ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ЛЕКЦИЯ 21 Энергетические методы определения перемещений (продолжение) 1 Теорема о взаимности работ"

Транскрипт

1 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 ЛЕКЦИЯ Энергетические методы определения перемещений (продолжение) Теорема о взаимности работ Теорема о взаимности работ применима к системам, для которых справедлив принцип суперпозиции, т.е. для упругих систем, и прямо вытекает из него. Формулировка теоремы: Работа первой обобщенной силы на перемещении точки ее приложения, вызванном действием второй обобщенной силы, равна работе второй обобщенной силы на перемещении точки ее приложения, вызванном действием первой обобщенной силы. Доказательство Определим перемещения точек А и В. Очевидно, что перемещения точек будут суммироваться от т.в Рис. P P P. P действия каждой силы. т.а P P P, P В формализованных (канонизированных) обозначениях т.a, () т.b, где k перемещение точки приложения силы вдоль линии ее действия под действием силы «k». В соответствии с принципом возможных перемещений накопленная ПЭД, равная работе внешних сил Р и Р, составит U = A () и не зависит от порядка приложения внешних сил Р и Р.

2 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 Определим величину А при различном порядке приложения сил Р и Р. Вариант Вначале прикладываем Р от 0 до Р, затем Р (см. рис. ): Рис. Очевидно, что Рис. 3 Рис. 4 A P, A P. (3) Сила Р совершает работу на перемещении, оставаясь неизменной (рис. 3), поэтому: Общая работа А = Р, а не P (уяснили, почему?!). (4) A A A P P P A. (5)

3 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 3 Вариант Изменим порядок приложения сил: вначале P, а затем P : Проведя аналогичные рассуждения, получим: Рис. 5 Приравнивая правые части (5) и (6), получаем: что и требовалось доказать. Формулировка теоремы: A A A A P P P. (6) А = А или Р = Р, (8) Теорема о взаимности перемещений Перемещение точки А под действием силы Р, приложенной в точке В, равно перемещению точки В под действием той же силы, приложенной в точке А. Если принять, что Р = Р = Р, то из (8) =. (9) 3 Вывод формулы Максвелла Мора для определения перемещений произвольно нагруженных брусьев Предположим, что к упруго деформируемой системе приложены системы внешних сил: -я система сил Р и -я система сил Р. Из теоремы о взаимности работ следует, что взаимные работы А и А могут быть найдены из уравнения А = А = А А А. (0) Определим значения А, А, А, полагая в соответствии с принципом возможных перемещений, что:

4 4 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 A = U, A = U, A = U. Если к упругой системе приложена только система сил Р, то это вызовет появление в её поперечных сечениях следующих внутренних силовых факторов: P,Q,Q,,, x y z x y z и к накоплению в ней потенциальной энергии деформации U, равной работе внутренних сил: n x Q y A U dx K y dx EF GF l l l K z Qz dx GF x y z dx K y dx K z dx. () GI l l y Если к упругой системе приложена система сил Р, то это вызовет появление следующих внутренних силовых факторов:,q,q,,, P. x y z x y z Одновременно в упругой системе будет накоплена энергия деформации, равная работе внутренних сил: A U n x Q y dx K y dx EF GF l l l K z Qz dx GF x y z dx K y dx K z dx. () GI l l y Если теперь к упругой системе приложить систему внешних сил (Р + Р ), то в её сечениях появятся следующие внутренние силовые факторы

5 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 5 P P,Q Q,Q Q,, x x y y z z x x y, y z z и будет накоплена потенциальная энергия деформации A U Q Q Q Q n x x y y z z dx K y dx K z dx EF GF GF l l l x x y y z z dx dx dx GI. (3) l l y Подставив значения А, А и А в (0), получаем выражения для взаимных работ: n EF l A A dx... dx x x z z. (4) Теперь предположим, что Р =, т.е. вторая система сил состоит из одной силы единичной по величине. В этом случае можно переобозначить составляющие внутренних силовых факторов следующим образом: x x p ; Q y Q y p,, z z p, т.е. это ВСФ, вызванные внешними силами первого, т.е. грузового, состояния; x x ; Qy Qy,, z z, т.е. это ВСФ, вызванные приложением единичной обобщенной силы P. Вышеизложенное означает, что величина A A становится численно равной обобщенному перемещению, но по размерности соответствует работе. Искомую работу A A будем искать в одной из двух возможных форм: A A P. (5)

