. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download ". В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны"

Транскрипт

1 Лекция 9. Теорема о разгрузке. Итак, рассмотрен ряд теорий о поведении материала за пределами упругости. Теперь обратимся к другому вопросу: что будет, если начать разгружать образец, который уже находится в пластическом состоянии? Обратимся к эксперименту. Будем рассматривать диаграмму нагружения материала, обладающего упрочнением (рис.9.1). Разгрузка идет по линейному закону, причем угол наклона участка разгрузки совпадает с углом наклона упругого участка- это экспериментально установленный факт. В начальный момент времени упруго-пластическая задача решена, то есть найдены шесть компонент тензора напряжений, шесть компонент тензора смещений u деформаций ε σ и три компоненты вектора. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны σ удовлетворять пятнадцати уравнениям: трем уравнениям равновесия 0, i шести уравнениям, связывающим деформации с перемещениями и шестисвязывающим напряжения с деформациями. Краевые условия для уравнения равновесия заданы в напряжениях следующим образом: p σ, где - проекции внешних напряжений на соответствующие оси в начальный момент времени, а - направляющие косинусы нормали к поверхности. Предположим, l i что разгрузка ведется по закону p p l i p λ, где λ - параметр, изменяющийся во времени в пределах от единицы до нуля, причем λ 1- соответствует началу процесса, а λ 0 - полной разгрузке. Символами без звездочки ( σ, ε, ) будем обозначать текущие значения u величин, характеризующих напряженное состояние. Они должны удовлетворять уравнениям равновесия и краевым условиям. А каким условиям связи между напряжениями и деформациями они должны удовлетворять? Эксперимент гласит, что эта связь должна быть подобна связи в упругой области. Введем величину ~ σ следующим образом: ~ σ σ σ, т.е. это разность между начальными и текущими напряжениями. Так как σ и удовлетворяют уравнениям равновесия, то ему удовлетворяет и σ ~ σ, т.е. ~ σ 0. Кроме того очевидна справедливость и такого равенства: ~ p ~ σ l i, i где ~ p вводится аналогично ~ σ. Так же обозначим и разность деформаций: ~ ε ε ε. Построенные разности удовлетворяют закону Гука: ~ ~ 3 σ ( ε + δ ~ ) 1 ε J. Таким образом, для разностей получена упругая задача, которую уже можно решить, то есть можно найти все величины с волной. Итак, известны разности начальных и текущих значений, известны начальные значения, следовательно в каждый момент времени известны деформации, напряжения и смещения. Остается последний вопрос: что произойдет при полной разгрузке? 1

2 ~ p В этот момент λ 0, следовательно p p λ 0. Для разности: p p p. Как показывает опыт, в теле остаются некие остаточные деформации ε и, следовательно, напряжения σ. При полной разгрузке выполняются условия: σ σ ~ σ и ε ε ~ ε. Таким образом для нахождения остаточных напряжений и деформаций надо решить упругопластическую задачу (т.е. определить величины со звездочкой) и решить фиктивно упругую задачу (для нахождения и ). σ ε Упруго-пластическое кручение. Стержень круглого сечения нагружен некоторым крутящим моментом. Ось стержня параллельна оси. Вследствие нагружения в сечении стержня возникают напряжения с компонентами и (см. рис. 9.). Предположим следующее поведение сечений стержня: сечения поворачиваются одно относительно другого как твердые тела, однако при этом не остаются плоскими, т.е. существуют ненулевые смещения вдоль оси : w 0. Эти предположения могут быть u θ y записаны в следующем виде: v θ x ((7.1)л.9), где θ - крутка, т.е. w w( x, y) угол поворота единицы длины стержня. Допустим, мы каким-то образом нанесли на сечение координатную сетку. Как она деформируется при указанном выше нагружении стержня? Она повернется, не деформируясь. Действительно, растяжения отрезков, параллельных соответствующим осям отсутствуют: ε x 0, ε y 0, ε 0. x y Кроме того, не изменятся и углы сетки, в силу того, что 0. Итак, в тензоре деформаций остается только две компоненты: 1 w 1 w ( + ) ( θ y + ) ((7.)л.9) 1 v w 1 w ( + ) ( θ x + ) Зная деформации, из закона Гука получаем, что σ σ σ 0. Из xy x y xy трех уравнений равновесия Коши, первые два выполняются тождественно, в последнем же остается только два слагаемых: + 0 ((7.3)л.9). Два слагаемых останется и в выражении для квадрата интенсивности касательных напряжений: 1 S ζ ζ + ((7.4)л.9). Таким образом, имеется две неизвестных функции и, и одно уравнение для их определения. Введем новую функцию ϕ по следующему правилу: ϕ, ; тогда уравнение ((7.3)л.9) удовлетворяется

