сериях отличаются друг от друга незначительно. mk W( A) p, n n где р вероятностью появления случайного события А. W ( A) p.

14 Из определения вероятности вытекают следующие ее свойства: вероятность случайного события есть положительное число 0 РА ( ) 1 вероятность достоверного события Р(А)=1. вероятность невозможного события Р(А)=0.

15 Функция распределения и плотность вероятности случайной величины В ходе прямых многократных равноточных измерений заданной физической величины Х набор значений (выборка) x i (x 1, x 2,, x i ). При этом истинное значение измеряемой величины х 0 неизвестно. Область значений разбивается на равные интервалы. Определяется количество измерений, попавших в тот или интервал: Обозначив через m 1, m 2,, m k количество измерений, попавших, соответственно в первый, второй,, k-ый интервал, получим для каждого интервала значения

16 абсолютной частоты m 1, m 2,, m k ; относительной частоты: W i m n i, где i порядковый номер интервала; плотности относительной частоты f W mi ( x). x n

17 Откладывая по оси абсцисс интервалы Δx, а по оси ординат значения m i, W i или f W, строится гистограмма распределения

18 Для каждого числа х в диапазоне изменения случайной величины Х существует определенная вероятность Р(Х<х) того, что Х не превышает значения х: Х случайная величина, х возможные значения случайной величины. Вероятность этого события называют функцией распределения: F(x)=P(X x).

19 Производную от функции распределения по текущей переменной называют плотностью распределения: P( x) F( x) f( x). dx dx Т.е. число интервалов k, а длина интервала Δx 0.

20 Плотность распределения позволяет вычислить, как площадь под кривой, ограниченной интервалом х [x i, x i +dx], вероятность попадания случайной величины в данный интервал x dx i F( x) f ( x) dx x i и, в конечном итоге, определить какие значения случайной величины наиболее вероятны.

21 Для интервала бесконечной длины х [, + ] вероятность того, что фиксируемая случайная величина примет какое-либо значение равна 1 F( x) f ( x) dx 1. В качестве характеристик распределения случайных величин используют числовые характеристики прогнозирование надежности.

22 Числовые характеристики В теории надежности наиболее применимы: среднеарифметическое значение; математическое ожидание; мода; медиана; дисперсия; среднеквадратичное отклонение; коэффициент вариации. Значения характеристик, полученные по результатам испытаний или эксплуатации, называют статистическими оценками.

23 Среднее арифметическое значение фиксируемых величин в результате n измерений, если получены значения х 1, х 2,, х n : 1 1 x x x... x x. n 1 2 n n n i 1 Математическое ожидание характеристика центра группирования случайных величин. для дискретных случайных величин i M ( x) xipi; для непрерывных случайных величин M ( x) xf ( x) dx. В большинстве случаев математическое ожидание характеризует наиболее вероятное расположение значений случайной величины. n i 1

24 Модой непрерывной случайной величины называется то её значение, в котором плотность вероятности наибольшая. Мода дискретной случайной величины наиболее часто встречающееся значение. Медиана случайной величины такое ее значение, при котором площади под кривой справа и слева от медианы равны. Характеризуют положение центров группирования случайных величин на числовой оси

25 Дисперсией называют меру отклонения случайной величины Х от ее математического ожидания М(х): для дискретных случайных величин n 2 ( ) ( i ( )) i; i 1 D x x М х p для непрерывных случайных величин 2 ( ) ( ( )) ( ). D x x M x f x dx

26 Среднеквадратичное отклонение характеризуют рассеяние случайной величины: ( x) D( x). Размахом называют разницу между максимальным и минимальным значениями выборки R=x max x min. Квантиль значение случайной величины, соответствующее заданной вероятности. Коэффициент вариации характеризует относительную меру отклонения измеренных значений от среднего ( x) ( x). M( x)

27 . МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ Теорема сложения вероятностей P Вероятность появления какого-либо из нескольких несовместных событий равна сумме вероятностей каждого из этих событий: m m... m 1 2 k A A... A P A P A... P A 1 2 k 1 2 n k Сумма вероятностей всех возможных событий, составляющих данное событие, равна единице. Сумма вероятностей двух противоположных событий равна единице. Р А Р А 1

28 Условная вероятность события А при наступлении события В вероятность события А, вычисленная в предположении, что событие В произошло P A / B P AB / P B

29 Теорема умножения вероятностей Теорема умножения вероятностей зависимых событий: P AB P B P A / B Теорема умножения вероятностей независимых событий: P AB P A P B Общее правило сложения вероятностей: вероятность суммы двух событий (совместных или несовместных) равна сумме вероятностей этих событий без вероятности совместного их наступления: P A B P A P B P AB