6 6 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 Тогда с учетом того, что P (точнее P Н, если ищем линейное перемещение, и P Нм, если ищем угол поворота), получаем n x p x z p z A A dx... dx EF l. (6) Разделив правую и левую части этого равенства на P, получим значение перемещения (работа, деленная на силу, даст перемещение, вызванное системой сил Р): n xp x zp z dx... dx. (7) EF l Таким образом, формула (7) позволяет определить перемещение точки приложения единичной обобщённой силы P в направлении ее действия, вызванное действием внешних сил Р = P. Выражение (7) есть интеграл Максвелла-Мора, позволяющий определить перемещение от сил так называемого грузового состояния, т.е. от сил, приложенных к упругой системе. Замечание Необходимо учитывать следующее: при делении слагаемых правой части на P в формуле (6) необходимо это деление относить к величинам x,..., z (а не к x,..., p z p.). В этом случае величины x,..., z можно рассматривать как ВСФ, вызванные действием единичной по величине и безразмерной по характеру обобщенной силы. Тогда при решении задач по определению линейных перемещений x,qy, Qz величины безразмерные, а x, y, z будут иметь размерность единицы длины, т.е. [м], а при определении угловых перемещений

7 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 7 x, y, z будут безразмерными величинами, а x,qy, Qz буду иметь размерность [/м]. 4 Порядок определения перемещений по методу Максвелла-Мора. Изображают на рисунке заданную (грузовую) систему, в которой необходимо определить то или иное перемещение. Указывают точку и вид искомого перемещения.. Помимо грузовой, изображают рядом вспомогательную систему, т.е. изображают исходную систему без внешних нагрузок. 3. Если надо определить линейное перемещение, то к вспомогательной системе прикладывают в сечении, перемещение которого необходимо определить, единичную безразмерную силу, причём таким образом, чтобы линия её действия совпадала с направлением искомого перемещения. Если искомое перемещение это угол поворота, то следует приложить к вспомогательной системе единичный безразмерный момент. 4. Разбив грузовую и вспомогательную системы на участки идентичным образом, записывают выражения для внутренних усилий грузового состояния,,,..., x y z z p p p p x Q x Q x x, а также записывают функции единичных внутренних усилий,,,..., x Q x Q x x. x y z z 5. При выполнении п.4 порядок обхода участков и правила знаков должны быть одинаковыми. в (7), определяют искомое пе- 6. Подставив ремещение. x,..., и x,..., z p z p 7. Если искомое перемещение получено со знаком, то это значит, что его направление противоположно принятому направлению единичной силы.

8 8 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ В балках и плоских рамах основную роль играют изгибные перемещения. Перемещения вследствие растяжения и сдвига так же малы по сравнению с перемещениями от изгиба, как энергия растяжения и сдвига мала по сравнению с энергией изгиба. Поэтому из 6-ти слагаемых уравнения (7) учитывают только одно n y x y x p dx. (8) l 5 Способ Верещагина для вычисления интеграла Максвелла Мора Пусть необходимо вычислить интеграл вида y, (9) l I f x f x dx где f (x) произвольная функция, а f (x) линейная функция, т.е. f (x) = b + kx (см. рис. ). Тогда y. (0) I f x bkx dxb f x dxk xf x dxb ks l l l Здесь площадь, ограниченная линией f x, S статический момент y площади относительно оси y. С другой стороны, как известно, статический момент плоской фигуры может быть определён как произведение площади на координату центра тяжести: S y x. ) c

9 В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 9 Рис. 6 Тогда I b kx bkx c c f x. () В каждый из интегралов Мора (7) входит произведение функций и соответствующих им эпюр: x... p x z p z. Способ Верещагина применим к любому из 6-ти интегралов, входящих в интеграл Мора. Таким образом, по способу Верещагина операция заменяется c интегрирования «перемножением» площади первой (грузовой) эпюры на ординату второй (линейной) эпюры под центром тяжести первой. Если эпюры противоположны по знаку, то результат «умножения» имеет знак. Если f (x) и f (x) линейные функции, то они обладают свойством коммутативности, т.е. равноценно умножение площади первой эпюры на ординату второй и наоборот. Для балок и плоских рам постоянной жесткости, где можно учитывать только изгибные перемещения, формула упрощается n y, (3) где ордината единичной эпюры под центром тяжести первой (грузовой).