3 тождественно. Если первое уравнение из ((7.)л.9) продифференцировать по y, а второе- по x и вычесть из первого, то получится: θ ((7. )л.9) С другой стороны, из закона Гука, следует, что и. Выражая J J напряжения и через введенную выше функцию ϕ и подставляя в ((7. )л.9), получаем: ϕ ϕ + Jθ, ((7.5)л.9) то есть уравнение Пуассона. Кроме уравнения необходимы и граничные условия. Как уже неоднократно говорилось, для уравнений равновесия такими условиями являются поверхностные напряжения: p σ l i. В нашем случае в тензоре напряжений только две ненулевые компоненты, и, кроме того, на поверхности цилиндра не действуют никакие напряжения, поэтому условие перепишется в виде: l + m 0 ((7.6)л.9). Напомним, что l - это косинус угла между нормалью к поверхности стержня и осью x, m - то же для оси y. Выразим направляющие косинусы через дифференциалы dy dx дуги (см. рис. 9.3): l, m. Подставим ds ds выраженные таким образом косинусы в формулу ((7.6)л.9), а также заменим в ней напряжения через производные от функции ϕ : + 0 S S Последнее равенство утверждает, что приращение функции ϕ вдоль направления, заданного дифференциалами dx и dy (т.е. вдоль контура), равно нулю, следовательно на контуре ϕ cnst. Положим эту константу равной нулю (отметим, что это можно сделать лишь в случае односвязного контура). В результате на функцию ϕ получена задача Дирихле для уравнения Пуассона: Δ ϕ Jθ, ((7.7)л.9) граничное условие ϕ 0. Если относительный поворот крайних сечений стержня составляет угол ψ, а ψ полная длина стержня L, то крутка θ. Остается связать заданную величину L приложенного к стержню момента M и крутку θ. Из рис.9.4 легко понять, что момент, приложенный к малому элементу сечения есть: dm x dxdy y dxdy. Интегрируя по всей площади сечения, получаем: M ( y x x y) dxdy [ y + x] dxdy. Далее интегрируем по частям: ydydx ϕ y ϕdy) dx ( ϕdydx, проинтегрированная ' y x 3

4 часть зануляется в силу того, что на границе области ϕ 0. Проведя аналогичную операцию со вторым слагаемым получим: ϕdxdy. ((7.8)л.9). M Требуемая связь получена: решая задачу Дирихле находим связь между ϕ и θ, а формула ((7.8)л.9) связывает известную величину M и θ. Таким образом задача полностью решена. Отметим, что так как нормальные составляющие напряжений на поверхности равны нулю, то справедливо равенство: tgα, ((7.9)л.9) где α - угол между касательной к поверхности стержня и осью x (рис 9.5). Эта формула утверждает, что касательные напряжения параллельны касательной к контуру. Обоснуем ее: выберем новую систему координат s, n (рис.9.5) и введем функцию ϕ в этой системе: ϕ, n ϕ, а так как n s 0, т.е. ϕ( s ) cnst на контуре, то n 0, что и s приводит к формуле ((7.9)л.9). Пластическое кручение. Увеличивая крутящие моменты мы переводим стержень в пластическое состояние. Считая гипотезу Сен-Венана о том, что сечения остаются плоскими, справедливой, получаем, что отличны от нуля только напряжения и. Эти напряжения, а также контур, изображены на рис.9.6. Будем предполагать идеальную пластичность материала. Условие пластичности запишется в виде: + k. Распишем компоненты касательного напряжения через угол ψ (см. рис.9.6): csψ sinψ. Уравнения равновесия должны выполнятся вне зависимости от того находится ли материал в упругом или пластическом ψ ψ состоянии, поэтому из формулы ((7.3)л.9) следует: sin ψ + csψ 0. Таким образом для одной неизвестной функции имеется одно уравнение. dx dy dψ Уравнения характеристик для него:, откуда получаем sinψ csψ 0 dy π направления характеристик: ctgψ tg( ψ + ). Отсюда видно, что dx характеристики перпендикулярны полному вектору напряжений. Интегрируя последнее равенство, получаем: y + x ctgψ Φ(ψ ) ((7.10)л.9). Остается найти функцию Φ (ψ ). Обозначим, как и раньше, угол между касательной к контуру и осью x буквой α. Тогда, как было показано выше, tgα. С другой стороны, по определению угла ψ, tgψ. Следовательно ψ α. Если контур задан с помощью функций от α как x x(α), y y(α ), то функция Φ (ψ ) имеет вид: Φ( ψ ) y ( ψ ) + x( ψ ) ctgψ ((7.11)л.9). 4

5 Картина напряжений в пластическом случае изображена на рис.9.7: касательные напряжения перпендикулярны нормали к контуру (т.е. параллельны касательным). В силу того, что материал находится в пластическом состоянии, они равны по величине. Подобные рассуждения проходят в случае гладкого контура. Однако, контур не обязан быть гладким. Рассмотрим контур, изображенный на рис.9.8. Как и в предыдущем случае, построим нормали к контуру, они будут пересекаться и множество точек их пересечения будет образовывать целую линию. Эта линия является областью неоднозначности, так как в каждой ее точке напряжения имеют два различных направления, что физически невозможно. Чтобы выйти из создавшегося положения, введем линии разрыва напряжений. 5