30 Теорема о повторении опытов Теорема о повторении опытов (схема Бернулли): опыты считаются независимыми, если вероятность того или иного исхода каждого из них не зависит от того, какие исходы имели другие опыты. Пусть в некотором опыте вероятность события А равна P(А) = p, а вероятность того, что оно не произойдет, P(Ā) = q, причём P A P A p q 1

31 Если проводится n независимых опытов, в каждом из которых событие А появляется с вероятностью p, то вероятность того, что в данной серии опытов событие А появляется ровно m раз, определяется по выражению P m n C p q m m n m n C m n m! n! n m биномиальный коэффициент

32 Формула полной вероятности отказа. Если по результатам опыта можно сделать n исключающих друг друга предположений (гипотез) H 1, H 2,, H n, представляющих полную группу несовместных событий, то вероятность события А, которое может появиться только с одной из этих гипотез, определяется: P A P P H i A / H i где P(Н i ) вероятность гипотезы H i ; P(A/H i ) условная вероятность события А при гипотезе H i Поскольку событие А может появиться с одной из гипотез Н 1, Н 2, Н i, то P n A P P A / i 1 H i H i

33 Формула гипотез в оценке показателей надежности Если до опыта вероятности гипотез H 1, H 2, H n были равны P(H 1 ), P(H 2 ),, P(H n ), а в результате опыта произошло событие А, то новые (условные) вероятности гипотез вычисляются:. A P H А / P H P H А / P H P H А / P H P A H P i i n i i i i i i ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1 Доопытные (первоначальные) вероятности гипотез P(H 1 ), P(H 2 ),, P(H n ) называются априорными, послеопытные P(H 1 /А), Р(Н 2 /А),, P(H n / А) апостериорными.

Решение: Всего: = 16 карандашей в коробке. По классическому определению вероятности:

Решение: Всего: = 16 карандашей в коробке. По классическому определению вероятности: .8.. В коробке находятся синих, красных и зеленых карандашей. Одновременно вынимают карандашей. Найти вероятность того, что среди них будет синих и красных. Решение: Всего: + + = карандашей в коробке!

Подробнее

Теория вероятностей и математическая статистика Конспект лекций

Теория вероятностей и математическая статистика Конспект лекций Министерство образования и науки РФ ФБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Теория вероятностей и математическая статистика

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ это распределение числа успехов наступлений определенного события в серии из n испытаний при условии, что для каждого из n испытаний вероятность успеха имеет одно и то же значение

Подробнее

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1.

Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем. 1. Курсовая работа «Исследование надежности систем» Курсовая работа должна содержать следующие разделы. Введение. Основные понятия надежности систем.. Теория вероятности (задачи 7.0 7.80)... Теоремы умножения

Подробнее

Число способов, которыми можно разбить 10 женщин на 5 групп по 3 1 женщине в каждой, равно числу неупорядоченных разбиений 2, 2, 2, 2, 2

Число способов, которыми можно разбить 10 женщин на 5 групп по 3 1 женщине в каждой, равно числу неупорядоченных разбиений 2, 2, 2, 2, 2 ВАРИАНТ.. Группа состоит из 5 мужчин и 0 женщин. Найти вероятность того, что при случайной группировке их на 5 групп по три человека в каждой группе будет мужчина. Решение: Для решения задачи будем использовать

Подробнее

Контрольная работа по курсу Математика «Теория вероятностей и математическая статистика»

Контрольная работа по курсу Математика «Теория вероятностей и математическая статистика» Контрольная работа по курсу Математика «Теория вероятностей и математическая статистика» Вариант N 1 (X \ Z) (Y \ Z) Решить задачи: 2.В партии 1000 деталей, из них 20 дефектных. Какова вероятность того,

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Комбинаторика, правила произведения и суммы. Виды соединений

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Комбинаторика, правила произведения и суммы. Виды соединений ТЕОРИЯ ВЕРОЯТНОСТЕЙ Комбинаторика, правила произведения и суммы Комбинаторика как наука Комбинаторика это раздел математики, в котором изучаются соединения подмножества элементов, извлекаемые из конечных

Подробнее

а) отношение числа случаев, благоприятствующих событию А к общему числу

а) отношение числа случаев, благоприятствующих событию А к общему числу ТЕОРИЯ ВЕРОЯТНОСТЕЙ. РАСПРЕДЕЛЕНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН Задание. Выберите правильный ответ:. Относительной частотой случайного события А называется величина, равная... а) отношению числа случаев, благоприятствующих

Подробнее

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения.