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ

17. ЭНЕРГЕТИЧЕСКИЕ МЕТОДЫ РАСЧЕТА ДЕФОРМАЦИЙ УПРУГИХ СИСТЕМ Лекция 17 Энергетические методы расчета упругих систем. Потенциальная энергия деформации. Обобщенные силы и обобщенные перемещения. Основные энергетические уравнения механики (теорема Кастильяно). Метод

Подробнее

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения

ЛЕКЦИЯ 20 Энергетические методы определения перемещений. 1 Обобщенные силы и перемещения В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 0 Энергетические методы определения перемещений 1 Обобщенные силы и перемещения Обобщенной силой (ОС) называется некоторое внешнее силовое воздействие

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им НЕ Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

F 1, затем F 2 точка C сначала перемещается на величину 11, затем

F 1, затем F 2 точка C сначала перемещается на величину 11, затем равна нулю: W +U = 0. (9) Возможными являются любые перемещения, которым не препятствуют наложенные связи. В линейно деформируемых системах вместо бесконечно малых можно рассматривать малые конечные перемещения.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений

Лекция 19 Вычисление перемещений по формуле Мора 19.1 Формула Мора Вычисление интеграла Мора по правилу Верещагина Примеры вычислений Лекция 19 Вычисление перемещений по формуле Мора 191 Формула Мора 192 Вычисление интеграла Мора по правилу Верещагина 193 Примеры вычислений перемещений по формуле Мора при кручении, растяжении-сжатии

Подробнее

ЛЕКЦИЯ 22 Расчет статически неопределимых систем методом сил. 1 Статически неопределимые стержневые системы

ЛЕКЦИЯ 22 Расчет статически неопределимых систем методом сил. 1 Статически неопределимые стержневые системы В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ Расчет статически неопределимых систем методом сил 1 Статически неопределимые стержневые системы Стержневой системой называется всякая конструкция,

Подробнее

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

Тычина К.А. О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я.

Тычина К.А. О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я. www.tychin.pro Тычина К.А. VI О б щ и й с л у ч а й н а г р у ж е н и я с т е р ж н я. П о т е н ц ц и а л ь н а я э н е р г и я с т е р ж н я в о б щ е м с л у ч а е н а г р у ж е н и я Двумя бесконечно

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики

Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики Материалы для организации самостоятельной работы студентов 4 курса ИСФ заочной формы обучения при изучении строительной механики Модуль М-6. ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ В СТЕРЖНЕВЫХ КОНСТРУКЦИЯХ 1.Методические

Подробнее

18. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Общие понятия и определения

18. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Общие понятия и определения Лекция 18 Статически неопределимые системы: рамы и фермы. Метод сил. Канонические уравнения метода сил. Примеры расчета статически неопределимых систем. Учет симметрии. 18. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

Подробнее

ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы)

ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы) В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 4 Определение внутренних силовых факторов, действующих в поперечном сечении бруса (продолжение темы) 1 Классификация внутренних силовых факторов

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение)

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) В.Ф. ДЕМЕНКО. МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) 1 Правила знаков при построении эпюр поперечных

Подробнее

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов.

3. РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ. У - количество узлов. . РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ ФЕРМ Усилия в статически неопределимых фермах как правило определяют методом сил. Последовательность расчета такая же как и для рам.. Степень статической неопределимости

Подробнее

Расчет плоской рамы методом сил

Расчет плоской рамы методом сил ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет Расчет плоской рамы методом сил

Подробнее

Расчет статически неопределимой плоской рамы методом сил

Расчет статически неопределимой плоской рамы методом сил МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Расчет статически

Подробнее

6.1 Работа силы на перемещении

6.1 Работа силы на перемещении 6. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ. ТЕОРЕМА ВЗАИМНОСТИ РАБОТ ФОРМУЛА МАКСВЕЛЛА-МОРА 6.1 Работа силы на перемещении Пусть к точке приложена сила F и точка получает перемещение u по направлению действия силы