Подставим эти выражения в последние две системы, и после преобразований уравнения несколько упростятся:

Подставим эти выражения в последние две системы, и после преобразований уравнения несколько упростятся: Запишем приращения функций χ ψ вдоль направления, определённого дифференциалами dx и dy: χ χ dx dy = dχ dy ϕ ϕ dx dy = dϕ y Введём новые функции и следующим образом: = χ ϕ, = χ ϕ. Тогда ϕ = ( ), χ = (

Подробнее

Работа внешних сил. + δ и поверхностные δ. Изменение сил, естественно повлияют (5)

Работа внешних сил. + δ и поверхностные δ. Изменение сил, естественно повлияют (5) Работа внешних сил Рассмотрим некоторое тело, имеющее объём и поверхность Пусть в момент времени t к телу приложены объёмные силы X и поверхностные Pν Эти силы вызывают в теле перемещения относительно

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3)

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3) Полная система уравнений теории упругости si F () i Лекция Полная система уравнений теории упругости. Уравнения совместности деформаций. Уравнения Бельтрами. Уравнения Ламе. Плоское напряженное и плоское

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Доц. Кузьменко В.С. ЛАБОРАТОРНАЯ РАБОТА -: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Студент группы Допуск Выполнение Защита Цель работы: изучить виды деформации твердого тела и определить

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3.. Напряжения Уровень оценки прочности по нагрузке отличают простота и доступность. Расчеты при этом чаще всего минимальны - требуется определить только саму нагрузку. Для

Подробнее

Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 ( уч.г.).

Вопросы по дисциплине Сопротивление материалов. Поток С-II. Часть 1 ( уч.г.). Вопросы по дисциплине "Сопротивление материалов". Поток С-II. Часть 1 (2014 2015 уч.г.). ВОПРОСЫ К ЭКЗАМЕНУ с подробным ответом. 1) Закрепление стержня на плоскости и в пространстве. Простейшие стержневые

Подробнее

x i dt + ξ α 1 ( ) ε iα = 1 2 ( vi x α + vα x i ).

x i dt + ξ α 1 ( ) ε iα = 1 2 ( vi x α + vα x i ). Тензор скоростей деформации. Чтобы замкнуть систему пяти дифференциальных уравнений, состоящую из законов сохранения, делают различные предположения о свойствах сплошной среды. Пусть за время dt вектор

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

1.Дивергенция векторного поля.

1.Дивергенция векторного поля. ЛЕКЦИЯ N Дивергенция векторного поля Циркуляция Ротор отенциальные соленоидальные гармонические поля Операторы Лапласа и Гамильтона Дивергенция векторного поля Соленоидальные поля Циркуляция 4Формула Стокса

Подробнее

Тычина К.А. С л о ж н о е н а п р я ж ё н н о е с о с т о я н и е

Тычина К.А. С л о ж н о е н а п р я ж ё н н о е с о с т о я н и е www.tchina.pro Тычина К.А. IX С л о ж н о е н а п р я ж ё н н о е с о с т о я н и е П о л н о е н а п р я ж е н и е в п р о и з в о л ь н о й п л о щ а д к е Совокупность напряжений для всего множества

Подробнее

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 26. Т. 47, N- 6 129 УДК 539.3 ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ В. В. Калашников, М. И. Карякин Ростовский

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 3

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 3 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 2 СЕМЕСТР ЛЕКЦИЯ 3 УРАВНЕНИЯ ЛАГРАНЖА ПЕРВОГО РОДА ПРИНЦИП ДАЛАМБЕРА-ЛАГРАНЖА (ОБЩЕЕ УРАВНЕНИЕ ДИНАМИКИ) ПРИНЦИП ВИРТУАЛЬНЫХ ПЕРЕМЕЩЕНИЙ РАБОТА СИЛ ИНЕРЦИИ ТВЁРДОГО ТЕЛА Лектор:

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 4. ОБЪЕМНОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ И ТЕОРИИ ПРОЧНОСТИ

Подробнее

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления.

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления. Лекция 14 Сложное сопротивление. Косой изгиб. Определение внутренних усилий, напряжений, положения нейтральной оси при чистом косом изгибе. Деформации при косом изгибе. 14. СЛОЖНОЕ СОПРОТИВЛЕНИЕ. КОСОЙ

Подробнее

Курс: Прикладные задачи МСС. По Ширко И.В., МФТИ

Курс: Прикладные задачи МСС. По Ширко И.В., МФТИ Курс: Прикладные задачи МСС. По Ширко И.В., МФТИ Курс составлен на основе лекций, читающихся для студентов 3 курса МФТИ факультета аэрофизики и космических исследований. Предполагает знание основ тензорного