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Варианты контрольной работы

Подробнее

Тема: Статистические оценки параметров распределения

Тема: Статистические оценки параметров распределения Раздел: Теория вероятностей и математическая статистика Тема: Статистические оценки параметров распределения Лектор Пахомова Е.Г. 05 г. 5. Точечные статистические оценки параметров распределения Статистическое

Подробнее

ВОПРОСЫ ТЕСТА ЛЕКЦИЯ 1

ВОПРОСЫ ТЕСТА ЛЕКЦИЯ 1 ВОПРОСЫ ТЕСТА ЛЕКЦИЯ. Теория вероятностей изучает явления: сложные Б) детерминированные В) случайные Г) простые. Количественная мера объективной возможности это : опыт Б) вероятность В) событие Г) явление

Подробнее

Случайные величины и законы их распределения.

Случайные величины и законы их распределения. Случайные величины и законы их распределения. Одним из основных понятий теории вероятностей является понятие случайной величины. Сначала рассмотрим примеры. Число вызовов, поступивших от абонентов в течение

Подробнее

М. М. Попов Теория вероятности Конспект лекций

М. М. Попов Теория вероятности Конспект лекций 2009 М. М. Попов Теория вероятности Конспект лекций Выполнил студент группы 712 ФАВТ А. В. Димент СПбГУКиТ Случайное событие всякий факт, который в результате опыта может произойти или не произойти, и

Подробнее

Тема Основные понятия математической статистики

Тема Основные понятия математической статистики Лекция 6 Тема Основные понятия математической статистики Содержание темы Задача математической статистики Научные предпосылки математической статистики Основные понятия математической статистики Основные

Подробнее

Лекция. Элементы математической статистики.

Лекция. Элементы математической статистики. Лекция. Элементы математической статистики. План. 1. Статистика как наука. Этапы статистической работы.. I-й этап статистической работы. Генеральная совокупность и выборка. 3. I I-ой этап статистической

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). 1. Кафедра Общие сведения 2. Направление подготовки 3. Дисциплина (модуль) 4. Количество этапов формирования

Подробнее

Retinskaya.jimdo.com

Retinskaya.jimdo.com ЛЕКЦИЯ 1 Классификация экспериментальных исследований Определение и свойства функции распределения. Вероятность попадания случайной величины на заданный интервал Квантиль распределения Выборочная функция

Подробнее

НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СИБИРСКАЯ АКАДЕМИЯ ФИНАНСОВ И БАНКОВСКОГО ДЕЛА

НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СИБИРСКАЯ АКАДЕМИЯ ФИНАНСОВ И БАНКОВСКОГО ДЕЛА Кафедра математики и информатики Математика Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль 6 Элементы теории вероятностей и математической статистики

Подробнее

М.П. Харламов Конспект

М.П. Харламов  Конспект М.П. Харламов http://vlgr.ranepa.ru/pp/hmp Конспект Теория вероятностей и математическая статистика Краткий конспект первого раздела (вопросы и ответы) Доктор физ.-мат. наук профессор Михаил Павлович Харламов

Подробнее

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г.

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г. Перечень Основных контрольных вопросов для зачета (экзамена) по дисциплине Физика, математика, модуль М атематика, для студентов 1 курса медикопрофилактического факультета 1. Понятие функции. Способы задания

Подробнее

4. Теория вероятностей

4. Теория вероятностей 4. Теория вероятностей В контрольную работу по этой теме входят четыре задания. Приведем основные понятия теории вероятностей, необходимые для их выполнения. Для решения задач 50 50 необходимо знание темы

Подробнее

Интернет-экзамен в сфере профессионального образования

Интернет-экзамен в сфере профессионального образования Интернет-экзамен в сфере профессионального образования Специальность: 230201.65 Информационные системы и технологии Дисциплина: Математика (ТВ и МС) Время выполнения теста: 20 минут Количество заданий:

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

Тема Основные теоремы и формулы теории вероятностей

Тема Основные теоремы и формулы теории вероятностей Лекция 3 Тема Основные теоремы и формулы теории вероятностей Содержание темы Алгебра событий. Теоремы сложения вероятностей. Условная вероятность. Теоремы умножения вероятностей. Формула полной вероятности.

Подробнее

Основные понятия и определения

Основные понятия и определения 1 Основные понятия и определения Вспомним основные понятия и определения, которые употреблялись в курсе теории вероятностей. Вероятностный эксперимент (испытание) эксперимент, результат которого не предсказуем

Подробнее

Лекция 1. Выборочное пространство

Лекция 1. Выборочное пространство Лекция 1. Выборочное пространство Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 1. Выборочное пространство Санкт-Петербург, 2013 1 / 35 Cодержание Содержание 1 Выборка.