Подробнее

Исходные данные по предпоследней цифре

Исходные данные по предпоследней цифре Методическое руководство Задание Статически неопределимые системы Работа Для балки, изображенной на рисунке (рис.) требуется: ) найти изгибающий момент на левой опоре (в долях ); ) построить эпюры Q y

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

РАСЧЕТ ПЛОСКИХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

РАСЧЕТ ПЛОСКИХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ Московский государственный технический университет имени Н.Э Баумана А.Е. Белкин, Н.Л. Нарская РАСЧЕТ ПЛОСКИХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ Рекомендовано Научно-методическим советом МГТУ им. Н.Э. Баумана в качестве

Подробнее

Лабораторная работа 6 Определение перемещений при изгибе балки

Лабораторная работа 6 Определение перемещений при изгибе балки Лабораторная работа 6 Определение перемещений при изгибе балки Цель работы: изучение методов определения перемещений в балках; экспериментальное и расчётное определение прогиба и угла поворота в двухопорной

Подробнее

Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ»

Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ» Негосударственное образовательное учреждение высшего профессионального образования Московский технологический институт «ВТУ» Контрольные задания по дисциплине «Строительная механика» 1 Оглавление Общие

Подробнее

Расчет плоской рамы методом перемещений

Расчет плоской рамы методом перемещений МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Расчет плоской

Подробнее

Статически неопределимые рамы

Статически неопределимые рамы МОСКОВСКИЙ АРХИТЕКТУРНЫЙ ИНСТИТУТ (государственная академия) Кафедра "Высшая математика и строительная механика" Статически неопределимые рамы Методическое пособие. Пример расчета статически неопределимой

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

Энергетические теоремы и вариационные принципы

Энергетические теоремы и вариационные принципы ТЕТРАДЬ Чернева ИМ Энергетические теоремы и вариационные принципы Санкт-Петербург г Чернева ИМ ассистент, доцент кафедры строительной механики ЛИИЖТа, кафедры прочности материалов и конструкций ПГУПС в

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ ПЛОСКОЙ РАМЫ МЕТОДОМ ПЕРЕМЕЩЕНИЙ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ульяновский государственный технический университет В. К. Манжосов РАСЧЕТ СТАТИЧЕСКИ

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

ЛЕКЦИЯ 9 Элементы теории деформированного состояния в точке. Потенциальная энергия упругой деформации

ЛЕКЦИЯ 9 Элементы теории деформированного состояния в точке. Потенциальная энергия упругой деформации В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 203 ЛЕКЦИЯ 9 Элементы теории деформированного состояния в точке. Потенциальная энергия упругой деформации Понятие о деформированном состоянии в точке ДТТ

Подробнее

5.4. Рама Рама 45

5.4. Рама Рама 45 .4. Рама 4 V V H M x M M(x 1) Q(x 1) N(x 1) 1. 12.667 17.8 6. 12.000 49..201-27.41 2 41.7 42.64 9.000 2.867.7 11.1-6.008-46.848 4.426 82.74 0.4 9.777 7.67 4.182-4.8-72.66 4 12.8 28.167 16.70 2.778 20.000-28.889-1.6-21.04

Подробнее

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3

Репозиторий БНТУ ОГЛАВЛЕНИЕ. Предисловие... 3 ОГЛАВЛЕНИЕ Предисловие... 3 Глава 1. ОБЩИЕ ПОЛОЖЕНИЯ И ПОНЯТИЯ СТРОИТЕЛЬНОЙ МЕХАНИКИ... 4 1.1. Задачи и методы строительной механики... 4 1.2. Понятие о расчетной схеме сооружения и ее элементах.. 6 1.3.

Подробнее

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛОСКИХ СЕЧЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ и НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МАТИ - Российский государственный технологический

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Кутовой Л.В., Зинченко Т.П., Овчаренко В.А. СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ЧАСТЬ УЧЕБНОЕ ПОСОБИЕ Краматорск 005 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ

Подробнее

(шифр и наименование направления)

(шифр и наименование направления) Дисциплина Направление Сопротивление материалов 270800 - Строительство (шифр и наименование направления) Специальность 270800 62 00 01 Промышленное и гражданское строительство 270800 62 00 03 Городское

Подробнее

РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ

РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ Министерство путей сообщения Российской федерации Дальневосточный государственный университет путей сообщения Кафедра "Строительная механика" А.В. Хлебородов РАСЧЕТ ПРОСТЫХ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ

Подробнее

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ Профессор, д.т.н. Богус Ш.Н., студент КубГАУ Лысов Д.С., Пономарев Р.В. Кубанский государственный аграрный университет Краснодар, Россия При увеличении пропускной способности

Подробнее

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации

6. ОСНОВЫ ТЕОРИИ ДЕФОРМИРОВАННОГО СОСТОЯНИЯ 6.1. Деформированное состояние в точке. Главные деформации Теория деформированного состояния Понятие о тензоре деформаций, главные деформации Обобщенный закон Гука для изотропного тела Деформация объема при трехосном напряженном состоянии Потенциальная энергия

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 47 по Сопротивлению материалов 1-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 47 по Сопротивлению материалов 1-й тур 2017 г МИИТ Задача 1 Задача 1 Консольная балка имеет прямоугольное поперечное сечение, но высота балки меняется в соответствии с приведенной на рисунке формулой. Материал балки имеет модуль упругости E. Требуется определить

Подробнее

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ

ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДИНАМИЧЕСКИЙ РАСЧЕТ ПЛОСКОЙ РАМЫ МЕТОДОМ СИЛ УЛЬЯНОВСК МИНИСТЕРСТВО ОБЩЕГО И

Подробнее

Нелинейная задача динамического изгиба стержня после потери устойчивости

Нелинейная задача динамического изгиба стержня после потери устойчивости Электронный журнал «Труды МАИ». Выпуск 7 www.mai.ru/siene/trud/ УДК 9.:. Нелинейная задача динамического изгиба стержня после потери устойчивости И.Н. Воробьев Т.В. Гришанина Аннотация Решена плоская задача

Подробнее

Тычина К.А. III. К р у ч е н и е

Тычина К.А. III. К р у ч е н и е Тычина К.А. tychina@mail.ru К р у ч е н и е Крутящим называют момент, вектор которого направлен вдоль оси стержня. Кручением называется такое нагружение стержня, при котором в его поперечных сечениях возникает

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Деформации и перемещения Метод сечений Частные случаи нагружения

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 14 Деформация плоский изгиб балки с прямолинейной продольной осью. Расчет на прочность Напомним, что деформация «плоский изгиб» реализуется в

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Государственный комитет Российской Федерации по высшему образованию Казанский государственный технологический университет СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к самостоятельной работе студентов

Подробнее

ПРИМЕРЫ построения эпюр внутренних силовых факторов. Шарнирно закреплённые балки Балка, закреплённая с помощью шарниров, должна иметь не менее двух точек опоры. Поэтому в случае шарнирно закреплённых (шарнирно

Подробнее

Строительная механика 1 часть

Строительная механика 1 часть 1 Строительная механика 1 часть Темы 1.Основные положения. 2.Геометрическая неизменяемость расчётных схем. 3.Построение эпюр усилий 4.Многопролётные шарнирные балки 5.Трёхшарнирные расчётные схемы 6.Замкнутый

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА Часть I Методические указания и контрольные задания Пенза 00 УДК 5. (075) И85 Методические указания

Подробнее

166 Статически неопределимые системы Раздел 8

166 Статически неопределимые системы Раздел 8 166 Статически неопределимые системы Раздел 8 5. Строим эпюры моментов M p и перерезывающих сил Q p n пролетах и консолях (если они есть) балки от действия внешней нагрузки. Каждый пролет представляет

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1

90 лет со дня рождения академика А.В. Александрова. Решения задач олимпиады 45 по Сопротивлению материалов 2-й тур 2017 г МИИТ Задача 1 Задача 1 Рассматривается два загружения плоской рамы, состоящей из стержневых элементов квадратного поперечного сечения При загружении распределенными нагрузками q и 2q в точке к указанного на рисунке

Подробнее

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ ÞÒ ÑÅËÈÂÀÍÎÂ ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ à ñ ò ü II УДК 59/6(075) ББК Ж11я7- С91 ÈÇÄÀÒÅËÜÑÒÂÎ ÒÃÒÓ Р е ц е н з е н т ы: Кандидат технических наук, профессор АГ Ткачев Генеральный директор ООО "Тамбов-Эксперт-Наладка"