Подробнее

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 8.1. Функции нескольких переменных. Частные производные П л а н 1. Понятие функции двух и нескольких переменных.. Предел и непрерывность

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ (лекции 4-5)

ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ (лекции 4-5) ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ (лекции 4-5) ЛЕКЦИЯ 4, (раздел 1) (лек 7 «КЛФ, ч1») Кинематика вращательного движения 1 Поступательное и вращательное движение В предыдущих лекциях мы познакомились с механикой материальной

Подробнее

7.4. Удар материальной точки о неподвижную поверхность

7.4. Удар материальной точки о неподвижную поверхность ЛЕКЦИЯ 6 74 Удар материальной точки о неподвижную поверхность 74 Прямой удар Удар называется прямым если скорость точки перед ударом направлена по нормали к поверхности в точке удара М (рис 77) Для оценки

Подробнее

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение 1. Электростатика 1 1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Уравнение для потенциала с источниками зарядами) уравнение Пуассона и уравнение без источников уравнение Лапласа Уравнение Пуассона

Подробнее

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ 3.1. Сопротивление материалов. Задачи и определения. Сопротивление материалов - наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Первая задача сопротивления

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана»

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

Кинематика МЕХАНИКА. Система отсчета (СК+ часы, СО К) Абсолютно твердое тело. ньютоновская релятивистская. Физическая реальность и ее моделирование

Кинематика МЕХАНИКА. Система отсчета (СК+ часы, СО К) Абсолютно твердое тело. ньютоновская релятивистская. Физическая реальность и ее моделирование Л МЕХАНИКА Материальная точка Кинематика Физическая реальность и ее моделирование Система отсчета СК+ часы, СО К Абсолютно твердое тело Механика: ньютоновская релятивистская 1 Механика часть физики, которая

Подробнее

n = или k = k n называется единичным вектором

n = или k = k n называется единичным вектором Лекция 5 Тема: Кривизна и кручение кривой Репер Френе План лекции Кривизна кривой Кручение кривой Репер Френе Формулы Френе Натуральные уравнения кривой Кривизна кривой Соприкасающаяся плоскость Пусть

Подробнее

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 0 Энергетические методы определения перемещений 1 Обобщенные силы и перемещения Обобщенной силой (ОС) называется некоторое внешнее силовое воздействие

Подробнее

ЛЕКЦИЯ 2 ТЕОРЕМЫ ЭЙЛЕРА И ШАЛЯ. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ПРИ ДВИЖЕНИИ ТВЁРДОГО ТЕЛА

ЛЕКЦИЯ 2 ТЕОРЕМЫ ЭЙЛЕРА И ШАЛЯ. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ПРИ ДВИЖЕНИИ ТВЁРДОГО ТЕЛА ЛЕКЦИЯ 2 ТЕОРЕМЫ ЭЙЛЕРА И ШАЛЯ. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ПРИ ДВИЖЕНИИ ТВЁРДОГО ТЕЛА Рис. 2.1 Имеется неподвижная система координат OXY Z. Обозначим её как S Рассмотрим твёрдое тело, имеющее жёстко привязанные

Подробнее

А. В. Бенин, О. В. Козьминская, Н. И. Невзоров, И. Б. Поварова, И. И. Рыбина. ТЕОРИЯ УПРУГОСТИ Задачи и примеры. Учебное пособие

А. В. Бенин, О. В. Козьминская, Н. И. Невзоров, И. Б. Поварова, И. И. Рыбина. ТЕОРИЯ УПРУГОСТИ Задачи и примеры. Учебное пособие ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Государственное образовательное учреждение высшего профессионального образования "ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ " (ПГУПС) А.

Подробнее

Деформированное состояние в точке. Связь между деформациями и напряжениями

Деформированное состояние в точке. Связь между деформациями и напряжениями Деформированное состояние в точке. Связь между деформациями и напряжениями. Деформированным состоянием в точке называется (-ются) ОТВТ: ) совокупность деформаций в точке; ) совокупность нормальных и касательных

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

1.4. ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА, МОМЕНТА ИМПУЛЬСА И ЭНЕРГИИ. и ее масса и скорость). Из закона изменения импульса системы

1.4. ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА, МОМЕНТА ИМПУЛЬСА И ЭНЕРГИИ. и ее масса и скорость). Из закона изменения импульса системы Импульс системы n материальных точек ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА, МОМЕНТА ИМПУЛЬСА И ЭНЕРГИИ где импульс i-й точки в момент времени t ( i и ее масса и скорость) Из закона изменения импульса системы где

Подробнее

, соединяющий начальное положение точки с конечным. Скорость точки равна производной от радиуса-вектора по времени:

, соединяющий начальное положение точки с конечным. Скорость точки равна производной от радиуса-вектора по времени: Механика Механическим движением называется изменение положения тела по отношению к другим телам Как видно из определения механическое движение относительно Для описания движения необходимо определить систему

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана»

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

Механика деформируемого твердого тела. (теория пластичности)

