( ) ( ) ( ) x x + y y + z z = R

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "( ) ( ) ( ) x x + y y + z z = R"

Транскрипт

1 Глава II. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ Лекции УРАВНЕНИЯ ПОВЕРХНОСТИ И ЛИНИИ В ПРОСТРАНСТВЕ 2.. Основные понятия Поверхность и ее уравнение Поверхность в пространстве можно рассматривать как геометрическое место точек, удовлетворяющих какому-либо условию. Например, сфера радиуса R с центром в точке О есть геометрическое место всех точек пространства, находящихся от точки О на расстоянии R?. Прямоугольная система координат Oxyz в пространстве позволяет установить взаимно однозначное соответствие между точками пространства и тройками чисел х, у и z их координатами. Свойство, общее всем точкам поверхности, можно записать в виде уравнения, связывающего координаты всех точек поверхности. Уравнением данной поверхности в прямоугольной системе координат Oxyz называется такое уравнение F(x, у, z) = 0 с тремя переменными х, у и z, которому удовлетворяют координаты каждой точки, лежащей на поверхности. Переменные х, у и z в уравнении поверхности называются текущими координатами точек поверхности. Уравнение сферы Найдем уравнение сферы радиуса R с центром в точке O (x 0 ;y 0 ;z 0 ). Согласно определению расстояние любой точки М(х;у;z) сферы от центра O (x 0 ;y 0 ;z 0 ) равно радиусу R?, т. е. О М = R ( ) ( ) ( ) x x + y y + z z = R Это и есть искомое уравнение сферы. Если центр сферы О совпадает с началом координат, то уравнение сферы принимает вид x + y + z = R 2. Если же дано уравнение вида F(x;y;z) = 0, то оно, вообще говоря, определяет в пространстве некоторую поверхность.

2 Выражение «вообще говоря» означает, что в отдельных случаях уравнение F(x;у;z)=0 может определять не поверхность, а точку, линию или вовсе не определять никакой геометрический образ Так, уравнению 2х 2 + у 2 + z 2 = 0 не удовлетворяют никакие дей - ствительные значения х,у, z. Итак, поверхность в пространстве можно задать геометрически и аналитически. Отсюда вытекает постановка двух основных задач:. Дана поверхность как геометрическое место точек. Найти уравнение этой поверхности. 2. Дано уравнение F(x;y;z)=0. Исследовать форму поверхности, определяемой этим уравнением. Уравнения линии в пространстве Линию в пространстве можно рассматривать как линию пересечения двух поверхностей (см. рис 2.) или как геометрическое место точек, об щих двум поверхностям. Если F (x;у;z)=0 и F 2 (x;у;z)=0 уравнения двух поверхностей, определяющих линию L, то координаты точек этой линии удовлетворяют системе двух уравнений с тремя неизвестными: F ( x; y; z ) = 0, (2.) F2 ( x; y; z ) = 0. Уравнения системы (2.) называются уравнениями линии в пространств е Например, y = 0 z = 0 есть уравнения оси Ох. Рис.2.. Рис.2.2.

3 Линию в пространстве можно рассматривать как траекторию движе ния точки (см. рис. 2.2). В этом случае ее задают векторным уравнением r = r t ( ). (2.2) 2.2. Уравнения плоскости в пространстве Простейшей поверхностью является плоскость. Плоскость в пространстве Oxyz можно задать разными способами. Каждому из них соответствует определенный вид ее уравнения. Уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору Пусть в пространстве Oxyz плоскость Q задана точкой M 0 ( x0 ; y0; z0 ) и вектором, n = ( A; B; C ),перпендикулярным этой плоскости (см. рис 2.3). Выведем уравнение плоскости Q. Возьмем на ней произвольную точку M(x;y;z)и составим вектор M 0M = ( x x0; y y0; z z0 ). При любом расположении точки М на плоскости Q векторы п и M M взаимно перпендикулярны, поэтому их скалярное 0 произведение равно нулю: п M 0M = 0, т. Е ( ) + ( ) + ( ) = ( ) A x x0 B y y0 C z z Уравнение (2.3) называется уравнением плоскости, проходящей через данную точку M x ; y ; z перпендикулярно 0 ( ) вектору n ( A; B; C ) = - нормальный вектор плоскости. Совокупность плоскостей, проходящих через данную точку, называется связкой плоскостей, а