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ ЛЕКЦИЯ 7 Элементы теории напряженного состояния. 1 Напряженное состояние в точке (НС)

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ ЛЕКЦИЯ 7 Элементы теории напряженного состояния. 1 Напряженное состояние в точке (НС) В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 7 Элементы теории напряженного состояния 1 Напряженное состояние в точке (НС) Как было сказано ранее, НС в точке это совокупность напряжений,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

ЛЕКЦИЯ 17 Расчеты на прочность при сложном напряженном состоянии. Теории (гипотезы) прочности. 1 Назначение гипотез прочности

ЛЕКЦИЯ 17 Расчеты на прочность при сложном напряженном состоянии. Теории (гипотезы) прочности. 1 Назначение гипотез прочности В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 03 ЛЕКЦИЯ 7 Расчеты на прочность при сложном напряженном состоянии. Теории (гипотезы) прочности Назначение гипотез прочности Теории (гипотезы) прочности (ТП)

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ Учебное пособие по курсу «Механика

Подробнее

К ВОПРОСУ ОБ ИЗГИБЕ СТЕРЖНЕЙ

К ВОПРОСУ ОБ ИЗГИБЕ СТЕРЖНЕЙ УДК 539.3/.6 162 К ВОПРОСУ ОБ ИЗГИБЕ СТЕРЖНЕЙ к.т.н. 1 Якубовский Ч.А., к.т.н. 2 Якубовский А.Ч. 1 Белорусский национальный технический университет, Минск 2 Морская академия, г. Щецин, Польша Изгиб является

Подробнее

1.8 Понятие о дивергенции векторной функции

1.8 Понятие о дивергенции векторной функции 1.8 Понятие о дивергенции векторной функции Ранее было получено выражение для потока вектора напряженности электрического поля, через замкнутую поверхность S E n S S Преобразуем поверхностный интеграл

Подробнее

СЛОЖНОЕ СОПРОТИВЛЕНИЕ

СЛОЖНОЕ СОПРОТИВЛЕНИЕ Глава 6 СЛОЖНОЕ СОПРОТИВЛЕНИЕ 6.. Изогнутый стержень Постановка задачи. Участки изогнутого стержня параллельны осям координат. К стержню приложены сосредоточенные силы. Известны жесткость стержня на изгиб

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Подробнее

СТРОИТЕЛЬСТВО РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ. И.И. Фролова, Т.П. Кормилицина. Учебно-практические пособие

СТРОИТЕЛЬСТВО РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ. И.И. Фролова, Т.П. Кормилицина. Учебно-практические пособие СТРОИТЕЛЬСТВО И.И. Фролова, Т.П. Кормилицина РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ Учебно-практические пособие ISBN 978-5-7264-1133-0 НИУ МГСУ, 2015 Оформление. ООО «Ай Пи Эр Медиа», 2015 Москва 2015 УДК

Подробнее

Лекция 13: Классификация квадрик на плоскости

Лекция 13: Классификация квадрик на плоскости Лекция 13: Классификация квадрик на плоскости Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В предыдущих трех

Подробнее

СБОРНИК ЗАДАЧ ПО СТРОИТЕЛЬНОЙ МЕХАНИКЕ

СБОРНИК ЗАДАЧ ПО СТРОИТЕЛЬНОЙ МЕХАНИКЕ Министерство образования и науки Российской Федерации Южно-Уральский государственный университет Кафедра строительной механики 624.07(07) М487 А.П. Мельчаков, И.С. Никольский СБОРНИК ЗАДАЧ ПО СТРОИТЕЛЬНОЙ

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

Задания и методические указания к расчетно-проектировочным работам. Часть 2

Задания и методические указания к расчетно-проектировочным работам. Часть 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ 1 Кафедра сопротивления материалов СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Задания и методические указания к расчетно-проектировочным

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. Тычина К.А. tchina@mail.ru V И з г и б. Изгиб вид нагружения, при котором в поперечных сечениях стержня возникают внутренние изгибающие моменты и (или) : упругая ось стержня стержень Рис. V.1. М изг М