Механика деформируемого твердого тела. (теория пластичности) НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Механика деформируемого твердого тела. (теория пластичности) материалы к лекциям для студентов 4-го курса ММФ (2-й поток) лектор: профессор Ю.М. Волчков НОВОСИБИРСК

Подробнее

ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1. ПОНЯТИЕ ВЕКТОРА

ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1. ПОНЯТИЕ ВЕКТОРА ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1 ПОНЯТИЕ ВЕКТОРА Вектором называется направленный прямолинейный отрезок Длину отрезка в установленном масштабе называют модулем вектора Векторы считаются

Подробнее

Лекция 7. Работа. Теорема об изменении кинетической энергии

Лекция 7. Работа. Теорема об изменении кинетической энергии Лекция 7 Работа. Теорема об изменении кинетической энергии. Консервативные силы. Потенциальная энергия частицы в потенциальном поле. Примеры: упругая сила, гравитационное поле точечной массы. Работа. Теорема

Подробнее

Лекция 13. Формула Стокса. Понятие ротора. Оператор Гамильтона. Основные виды векторных полей. Формула Стокса.

Лекция 13. Формула Стокса. Понятие ротора. Оператор Гамильтона. Основные виды векторных полей. Формула Стокса. Лекция 13 Формула Стокса Понятие ротора Оператор Гамильтона Основные виды векторных полей Формула Стокса Для установления связи между криволинейными интегралами с поверхностными интегралами проведем согласование

Подробнее

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

Лекция 13: Классификация квадрик на плоскости

Лекция 13: Классификация квадрик на плоскости Лекция 13: Классификация квадрик на плоскости Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В предыдущих трех

Подробнее

Московская городская олимпиада по теоретической механике. МЭИ(ТУ)

Московская городская олимпиада по теоретической механике. МЭИ(ТУ) Московская городская олимпиада по теоретической механике. МЭИ(ТУ) - 010 Задача 1. Система сил приложена к точкам (0, 0, a), (0, b, 0) и (c, 0, 0) твердого тела. Дано: F 1 = 4F F 4, F 4 = 1кН, F 5 = F 3.

Подробнее

Лабораторная работа 5.2 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА

Лабораторная работа 5.2 ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Глава 5. Упругие деформации Лабораторная работа 5. ОПРЕДЕЛЕНИЕ МОДУЛЯ ЮНГА ИЗ ДЕФОРМАЦИИ ИЗГИБА Цель работы Определение модуля Юнга материала равнопрочной балки и радиуса кривизны изгиба из измерений стрелы

Подробнее

Рис. 5. А.К. Попов ОСЕВОЕ РАСТЯЖЕНИЕ СТЕРЖНЯ В РАМКАХ МОМЕНТНОЙ ТЕОРИИ УПРУГОСТИ

Рис. 5. А.К. Попов ОСЕВОЕ РАСТЯЖЕНИЕ СТЕРЖНЯ В РАМКАХ МОМЕНТНОЙ ТЕОРИИ УПРУГОСТИ Рис. 5 Данные фильмы позволяют преподавателю сократить время изложения данного материала, повысить наглядность, и, в конечном счете, помогает студентам усвоить материал, ведь в нужное время масштабируемый

Подробнее

Потенциальное силовое поле Потенциальное силовое поле и силовая функция

Потенциальное силовое поле Потенциальное силовое поле и силовая функция 335 Потенциальное силовое поле 3351 Потенциальное силовое поле и силовая функция (, ) M, Силовое поле это часть пространства, в каждой точке которого на материальную точку действует сила, зависящая от

Подробнее

1 = = 0. (1) R + 1 = C, (2) 1(R)

1 = = 0. (1) R + 1 = C, (2) 1(R) . Электростатика. Электростатика Урок 7 Разделение переменных в сферической и цилиндрической системах координат Оператор Лапласа в сферической системе координат записывается в виде = 2 = 2 ) + sin θ )

Подробнее

Тема 1.2. Механика твёрдого тела. 1. Момент инерции. В случае непрерывного распределения масс эта сумма сводится к интегралу

Тема 1.2. Механика твёрдого тела. 1. Момент инерции. В случае непрерывного распределения масс эта сумма сводится к интегралу Тема 1.. Механика твёрдого тела План. 1. Момент инерции.. Кинетическая энергия вращения 3. Момент силы. Уравнение динамики вращательного движения твёрдого тела. 4. Момент импульса и закон его сохранения.

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

p x = σ x l + τ yx m + τ zx n, σ ν = p x l + p y m + p z n. (11.1.5)

p x = σ x l + τ yx m + τ zx n, σ ν = p x l + p y m + p z n. (11.1.5) ГЛАВА 11 РАСЧЕТ НА ПРОЧНОСТЬ ПРИ СЛОЖНОМ НАПРЯЖЕННОМ СО- СТОЯНИИ В гл. 9 в примерах 9.3, 9.4 мы столкнулись с напряженными состояниями, которые отличаются от простых состояний растяжения-сжатия и чистого

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ. 1.Изучить условия возникновения продольной стоячей волны в упругой среде.

ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ. 1.Изучить условия возникновения продольной стоячей волны в упругой среде. Цель работы: ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ 1.Изучить условия возникновения продольной стоячей волны в упругой среде..измерить скорость распространения упругих

Подробнее

Криволинейные интегралы 2-го типа

Криволинейные интегралы 2-го типа Глава 2 Криволинейные интегралы 2-го типа 2. Необходимые сведения из теории Напомним, обсужденный нами на предыдущем занятии криволинейный интеграл -го типа был удобен при отыскании скалярных величин,

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

7.8. Упругие силы. Закон Гука

7.8. Упругие силы. Закон Гука 78 Упругие силы Закон Гука Все твердые тела в результате внешнего механического воздействия в той или иной мере изменяют свою форму, так как под действием внешних сил в этих телах изменяется расположение

Подробнее

Лекция 5. абсолютно твердого тела. инерции твердых тел (примеры) материальной точки. 2. Динамика вращательного движения

Лекция 5. абсолютно твердого тела. инерции твердых тел (примеры) материальной точки. 2. Динамика вращательного движения Лекция 5 1. Динамика вращательного движения материальной точки. Динамика вращательного движения абсолютно твердого тела 3. Алгоритм определения моментов инерции твердых тел (примеры) 1. Динамика вращательного

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции сечения» Лектор: д.т.н., доцент И.Е.

Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции сечения» Лектор: д.т.н., доцент И.Е. Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции Лектор: д.т.н., доцент И.Е.Лысенко Английский ученый Роберт Гук открыл фундаментальную закономерность между

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл Задачи, приводящие к понятию производной Определение Касательной S к линии y f (x) в точке A x ; f (

Подробнее

ОПРЕДЕЛЕНИЕ СКОРОСТИ ЗВУКА В ТВЁРДЫХ ТЕЛАХ МЕТОДОМ КУНДТА

ОПРЕДЕЛЕНИЕ СКОРОСТИ ЗВУКА В ТВЁРДЫХ ТЕЛАХ МЕТОДОМ КУНДТА Министерство образования и науки РФ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Утверждаю зав. кафедрой общей и экспериментальной физики В. П. Демкин 015 г. ОПРЕДЕЛЕНИЕ СКОРОСТИ

Подробнее

Лекция 12: Парабола. Б.М.Верников. Уральский федеральный университет,

Лекция 12: Парабола. Б.М.Верников. Уральский федеральный университет, Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции изучается третья кривая второго порядка парабола.

Подробнее

5. Система координат. Координаты точки

5. Система координат. Координаты точки 5. Система координат. Координаты точки 1. Понятие системы координат Определение. Системой координат в пространстве (на плоскости) называется совокупность базиса пространства (соответственно базиса плоскости)

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Курс лекций: «Прикладная механика»

Курс лекций: «Прикладная механика» Курс лекций: «Прикладная механика» Лекция 4: «Основные виды микромеханических элементов. Механические свойства материалов. Тензоры механического Лектор: д.т.н., доцент И.Е.Лысенко К основным видам конструкций

Подробнее

Лекция 7. Формулы Стокса и Гаусса-Остроградского

Лекция 7. Формулы Стокса и Гаусса-Остроградского С. А. Лавренченко www.lawenceno.u Лекция 7 Формулы Стокса и Гаусса-Остроградского Формулу Стокса можно рассматривать как трехмерный аналог формулы Грина. Формула Грина сводит двойной интеграл по плоской

Подробнее

ЛЕКЦИЯ 9 Элементы теории деформированного состояния в точке. Потенциальная энергия упругой деформации

ЛЕКЦИЯ 9 Элементы теории деформированного состояния в точке. Потенциальная энергия упругой деформации В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 203 ЛЕКЦИЯ 9 Элементы теории деформированного состояния в точке. Потенциальная энергия упругой деформации Понятие о деформированном состоянии в точке ДТТ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН АТЫРАУСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА КУРС ЛЕКЦИЙ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН АТЫРАУСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА КУРС ЛЕКЦИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН АТЫРАУСКИЙ ИНСТИТУТ НЕФТИ И ГАЗА копии КУРС ЛЕКЦИЙ По дисциплине «Теория упругости и пластичности» Для специальности - Промышленно-гражданское строительство

Подробнее

Тезисы курса сопротивления материалов Часть 1

Тезисы курса сопротивления материалов Часть 1 Тезисы курса сопротивления материалов Часть 1 1 Глава 1. Введение 1.1.Основные понятия Прочность- способность материала конструкции сопротивляться внешним воздействиям. Жесткость- способность элементов

Подробнее

ДИНАМИКА И ПРОЧНОСТЬ АВИАЦИОННЫХ КОНСТРУКЦИЙ

ДИНАМИКА И ПРОЧНОСТЬ АВИАЦИОННЫХ КОНСТРУКЦИЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

Предельная нагрузка для стержневой системы

Предельная нагрузка для стержневой системы Л е к ц и я 18 НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ Ранее, в первом семестре, в основном, использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной

Подробнее

КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов»

КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Тольяттинский государственный университет Кафедра «Материаловедение и механика материалов» КОНТРОЛЬНЫЕ ТЕСТЫ по дисциплине «Сопротивление материалов» Часть Модульная

Подробнее

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =.