Подробнее

Основные понятия и важнейшие формулы теории вероятностей

Основные понятия и важнейшие формулы теории вероятностей Основные понятия и важнейшие формулы теории вероятностей Случайным событием называется событие, которое при данных условиях может произойти, а может не произойти Комплекс условий, которые необходимы для

Подробнее

РЕЙТИНГ. 1) 7 лабораторных (5 по 10 баллов, 2 по 15 баллов) 2) За активность на лекциях дополнительные баллы (до 20 баллов в сумме)

РЕЙТИНГ. 1) 7 лабораторных (5 по 10 баллов, 2 по 15 баллов) 2) За активность на лекциях дополнительные баллы (до 20 баллов в сумме) ЛЕКЦИЯ 1 Классификация экспериментальных исследований Определение и свойства функции распределения. Вероятность попадания случайной величины на заданный интервал Квантиль распределения Выборочная функция

Подробнее

Тест по Математическим методам в педагогике и психологии система подготовки к тестам Gee Test oldkyx.com

Тест по Математическим методам в педагогике и психологии система подготовки к тестам Gee Test oldkyx.com Тест по Математическим методам в педагогике и психологии система подготовки к тестам Gee Test oldkyx.com методы и способы сбора информации 1. Принято выделять следующие виды гипотез: 1) [-]подтверждающиеся

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения 1. Кафедра 2. Направление подготовки 3. Дисциплина (модуль) Информатики, вычислительной

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ).

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ). Общие сведения 1. Кафедра 2. Направление подготовки. Дисциплина (модуль) Информатики, вычислительной техники

Подробнее

Лекционные Практические Зачет Общая трудоемкость

Лекционные Практические Зачет Общая трудоемкость 1. Цель и задачи учебной дисциплины: Целями освоения дисциплины «Теория вероятностей, математическая статистика и случайные процессы» являются: формирование математической культуры студентов, фундаментальная

Подробнее

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1

Таким образом, искомый закон распределения: Проверка: 0, , , ,504 = 1 Другие ИДЗ Рябушко можно найти на странице http://mathpro.ru/dz_ryabushko_besplatno.html ИДЗ-8. Найти закон распределения указанной случайной величины X и ее функцию распределения F (X ). Вычислить математическое

Подробнее

Теория вероятностей. Случайные события. Параграф 1: Общие понятия.

Теория вероятностей. Случайные события. Параграф 1: Общие понятия. Параграф : Общие понятия Теория вероятностей Случайные события Определение : Теория вероятностей математическая наука, изучающая количественные закономерности в случайных явлениях Теория вероятностей не

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Институт управления и предпринимательства. Статистические методы анализа рынков Экзаменационные материалы

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Институт управления и предпринимательства. Статистические методы анализа рынков Экзаменационные материалы ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Бизнес информатика»

Подробнее

ЧАСТЬ 1 ВВЕДЕНИЕ. Лекция 1 ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ

ЧАСТЬ 1 ВВЕДЕНИЕ. Лекция 1 ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ ЧАСТЬ 1 ВВЕДЕНИЕ Лекция 1 ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ ЦЕЛЬ ЛЕКЦИИ: определить предмет курса; ввести понятия опыта, случайного явления, случайного события, а также вероятности и частоты события;

Подробнее

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют:

200 взятая деталь изготовлена первым, вторым и третьим цехами соответственно. Из условия следуют: . На складе 00 деталей, из которых 00 изготовлено цехом, 60 цехом и 40 цехом. Вероятность брака для цеха %, для цеха % и для цеха %. Наудачу взятая со слада деталь оказалась бракованной. Найти вероятность

Подробнее

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16

n объектов, Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Раздел 3. Элементы математической статистики Литература. [5], гл.15, гл.16 Математическая статистика занимается методами сбора и обработки статистического материала результатов наблюдений над объектами

Подробнее

Измерения и обработка результатов измерений Случайные погрешности

Измерения и обработка результатов измерений Случайные погрешности В теории вероятностей изучаются различные законы распределения, каждому из которых соответствует определенная функция плотности вероятности Они получены путем обработки большого числа наблюдений над случайными

Подробнее

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ

ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ 1 ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Одним из важнейших понятий теории вероятностей является понятие случайной величины. Случайной величиной называется переменная, которая

Подробнее

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Учебная дисциплина Б.2.1 - Математика Профиль подготовки: Производственный менеджмент Тематика

Подробнее

Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной.

Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной. Учебник рассчитан на читателей, знакомых с курсом высшей математики в объеме дифференциального и интегрального исчисления функций одной переменной. Представленный материал охватывает элементарные вопросы

Подробнее

ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ

ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ ТЕМА 10. ОЦЕНКА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ И ПАРАМЕТРОВ ЗАКОНА РАСПРЕДЕЛЕНИЯ Точечные оценки. Понятие статистики и достаточной статистики. Отыскание оценок методом моментов, неравенство Рао-Крамера. Эффективность

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЗАНЯТИЕ 4 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Понятие случайной величины одно из важнейших понятий теории вероятностей. Под случайной величиной понимается величина,

Подробнее

Вариант 3 Задача 1. Решение. В данной задаче независимо производятся три эксперимента, состоящие в работе каждого из трѐх устройств.

Вариант 3 Задача 1. Решение. В данной задаче независимо производятся три эксперимента, состоящие в работе каждого из трѐх устройств. Вариант Задача Для сигнализации об аварии установлены три независимо работающих устройства Вероятность того, что при аварии сработает первое устройство, равна,9, второе,95, третье,85 Найти вероятность

Подробнее

ПРИМЕРНАЯ ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ. (фрагмент)

ПРИМЕРНАЯ ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ. (фрагмент) ОДОБРЕНО Федеральным учебно-методическим объединением по общему образованию Протокол заседания от 8 апреля 2015 г. 1/15 ПРИМЕРНАЯ ОСНОВНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ (фрагмент)

Подробнее

Основные положения теории вероятностей

Основные положения теории вероятностей Основные положения теории вероятностей Случайным относительно некоторых условий называется событие, которое при осуществлении этих условий может либо произойти, либо не произойти. Теория вероятностей имеет

Подробнее

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):. Кафедра Общие сведения. Направление подготовки Экономика Математики и математических методов в экономике

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 5. Тема: Комбинаторика, введение в теорию вероятностей 1 Тема: Комбинаторика Комбинаторика это раздел математики, изучающий

Подробнее

A первый взятый шар белого цвета; 24. Раздел 1. Случайные события. Литература. [4], гл. I; [5], гл 1 4.

A первый взятый шар белого цвета; 24. Раздел 1. Случайные события. Литература. [4], гл. I; [5], гл 1 4. Тема 2. Элементы теории вероятностей и математической статистики Раздел. Случайные события Литература. [4], гл. I; [5], гл 4. Основные вопросы.. Испытания и события, виды случайных событий, классическое

Подробнее

Выборка. Выборочное пространство. Описательная статистика. Грауэр Л.В.

Выборка. Выборочное пространство. Описательная статистика. Грауэр Л.В. Выборка. Выборочное пространство. Описательная статистика Грауэр Л.В. План лекций Классическая математическая статистика Описательная статистика Точечные и интервальные оценки Проверка статистических гипотез

Подробнее

Введение в теорию вероятностей

Введение в теорию вероятностей Д.ф.-м.н., профессор Михаил Павлович Харламов Введение в теорию вероятностей УЗ-100 2011-2012 учебный год 2-й семестр 1 Тема: Комбинаторика Это раздел математики, изучающий комбинации и перестановки объектов

Подробнее

Общие сведения 1. Кафедра Математики, физики и информационных технологий 2. Направление подготовки

Общие сведения 1. Кафедра Математики, физики и информационных технологий 2. Направление подготовки Этап формирования компетенции (разделы, темы дисциплины) Формируемая компетенция Формы контроля сформированност и компетенций Фонд оценочных средств для проведения промежуточной аттестации обучающихся

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ГБОУ ВПО АМУРСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ Н.В.НИГЕЙ ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ САМОПОДГОТОВКИ г. Благовещенск

Подробнее

Химия (направление); Фундаментальная и прикладная химия (специальность).

Химия (направление); Фундаментальная и прикладная химия (специальность). 0000.6-Химия (направление); http://kpfu.ru/pdf/portal/oop/4853.pdf 000.65 - Фундаментальная и прикладная химия (специальность). Дисциплина: «Математика» (бакалавриат, специалитет, курс, очное обучение).

Подробнее

Часть 2 ЭЛеМенТы МАТеМАТиЧесКОй статистики

Часть 2 ЭЛеМенТы МАТеМАТиЧесКОй статистики Часть 2 Элементы математической статистики Глава I. Выборочный метод 1. Задачи математической статистики. Статистический материал Пусть требуется определить функцию распределения F(x) некоторой непрерывной

Подробнее

Теоретические вопросы.