Подробнее

x) dl ACDB. = B A , (5.1) dl tdl. (5.2)

x) dl ACDB. = B A , (5.1) dl tdl. (5.2) 5 ИНТЕГРИРОВАНИЕ В ТЕНЗОРНОМ ПОЛЕ В некоторых приложениях тензорного анализа иногда возникает необходимость в вычислении интегралов тензорных полей по линии, поверхности или по объему В этой главе рассмотрим

Подробнее

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие Задача 1 Для бруса прямоугольного сечения (рис. 1) определить несущую способность и вычислить перемещение свободного конца бруса. Дано: (шифр 312312) схема 2; l=0,5м; b=15см; h=14см; R p =80МПа; R c =120МПа;

Подробнее

РАБОЧАЯ ПРОГРАММА. дисциплина «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ»

РАБОЧАЯ ПРОГРАММА. дисциплина «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

Подробнее

О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки

О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки УДК 534.113 + 517.984.54 О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки по двум собственным частотам ее осесимметричных колебаний А. М.

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

Томский государственный архитектурно-строительный университет М.О. Моисеенко, О.Н. Попов, Е.В. Евтюшкин, Д.Н. Песцов

Томский государственный архитектурно-строительный университет М.О. Моисеенко, О.Н. Попов, Е.В. Евтюшкин, Д.Н. Песцов Учет взаимосвязи учебного материала предметов теоретической и строительной механики в условиях формирования национальной доктрины инженерного образования Томский государственный архитектурно-строительный

Подробнее

Тычина К.А. VII М е т о д с и л

Тычина К.А. VII М е т о д с и л www.tychina.pro Тычина К.А. V М е т о д с и л В в е д е н и е: С помощью уравнений статического равновесия Теоретической механики инженеры научились определять реакции связей в опорах балок и рам и получать

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

статический момент плоской фигуры относительно оси Oy. моменты инерции плоской фигуры относительно осей Oz и Oy.

статический момент плоской фигуры относительно оси Oy. моменты инерции плоской фигуры относительно осей Oz и Oy. Лекция Прикладная математика Геометрические характеристики плоских сечений. В сопротивлении материалов при изучении напряженно-деформированного состояния элементов конструкций рассматривается равновесие

Подробнее

Сопротивление материалов

Сопротивление материалов Сопротивление материалов Пособие к решению тестовых заданий Теория, примеры, задания С.Г.Сидорин, Ф.С.Хайруллин 013 Предисловие Одной из важных задач образовательного процесса является совершенствование

Подробнее

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ Глава 8 СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 8.1. Шарнирно закрепленное твердое тело на упругих стержнях Постановка задачи. Определить усилия в стержнях статически неопределимой системы, состоящей из шарнирно

Подробнее

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

Подробнее

ЛЕКЦИЯ 6 МОМЕНТ СИЛЫ. ЭЛЕМЕНТАРНАЯ РАБОТА СИЛ СИСТЕМЫ. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ. ОБОБЩЁННЫЕ СИЛЫ. ИДЕАЛЬНЫЕ СВЯЗИ. ЦЕНТР МАСС

ЛЕКЦИЯ 6 МОМЕНТ СИЛЫ. ЭЛЕМЕНТАРНАЯ РАБОТА СИЛ СИСТЕМЫ. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ. ОБОБЩЁННЫЕ СИЛЫ. ИДЕАЛЬНЫЕ СВЯЗИ. ЦЕНТР МАСС ЛЕКЦИЯ 6 МОМЕНТ СИЛЫ. ЭЛЕМЕНТАРНАЯ РАБОТА СИЛ СИСТЕМЫ. ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ. ОБОБЩЁННЫЕ СИЛЫ. ИДЕАЛЬНЫЕ СВЯЗИ. ЦЕНТР МАСС 1. Главный вектор системы сил Рис. 6.1 Предположим, что имеется система материальных

Подробнее

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ

РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ РАМЫ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

СТРОИТЕЛЬНАЯ МЕХАНИКА. Часть 1

СТРОИТЕЛЬНАЯ МЕХАНИКА. Часть 1 СТРОИТЕЛЬНАЯ МЕХАНИКА Часть Хабаровск 2003 Министерство общего образования Российской Федерации Хабаровский государственный технический университет СТРОИТЕЛЬНАЯ МЕХАНИКА Часть Методические указания для

Подробнее

ПРИМЕРЫ построения эпюр внутренних силовых факторов 1. Консольные балки Термин консо ль произошёл от французского слова console, которое, в свою очередь, имеет латинское происхождение: в латинском языке

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ АСТРАХАНСКОЙ ОБЛАСТИ Государственное автономное образовательное учреждение Астраханской области высшего профессионального образования «АСТРАХАНСКИЙ ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ

Подробнее

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета

Печатается по решению Редакционно-издательского совета Казанского государственного архитектурно-строительного университета УДК 624.04 (075) ББК 38.112 Г 96 Г96 Методические указания к выполнению расчетно-графической работы «Расчет рамы методом сил» для студентов обучающихся по направлению 270800.62 "Строительство"/ Сост. С.В.