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =. ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) Определение векторного поля Определение векторной линии Задача о работе силового поля Полем называется множество, элементы которого удовлетворяют

Подробнее

Колебания. Периодическая величина: функция f(t) есть периодическая функция (величина) с периодом Т если f(t)=f(t+t)

Колебания. Периодическая величина: функция f(t) есть периодическая функция (величина) с периодом Т если f(t)=f(t+t) Колебания 1Уравнение свободных колебаний под действием квазиупругой силы. Гармонический осциллятор. 3 Энергия гармонического осциллятора. 4 Сложение гармонических колебаний. Колебания Периодическая величина:

Подробнее

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ ФУНКЦИИ. Уравнение касательной

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ ФУНКЦИИ. Уравнение касательной ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ ФУНКЦИИ Уравнение касательной Рассмотрим следующую задачу: требуется составить уравнение касательной l, проведенной к графику функции в точке Согласно геометрическому смыслу производной

Подробнее

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск

Институт гидродинамики им. М. А. Лаврентьева СО РАН, Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2008. Т. 49, N- 1 157 УДК 539.3 О РАЗНОМОДУЛЬНОЙ ТЕОРИИ УПРУГОСТИ И. Ю. Цвелодуб Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail:

Подробнее

ЛЕКЦИЯ 21 СКОБКИ ПУАССОНА. ТЕОРЕМА ЯКОБИ-ПУАССОНА. КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ

ЛЕКЦИЯ 21 СКОБКИ ПУАССОНА. ТЕОРЕМА ЯКОБИ-ПУАССОНА. КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ ЛЕКЦИЯ 21 СКОБКИ ПУАССОНА. ТЕОРЕМА ЯКОБИ-ПУАССОНА. КАНОНИЧЕСКИЕ ПРЕОБРАЗОВАНИЯ 1. Скобки Пуассона На прошлой лекции вводилось понятие скобки Лагранжа. Это выражение было составлено из частных производных

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1 Задача 1 Рассматривается два загружения плоской рамы, состоящей из стержневых элементов квадратного поперечного сечения При загружении распределенными нагрузками q и 2q в точке к указанного на рисунке

Подробнее

ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР )

ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР ) ВОПРОСЫ К ПЕРВОЙ ЧАСТИ ЭКЗАМЕНА ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ (I КУРС, ВЕСЕННИЙ СЕМЕСТР 2007-2008) 1 Сформулируйте определение шаровой окрестности точки пространства R 2 Сформулируйте определение прямоугольной

Подробнее

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ Вектором называется количественная характеристика, имеющая не только числовую величину, но и направление Иногда говорят, что вектор это направленный отрезок Векторная система

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

БОЛЬШИЕ ДЕФОРМАЦИИ ТОНКОЙ КОЛЬЦЕВОЙ ПЛАСТИНЫ. I

БОЛЬШИЕ ДЕФОРМАЦИИ ТОНКОЙ КОЛЬЦЕВОЙ ПЛАСТИНЫ. I ºðºì²ÜÆ äºî²î²ü вزÈê²ð²ÜÆ Æî²Î²Ü îºôºî² Æð Ó ÅÍÛÅ ÇÀÏÈÑÊÈ ÅÐÅÂÀÍÑÊÎÃÎ ÃÎÑÓÄÀÐÑÒÂÅÍÍÎÃÎ ÓÍÈÂÅÐÑÈÒÅÒÀ Ý³Ï³Ý ÇïáõÃÛáõÝÝ»ñ 2, 28 Åñòåñòâåííûå íàóêè Механ и к а УДК 621.983 34 Э. А. НАЗАРЯН, М. М. АРАКЕЛЯН,

Подробнее

Лекция 1.02 Кинематика точки

Лекция 1.02 Кинематика точки Лекция 0 Кинематика точки Кинематика точки Векторный метод определения движения точки Далее всегда будем предполагать что существует неподвижная система отсчета - декартова система координат выбор которой

Подробнее

1.5 Поток вектора напряженности электрического поля

1.5 Поток вектора напряженности электрического поля 1.5 Поток вектора напряженности электрического поля Ранее отмечалось, что величина вектора напряженности электрического поля равна количеству силовых линий, пронизывающих перпендикулярную к ним единичную

Подробнее

Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения

Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения Расчет стержней при внецентренном сжатии-растяжении Пример 1. Чугунный короткий стержень сжимается

Подробнее

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/cience/trudy/ УДК 539.3 Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе поперечном сдвиге

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ 3 ПО ДИФФЕРЕНЦИАЛЬНОМУ ИСЧИСЛЕНИЮ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ.