4 Рис уравнение (2.3) уравнением связки плоскостей. Общее уравнение плоскости Рассмотрим общее уравнение первой степени с тремя переменными х, y и z: Ax + By + Cz + D = 0 ( 2.4) Полагая, что по крайней мере один из коэффициентов А, В или С не равен нулю, например B 0, перепишем уравнение (2.4) в виде D A x B y C z B ( 0) ( 0) = 0 ( 2.5) Сравнивая уравнение (2.5) с уравнением (2.3), видим, что уравнения (2.4) и (2.5) являются уравнением плоскости с нормальным вектором n = ( A; B; C ), проходящей через точку M ( 0; D ;0 B ). Уравнение (2.4) называется общим уравнением плоскости. Частные случаи общего уравнения плоскости:. Если D = 0, то оно принимает вид Ах + By +Cz = 0. Этому уравнению удовлетворяет точка О(0;0;0). Следовательно, в этом случае плоскость проходит через начало координат 2. Если С = 0, то имеем уравнение Ах + By + D = 0. Нормальный вектор п = {А; В; 0) перпендикулярен оси Oz. Следовательно, плоскость параллельна оси Oz; если В = 0 параллельна оси Оу, А = 0 параллельна оси Ох. 3. Если С = D = 0, то плоскость проходит через О(0; 0; 0) параллельно оси Oz, т. е. плоскость Ах + By = 0 проходит через ось Oz. 4. Если А=В = 0, то уравнение (2.4) принимает вид Cz + D = 0, т. е. z = D B. Плоскость

5 параллельна плоскости Оху. 5. А = В = D = 0, то уравнение (2.4) примет вид Cz = 0, т. е. z = 0. Это уравнение плоскости Оху. Уравнение плоскости, проходящей через три данные точки Найдем уравнение плоскости Q, проходящей через три данные точки M ( x; y; z ), M 2 ( x2; y2; z2) и M 3 ( x3; y3; z 3), не лежащие на одной прямой. Возьмем на плоскости произвольную точку М(х; у; z) и составим век- M M x x ; y y ; z z, M M = x x ; y y ; z z, торы = ( ) 2 ( ) M M ( x x ; y y ; z z ), 3 = Эти векторы лежат на плоскости Q, следовательно, они компланарны. Используем условие компланарности трех векторов (их смешанное произведение равно нулю), получаем MM MM 2 M M 3 = 0, т. е. x x y y z z 2 x x y y z z x x y y z z Уравнение (2.6) есть уравнение плоскости, проходящей через три данные точки. ( 2.6) Уравнение плоскости в отрезках Пусть плоскость отсекает на осях Ох, Оу и Oz соответственно отрезки а, b и с, т. е. Рис. 2.4

6 проходит через три точки А(а;0;0), B(0;b;0) и С(0;0;с) (см.рис. 2.4). Подставляя координаты этих точек в уравнение (2.6) и раскрыв определитель, x y z + + = 2.7 a b c ( ) Уравнение (2.7) называется уравнением плоскости в отрезках на осях. Им удобно пользоваться при построении плоскости. Нормальное уравнение плоскости Положение плоскости Q вполне определяется заданием единичного вектора e, имеющего направление перпендикуляра ОК, опущенного на плоскость из начала координат, и длиной р этого перпендикуляра (см. рис. 2.5). Пусть ОК = р, а α, β, γ углы, образованные единичным вектором e с осями Ох, Оу и Oz. Тогда e = ( cos α;cos β;cosγ ). Возьмем на плоскости произвольную точ - ку М(х;у;z) и соединим ее с началом координат. Образуем вектор r = OM = (х; у; z). При любом положении точки М на плоскости Q проекция радиусрис. 2.5 вектора r на направление вектора e всегда равно р: пр e r = р, т. е. Уравнение (2.8) называется нормальным уравнением плоскости в векторной форме. Зная координаты векторов r и e, уравнение перепишем в виде ( ) xcosα + y cos β + z cosγ p = 0 2.9