Теоретические вопросы. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ Кафедра высшей математики. Дисциплина Математика Специальность 160505. Курс 2. Осенний семестр 2012 года Теоретические вопросы. РАЗДЕЛ

Подробнее

Генеральная совокупность и выборка. Центральная предельная теорема

Генеральная совокупность и выборка. Центральная предельная теорема Генеральная совокупность и выборка Точечные оценки и их свойства Центральная предельная теорема Выборочное среднее, выборочная дисперсия Генеральная совокупность Генеральная совокупность множество всех

Подробнее

ЛЕКЦИЯ 3. Задачи надёжности электроснабжения Теория надежности служит научной основой деятельности лабораторий, отделов, бюро и групп надежности на

ЛЕКЦИЯ 3. Задачи надёжности электроснабжения Теория надежности служит научной основой деятельности лабораторий, отделов, бюро и групп надежности на 1 ЛЕКЦИЯ 3. Задачи надёжности электроснабжения Теория надежности служит научной основой деятельности лабораторий, отделов, бюро и групп надежности на предприятиях, в проектных, научно-исследовательских

Подробнее

Тест 02. Б2.Б.1.3 Теория вероятности и математическая статистика шифр и наименование дисциплины по учебному плану направления подготовки

Тест 02. Б2.Б.1.3 Теория вероятности и математическая статистика шифр и наименование дисциплины по учебному плану направления подготовки Тест 01 1. Случайные события и их классификация. 2. Математическое ожидание случайной величины. 3. В ящике находятся 15 красных, 9 голубых и 6 зеленых шаров. Наудачу вынимают 6 шаров. Какова вероятность

Подробнее

Лекция 1. Выборочное пространство

Лекция 1. Выборочное пространство Лекция 1. Выборочное пространство Грауэр Л.В., Архипова О.А. CS center Санкт-Петербург, 2014 Грауэр Л.В., Архипова О.А. (CSC) Лекция 1. Выборочное пространство Санкт-Петербург, 2014 1 / 29 Cодержание Содержание

Подробнее

Дорогие студенты, данная презентация служит лишь наглядной иллюстрацией к одной из лекций по теории вероятностей для II курса факультета биоинженерии

Дорогие студенты, данная презентация служит лишь наглядной иллюстрацией к одной из лекций по теории вероятностей для II курса факультета биоинженерии Дорогие студенты, данная презентация служит лишь наглядной иллюстрацией к одной из лекций по теории вероятностей для II курса факультета биоинженерии и биоинформатики. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СЛУЧАЙНЫЕ И ГРУБЫЕ ПОГРЕШНОСТИ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СЛУЧАЙНЫЕ И ГРУБЫЕ ПОГРЕШНОСТИ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СЛУЧАЙНЫЕ И ГРУБЫЕ ПОГРЕШНОСТИ Погрешность В реальных условиях даже очень точные измерения будут содержать погрешность D, которая является отклонением результата измерения x от истинного

Подробнее

3 Операции над матрицами: сложение и вычитание

3 Операции над матрицами: сложение и вычитание Определение детерминанта матрицы Квадратная матрица состоит из одного элемента A = (a ). Определитель такой матрицы равен A = det(a) = a. ( ) a a Квадратная матрица 2 2 состоит из четырех элементов A =

Подробнее

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно: 1

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно: 1 Лекция 11. Дискретные случайные величины Случайной величиной Х называется величина, которая в результате опыта может принять то или иное значение х i. Выпадение некоторого значения случайной величины Х

Подробнее

Теория вероятностей План лекции П. 1. О т ео р и и в е ро я тн о с т е й к ак н ау ке Теорию вероятности Задача теории вероятностей

Теория вероятностей План лекции П. 1. О т ео р и и в е ро я тн о с т е й к ак н ау ке Теорию вероятности Задача теории вероятностей Теория вероятностей План лекции П О теории вероятностей как науке П Основные определения теории вероятностей П Частота случайного события Определение вероятности П 4 Применение комбинаторики к подсчету

Подробнее

Практическое занятие 8. Числовые характеристики случайных величин

Практическое занятие 8. Числовые характеристики случайных величин Практическое занятие 8. Числовые характеристики случайных величин Закон распределения вероятностей случайной величины содержит полную информацию о случайной величине. Однако полная информация не всегда

Подробнее

Методические указания

Методические указания ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Федеральное государственное образовательное учреждение среднего профессионального образования Тольяттинский политехнический колледж (ФГОУ СПО ТПК) УТВЕРЖДАЮ Заместитель