ДОМАШНЕЕ ЗАДАНИЕ 3 ПО ДИФФЕРЕНЦИАЛЬНОМУ ИСЧИСЛЕНИЮ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. ДОМАШНЕЕ ЗАДАНИЕ ПО ДИФФЕРЕНЦИАЛЬНОМУ ИСЧИСЛЕНИЮ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Для выполнения домашнего задания необходимо пользуясь табл заполнить первую строку табл затем выписать соответствующие вашему

Подробнее

Кривые второго порядка

Кривые второго порядка Министерство образования и науки Российской Федерации Ярославский государственный университет им. П. Г. Демидова Кафедра алгебры и математической логики Кривые второго порядка Часть I Методические указания

Подробнее

А.Л. Суркаев, Т.А. Сухова ИЗУЧЕНИЕ ЗАКОНА ГУКА И ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА

А.Л. Суркаев, Т.А. Сухова ИЗУЧЕНИЕ ЗАКОНА ГУКА И ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Подробнее

r12 q r rik r i r 3 r i.

r12 q r rik r i r 3 r i. 1. Электростатика 1 1. Электростатика Урок 1 Закон Кулона Сила, действующая со стороны заряда 1 на заряд 2 равна F 12 = C 1 2 12, 12 2 12 где величина C множитель, зависящий от системы единиц. В системе

Подробнее

ЛЕКЦИЯ 17 Расчеты на прочность при сложном напряженном состоянии. Теории (гипотезы) прочности. 1 Назначение гипотез прочности

ЛЕКЦИЯ 17 Расчеты на прочность при сложном напряженном состоянии. Теории (гипотезы) прочности. 1 Назначение гипотез прочности В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 ЛЕКЦИЯ 7 Расчеты на прочность при сложном напряженном состоянии. Теории (гипотезы) прочности Назначение гипотез прочности Теории (гипотезы) прочности (ТП)

Подробнее

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского Министерство образования и науки Российской Федерации Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет Учебно-научный и инновационный комплекс

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

ПОСТРОЕНИЕ И АНАЛИЗ ТОЧНОГО АНАЛИТИЧЕСКОГО РЕШЕНИЯ ЗАДАЧИ КИРША В РАМКАХ КОНТИНУУМА И ПСЕВДОКОНТИНУУМА КОССЕРА

ПОСТРОЕНИЕ И АНАЛИЗ ТОЧНОГО АНАЛИТИЧЕСКОГО РЕШЕНИЯ ЗАДАЧИ КИРША В РАМКАХ КОНТИНУУМА И ПСЕВДОКОНТИНУУМА КОССЕРА ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 001. Т., N- 15 УДК 539.3.01 ПОСТРОЕНИЕ И АНАЛИЗ ТОЧНОГО АНАЛИТИЧЕСКОГО РЕШЕНИЯ ЗАДАЧИ КИРША В РАМКАХ КОНТИНУУМА И ПСЕВДОКОНТИНУУМА КОССЕРА М. А. Кулеш, В. П. Матвеенко,

Подробнее

Лекции по уравнениям математической физики

Лекции по уравнениям математической физики Лекции по уравнениям математической физики Соловьев Вячеслав Викторович черновая версия 31 декабря 5 г. Оглавление 1 Уравнения с частными производными -го порядка и их классификация 3 1.1 Понятие уравнения

Подробнее

12.1. Теорема о движении центра масс

12.1. Теорема о движении центра масс Глава 12 ДИНАМИКА СИСТЕМЫ 12.1. Теорема о движении центра масс ПОСТАНОВКА ЗАДАЧИ. Механизм, состоящий из n связанных между собой тел, установлен на призме, находящейся на горизонтальной плоскости. Трение

Подробнее

7. Экстремумы функций нескольких переменных

7. Экстремумы функций нескольких переменных 7. Экстремумы функций нескольких переменных 7.. Локальные экстремумы Пусть функция f(x,..., x n ) определена на некотором открытом множестве D R n. Точка M D называется точкой локального максимума (локального

Подробнее

2. Какая деформация не исчезает после прекращения действия внешних сил? А) пластическая; Б) упругая; В) остаточная.

2. Какая деформация не исчезает после прекращения действия внешних сил? А) пластическая; Б) упругая; В) остаточная. ТЕСТ 1 І уровня по предмету «Техническая механика» по теме «Деформации» 1. Что называют изменение формы и размеров тела под действием внешних сил? А) упругостью; Б) деформацией; В) пластичностью. 2. Какая

Подробнее

Высокоэластичность полимерных сеток.

Высокоэластичность полимерных сеток. Высокоэластичность полимерных сеток. Полимерные сетки. Полимерные сетки состоят из длинных полимерных цепей, сшитых между собой и образующих тем самым гигантскую трехмерную макромолекулу. Все полимерные

Подробнее