7 (2.8) называется нормальным уравнением плоскости в координатной форме Плоскость. Основные задачи Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей Пусть заданы две плоскости Q и Q 2 A x + B y + C z + D = 0 A x + B y + C z + D = 0 2 Под углом между плоскостями Q и Q 2 понимается один из двугранных углов, образованных этими плоскостями. n = A ; B ; C и Угол ϕ между нормальными векторами ( ) n ( A ; B ; C ) 2 = плоскостей Q и Q 2 равен одному из этих углов (см. рис. 2.6). cosϕ A A + B B + C C = A + B + C A2 + B2 + C2 Для нахождения острого угла следует взять модуль правой части. Рис Рис. 2.7 Рис Рис. 2.7

8 Если плоскости Q и Q 2 перпендикулярны (см. рис. 2.7, а), то таковы же их нормали, т. е. n n2 (и наоборот). Но тогда n n2 = 0, т. е. A A2 + BB 2 + CC 2 = 0. Полученное равенство есть условие перпендикулярности двух плоскостей Q и Q 2. Если плоскости Q и Q 2 параллельны (см. рис. 73, б), то будут параллельны и их нормали n и n 2 (и наоборот). Но тогда, как известно, координаты векторов пропорциональны: параллельности двух плоскостей Q и Q 2. Расстояние от точки до плоскости Пусть задана точка ( ; ; ) M 0 x0 y0 z 0 и плоскость Q своим уравнением Ax + By + Cz + D = 0. Расстояние d от точки M 0 до плоскости Q находится по формуле Ax0 + By0 + Cz0 + D d =. A + B + C рис. 2.8 dпр M M 0 = n 0 = = = Расстояние d от точки M 0 до плоскости Q равно модулю проекции вектора MM 0, где M ( x; y; z ) - произвольная точка плоскости Q, нанаправление нормального вектора п = (А; В; С) (см. рис. 2.8). Следовательно, ( ) + ( ) + ( ) M M n x0 x A y0 y B z0 z C n A + B + C Ax + By + Cz Ax By Cz A + B + C А так как точка ( ; ; ) Поэтому. M x y z принадлежит плоскости Q, то Ax + By + Cz + D =, т.е. D = Ax. By Cz d Ax0 + By0 + Cz0 + D =. A + B + C 2.4. Уравнения прямой в пространстве

9 Векторное уравнение прямой Положение прямой в пространстве вполне определено, если задать какую-либо точку M 0 на прямой и вектор S параллельный этой прямой. Вектор S называется направляющим вектором M x ; y ; z и прямой. Пусть прямая L задана ее точкой 0 ( 0 0 0) направляющим вектором S ( m; n; p ). произвольную точку M ( ; ; ) = Возьмем на прямой L x y z. Обозначим радиус-векторы точек M 0 И М соответственно через r 0 и r. Очевидно, что три вектора r 0, r и связаны соотношением r = r + M M. 0 0 ( 2.0 ) рис. 2.9 Вектор MM 0, лежащий на прямой L, параллелен направляющему вектору S, поэтому MM 0 = ts, где t скалярный множитель, называемый параметром, может принимать различные значения в зависимости от положения точки М на прямой (см. рис. 2.9). Уравнение (2.0) можно записать в виде ( ) r = r0 + ts 2. Полученное уравнение называется векторным уравнением прямой. Параметрические уравнения прямой Замечая, что r = ( x; y; z ) ), r ( x ; y ; z ) 0 = 0 0 0, ts = (tm;tn;tp), уравнение (2.) можно записать в виде ( ) ( ) ( ) xi + yj + zk = x + tm i + y + tn j + z + tp k Отсюда следуют равенства:

10 x = x0 + mt, y = y0 + nt, 2.2 z = z0 + pt. ( ) Они называются параметрическими уравнениями прямой в пространстве. Канонические уравнения прямой Пусть S = ( m; n; p ). направляющий вектор прямой L и M ( x ; y ; z ) точка, лежащая на этой прямой. Вектор M 0M, соединяющий точку M x; y; z прямой L, параллелен вектору M 0 с произвольной точкой ( ) S. Поэтому координаты вектора M 0M ( x x0; y y0; z z0 ) S = ( m; n; p ). пропорциональны: = И вектора x x0 y y0 z z = = ( ) Уравнения (2.3) называются каноническими уравнениями прямой в пространстве. Уравнение прямой в пространстве, проходящей через две точки Пусть прямая L проходит через точки M ( x ; y; z ) и M 2 ( x2; y2; z 2). В качестве направляющего вектора S можно взять вектор MM 2 = ( x2 x; y2 y; z2 z) т. е. S = MM 2 (см. рис. 2.0). Следовательно, m = x x, n = y y, p = z z. Поскольку рис. 2.0 прямая проходит через точку M ( x ; y; z ) то, согласно уравнениям (2.3), уравнения прямой L имеют вид x x y y z z = =. ( 2.4) x x y y z z Уравнения (2.4) называются уравнениями прямой, проходящей через две данные точки.

11 Общие уравнения прямой Прямую в пространстве можно задать как линию пересечения двух непараллельных плоскостей. Рассмотрим систему уравнений A x + B y + Cz + D = 0 A2 x + B2 y + C2z + D2 = 0 (2.5) Каждое из уравнений этой системы определяет плоскость. Если плоскости не параллельны, то система (2.5) определяет прямую L как геометрическое место точек пространства, координаты которых удовлетворяют каждому из уравнений системы (см. рис. 2.). Уравнения (2.5) называют общими уравнениями прямой. От общих уравнений (2.5) можно перейти к каноническим уравнениям (2.3). Координаты точки M 0 на прямой L получаем из системы 2. уравнений (2.5), придав одной из координат произвольное значение (например, z = 0). Так как прямая L перпендикулярна векторам nи n 2, то за направляющий вектор S прямой L можно принять векторное произведение n n2 : i j k S = n n = A B C 2 A B C. Замечание: Канонические уравнения прямой легко получить, взяв две какие-либо точки на ней и применив уравнения (2.4). Пример 2.. Написать канонические уравнения прямой L, заданной уравнениями x + y z + = 0 2x y 3z + 5 = 0. Решение: Положим z = 0 и решим систему: x + y =, 2x y = 5. Находим О. 76

12 x z =, 2;;0 LПоложим у = 0 и решим систему 2x 3z = 5. Находим вторую точку M 2 ( 2; 0;3) прямой L. Записываем уравнение прямой L, проходящей через точки M и M 2 : x + 2 y = = z. 4 3 Точку: M ( ) 2.5. Прямая линия в пространстве. Основные задачи Угол между прямыми. Условия параллельности и перпендикулярности прямых Пусть прямые Lи L 2 заданы уравнениями x x y y z z = = x x2 y y2 z z2 = = рис. 2.2 m2 n2 p2 Под углом между этими прямыми понимают угол между направляющими векторами S = ( m; n; p ) и S2 = ( m2; n2; p2 ) (см. рис. 2.2). Поэтому, по известной формуле для косинуса угла между векторами получаем mm 2 + nn 2 + p p2 cos ϕ =. (2.6) m + n + p m + n + p Для нахождения острого угла между прямыми Lи L 2 числитель правой части формулы (2.6) следует взять по модулю. Если прямые Lи L 2 перпендикулярны, то в этом и только в этом случае имеем cosϕ = 0. Следовательно, числитель дроби (2.6) равен нулю, т. е. mm 2 + nn 2 + p p2 = 0.