Подробнее

Система линейных уравнений. Система m уравнений с n неизвестными: 8 a 11 x 1 + a 12 x a 1n x n =b 1 a 21 x 1 + a 22 x a 2n x n =b 2

Система линейных уравнений. Система m уравнений с n неизвестными: 8 a 11 x 1 + a 12 x a 1n x n =b 1 a 21 x 1 + a 22 x a 2n x n =b 2 Раздел VI. Глоссарий Матрица. Совокупность чисел, расположенных в виде прямоугольной таблицы, содержащей n строк и m столбцов называется матрицей размерности Определитель матрицы. Определителем квадратной

Подробнее

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ Введение ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ Введение...... 14 ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Основные понятия теории вероятностей... 17 1. Испытания и события... 17 2. Виды случайных событий... 17 3. Классическое определение

Подробнее

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр

2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр 2 Тесты промежуточной аттестации по дисциплине: Перечень вопросов к зачету по дисциплине «Математика» I семестр I Элементы линейной алгебры 1. Понятие определителей 2-го и 3-го порядка, их вычисление и

Подробнее

Теоретические вопросы и задачи по математике для студентов 2-го курса специальностей ЛИД, ТДП в зимнюю сессию Теоретические вопросы

Теоретические вопросы и задачи по математике для студентов 2-го курса специальностей ЛИД, ТДП в зимнюю сессию Теоретические вопросы Теоретические вопросы и задачи по математике для студентов -го курса специальностей ЛИД, ТДП в зимнюю сессию Теоретические вопросы 1. Основные понятия и определения теории вероятностей. Классическое определение

Подробнее

Фонд оценочных средств

Фонд оценочных средств ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. АЛЕКСЕЕВА» ИНСТИТУТ ТРАНСПОРТНЫХ СИСТЕМ

Подробнее

Идентификация законов распределения случайных величин

Идентификация законов распределения случайных величин Лабораторное занятие Идентификация законов распределения случайных величин Пусть в (статистическом) эксперименте доступна наблюдению случайная величина, распределение которой P неизвестно полностью или

Подробнее

Тесты по дисциплине «Математика (математические методы в психологии)»

Тесты по дисциплине «Математика (математические методы в психологии)» МАОУ ВО «КРАСНОДАРСКИЙ МУНИЦИПАЛЬНЫЙ МЕДИЦИНСКИЙ ИНСТИТУТ ВЫСШЕГО СЕСТРИНСКОГО ОБРАЗОВАНИЯ» Кафедра педагогики и психологии Тесты по дисциплине «Математика (математические методы в психологии)» 1. Какую

Подробнее

Элементы математической статистики

Элементы математической статистики Элементы математической статистики Математическая статистика является частью общей прикладной математической дисциплины «Теория вероятностей и математическая статистика», однако задачи, решаемые ею, носят

Подробнее

Случайные величины. Дискретная и непрерывная случайные величины

Случайные величины. Дискретная и непрерывная случайные величины Случайные величины Дискретная и непрерывная случайные величины Наряду с понятием случайного события в теории вероятности используется другое более удобное понятие случайной величины Случайной величиной

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ (Пензенский филиал) Кафедра «Менеджмент, информатика и

Подробнее

УДК СОСТАВИТЕЛЬ кандидат технических наук, доцент Л. В. Березина. ОБСУЖДЕНО на заседании кафедры высшей математики

УДК СОСТАВИТЕЛЬ кандидат технических наук, доцент Л. В. Березина. ОБСУЖДЕНО на заседании кафедры высшей математики УДК 57. Теория вероятностей: программа учебной дисциплины и методические указания к выполнению контрольной работы / Сост. Л.В. Березина; РГАТУ имени П. А. Соловьева. Рыбинск, 0. 4 с. (Заочная форма обучения/

Подробнее

1.2. Элементы теории вероятностей.

1.2. Элементы теории вероятностей. .. Элементы теории вероятностей.... Случайные события. Случайные события обычное явление в жизни. Примеры случайных событий: выпадение «орла» или «решки» при бросании монеты, выпадение числа при бросании

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ ОГЛАВЛЕНИЕ ЧАСТЬ ПЕРВАЯ СЛУЧАЙНЫЕ СОБЫТИЯ Глава первая. Определение вероятности.. 8 1. Классическое и статистическое определения вероятности.. 8 2. Геометрические вероятности... 12 Глава вторая. Основные

Подробнее

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема3. «Функция распределения вероятностей случайной величины» Кафедра теоретической и прикладной

Подробнее

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения

Глава 4. Основные законы распределения непрерывной случайной величины Равномерный закон распределения 53 Глава 4. Основные законы распределения непрерывной случайной величины. 4.. Равномерный закон распределения Определение. Непрерывная случайная величина Х имеет равномерное распределение на промежутке