Подробнее

Тезисы курса сопротивления материалов Часть 2. wb(x) x L

Тезисы курса сопротивления материалов Часть 2. wb(x) x L Тезисы курса сопротивления материалов Часть Глава 7. Перемещения при изгибе При действии внешних сил балка изменяет кривизну. При этом каждое сечение получает два перемещения: линейное - прогиб и угловое

Подробнее

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ. ÐÀÑ ÅÒÍÛÅ È ÒÅÑÒÎÂÛÅ ÇÀÄÀÍÈß

ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ. ÐÀÑ ÅÒÍÛÅ È ÒÅÑÒÎÂÛÅ ÇÀÄÀÍÈß Ë. Ñ. Ìèíèí, Þ. Ï. Ñàìñîíîâ, Â. Å. Õðîìàòîâ ÑÎÏÐÎÒÈÂËÅÍÈÅ ÌÀÒÅÐÈÀËÎÂ. ÐÀÑ ÅÒÍÛÅ È ÒÅÑÒÎÂÛÅ ÇÀÄÀÍÈß УЧЕБНОЕ ПОСОБИЕ ДЛЯ АКАДЕМИЧЕСКОГО БАКАЛАВРИАТА 3-е издание, исправленное и дополненное под редакцией

Подробнее

ЛЕКЦИЯ 3 ВИХРЕВЫЕ ТЕОРЕМЫ

ЛЕКЦИЯ 3 ВИХРЕВЫЕ ТЕОРЕМЫ ЛЕКЦИЯ 3 ВИХРЕВЫЕ ТЕОРЕМЫ Вспомним основные свойства и термины, которые будут использованы в вихревых теоремах: 1. Циркуляция векторного поля криволинейный интеграл, взятый по замкнутому контуру. Γ = u

Подробнее

ЛАБОРАТОРНЫЙ ПРАКТИКУМ. «Определение перемещений при изгибе статически определимых систем»

ЛАБОРАТОРНЫЙ ПРАКТИКУМ. «Определение перемещений при изгибе статически определимых систем» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Тольяттинский государственный университет Кафедра «Материаловедение и механика материалов» ЛАБОРАТОРНЫЙ ПРАКТИКУМ «Определение перемещений при изгибе статически определимых

Подробнее

СТРОИТЕЛЬНАЯ МЕХАНИКА.

СТРОИТЕЛЬНАЯ МЕХАНИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В. К. Манжосов

Подробнее

2 Электричество. Основные формулы и определения. F = k q 1 q 2 / r 2, где k - коэффициент пропорциональности, r расстояние между зарядами.

2 Электричество. Основные формулы и определения. F = k q 1 q 2 / r 2, где k - коэффициент пропорциональности, r расстояние между зарядами. 2 Электричество Основные формулы и определения Сила взаимодействия F между двумя неподвижными точечными зарядами q 1 и q 2 вычисляется по закону Кулона: F = k q 1 q 2 / r 2, где k - коэффициент пропорциональности,

Подробнее

УДК Особенности применения балок переменного сечения

УДК Особенности применения балок переменного сечения УДК 624.014.2 Особенности применения балок переменного сечения Врублевский П.С., Специан В.С., Шульга Д.О. (Научный руководитель Башкевич И.В.) Белорусский национальный технический университет Минск, Беларусь

Подробнее

Лекция 2.1.6. Определенный интеграл Римана

Лекция 2.1.6. Определенный интеграл Римана Лекция 6 Определенный интеграл Римана Аннотация: Отмечается что кроме интеграла Римана существуют и другие интегралы Рассматриваются свойства определенного интеграла Понятие определенного интеграла настолько

Подробнее