Подробнее

Теория вероятностей и математическая статистика. Случайные величины

Теория вероятностей и математическая статистика. Случайные величины Теория вероятностей и математическая статистика Случайные величины 1 Содержание Случайные величины Основные законы распределения 2 Случайные величины Понятие случайной величины и закона ее распределения

Подробнее

Учебно-методический комплекс по курсу «ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ» Пояснительная записка

Учебно-методический комплекс по курсу «ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ» Пояснительная записка Учебно-методический комплекс по курсу «ОСНОВЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ» Пояснительная записка Курс Основы теории вероятностей и математической статистики относится к циклу естественнонаучных

Подробнее

М Е Т О Д И Ч Е С К И Е У К А З А Н И Я ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ

М Е Т О Д И Ч Е С К И Е У К А З А Н И Я ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ М Е Т О Д И Ч Е С К И Е У К А З А Н И Я ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ Составитель:

Подробнее

СОСТАВИТЕЛЬ кандидат технических наук, доцент Л. В. Березина

СОСТАВИТЕЛЬ кандидат технических наук, доцент Л. В. Березина УДК 57. Теория вероятностей и математическая статистика: программа учебной дисциплины и методические указания к выполнению контрольной работы / Сост. Л.В. Березина; РГАТУ имени П. А. Соловьева. Рыбинск,

Подробнее

Лекция 4 Тема. Содержание темы. Основные категории. Введение в случайные величины

Лекция 4 Тема. Содержание темы. Основные категории. Введение в случайные величины Лекция 4 Тема Введение в случайные величины Содержание темы Случайная величина. Понятия дискретной и непрерывной случайной величины. Ряд распределения дискретной случайной величины. Функция распределения,

Подробнее

Лекция 9. Тема Введение в теорию оценок.

Лекция 9. Тема Введение в теорию оценок. Лекция 9 Тема Введение в теорию оценок. Содержание темы Предмет, цель и метод задачи оценивания Точечные выборочные оценки, свойства оценок Теоремы об оценках Интервальные оценки и интеграл Лапласа Основные

Подробнее

Биологическая статистика

Биологическая статистика Биологическая статистика Математическая статистика-это раздел математики, посвященный математическим методам систематизации, обработки и использования данных для научных и практических выводов. Генеральная

Подробнее

Теория вероятностей. Методические указания к выполнению РГР. Для студентов ФТКиТ

Теория вероятностей. Методические указания к выполнению РГР. Для студентов ФТКиТ МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КИНО И

Подробнее

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ И СВЯЗИ

«ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ И СВЯЗИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ КИБЕРНЕТИКИ, ИНФОРМАТИКИ

Подробнее

Методические указания по курсу «Теория вероятностей и математическая статистика»

Методические указания по курсу «Теория вероятностей и математическая статистика» Казанский Приволжский федеральный университет Институт геологии и нефтегазовых технологий Методические указания по курсу «Теория вероятностей и математическая статистика» Методическая разработка к практическим

Подробнее

ТЕСТЫ ПО МАТЕМАТИКЕ. имеет в данной стационарной точке экстремум, если при переходе через эту точку производная функции y (x)

ТЕСТЫ ПО МАТЕМАТИКЕ. имеет в данной стационарной точке экстремум, если при переходе через эту точку производная функции y (x) 3 ТЕСТЫ ПО МАТЕМАТИКЕ РАЗДЕЛ. ВЫСШАЯ МАТЕМАТИКА. Составьте определение производной функции из предложенных фраз. Производной от функции y = f () в точке называется. приращение функции. когда 3. разность

Подробнее

Перейти на страницу с полной версией»

Перейти на страницу с полной версией» ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «Челябинская государственная академия культуры и искусства» Кафедра информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Подробнее

Контрольная работа по теории вероятностей. Задание 1

Контрольная работа по теории вероятностей. Задание 1 Контрольная работа по теории вероятностей Задание Задание Бросают три монеты Какова вероятность того, что выпадет хотя бы один «орел», и при этом первым будет «орел»? Решение При бросании «первой» монеты

Подробнее

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω)

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω) Понятие и её закона Одномерные дискретные случайные Определение случайной Случайной величиной (СВ) называется функция (ω), определённая на пространстве элементарных событий Ω, со значениями в одномерном

Подробнее

РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ В.Е.Гмурман РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ М.: Высш. школа, 1979, 400 стр. В пособии приведены необходимые теоретические сведения и формулы, даны решения

Подробнее