13 Если прямые Lи L 2 параллельны, то параллельны их направляющие векторы Sи S 2. Следовательно, координаты этих векторов пропорциональны, т. е. = =. Пример 2.2. Найти угол между прямыми x y 2 z + 2 2x + y z = 0, = = И 2 3 2x y + 3z + 5 = 0. Решение: Очевидно, S = ( 2; ;3 ), а S2 = n n2, где n = ( 2;; ), n 2 = ( 2; ;3 ). Отсюда следует, что S 2 = ( 2; 8; 4 ). Так как S S2 = = 0, то ϕ = 90 o. Условие, при котором две прямые лежат в одной плоскости Пусть прямые Lи L 2 заданы каноническими уравнениями x x y y z z = = x x y y z z = = рис. 2.3 Их направляющие векторы S = ( m ; n ; p ) и S ( m ; n ; p ) = (см. 2 рис. 2.3). Прямая L проходит через точку M ( x; y; z ), радиус-вектор которой обозначим через r ; прямая L 2 проходит через точку M ( x ; y ; z ), радиус-вектор которой обозначим через r 2. Тогда 2 ( ) r r = M M = x x ; y y ; z z Прямые Lи L 2 лежат в одной плоскости, если векторы S, S 2 и MM 2 = r2 r компланарны. Условием компланарности векторов

14 является равенство нулю их смешанного произведения: r r S S =, т. е. ( ) x x y y z z = 0. При выполнении этого условия прямые Lи L 2 лежат в одной плоскости, то есть либо пересекаются, если S λs 2, либо параллельны, если S PS Прямая и плоскость в пространстве. Основные задачи Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости Пусть плоскость Q задана уравнением Ax + By + Cz + D = 0, а x x0 y y0 z z0 прямая L уравнениями = = Углом между прямой и плоскостью называется любой из двух смежных углов, образованных прямой и ее проекцией на плоскость. Обозначим через ϕ угол между плоскостью Q и прямой L, а n = A; B; C через θ угол между векторами ( ) и S = ( m; n; p ) (см. рис. 2.4). Тогда рис. 2.4 n S cos θ =. π Найдем sinϕ : если ϕ, то n S 2 π sinϕ cos = θ = cosθ. sinϕ 0, получаем 2 Am + Bn + Cp sin ϕ =. (2.7) A + B + C m + n + p Если прямая L параллельна плоскости Q, то векторы n и S перпендикулярны (см. рис. 2.5), а потому n S = 0, т. е. Am + Bn + Cp = 0

15 является условием параллельности прямой и плоскости. рис. 2.5 рис. 2.6 Если прямая L перпендикулярна плоскости Q, то векторы n и S параллельны (см. рис. 2.6). Поэтому равенства A B C = = являются условиями перпендикулярности прямой и плоскости. Пересечение прямой с плоскостью. Условие принадлежности прямой плоскости Пусть требуется найти точку пересечения прямой с плоскостью x x0 y y0 z z0 = = 2.8 Ax + By + Cz + D = ( ) 0. ( 2.9) Для этого надо решить систему уравнений (2.8) и (2.9). Проще всего это сделать, записав уравнения прямой (2.8) в параметрическом виде: x = x0 + mt, y = y0 + nt, z = z0 + pt. Подставляя эти выражения для х, у и z в уравнение плоскости (2.9), получаем уравнение ( + + ) + ( ) = ( ) t Am Bn Cp Ax0 By0 Cz0 D

16 Если прямая L не параллельна плоскости, т. е. если Am + Bn + Cp 0, то из равенства (2.20) находим значение t: Ax0 + By0 + Cz0 + D t =. Am + Bn + Cp Подставляя найденное значение t в параметрические уравнения прямой, найдем координаты точки пересечения прямой с плоскостью. Рассмотрим теперь случай, когда Am + Bn + Cp = 0 ( L P Q ) : а) если F = Ax0 + By0 + Cz0 + D 0 то прямая L параллельна плоскости и пересекать ее не будет (уравнение (2.20) решения не имеет, то прямая L параллельна плоскости и пересекать ее не будет (уравнение (2.20) решения не имеет, так как имеет вид 0 t + F = 0, где F 0) : б) если Ax0 + By0 + Cz0 + D = 0, то уравнение (2.20) имеет вид 0 t + 0 = 0, ; ему удовлетворяет любое значение t, любая точка прямой является точкой пересечения прямой и плоскости. Заключаем: прямая лежит в плоскости. Таким образом, одновременное выполнение равенств Ax0 + By0 + Cz0 + D = 0 Am + Bn + Cp = 0 является условием принадлежности прямой плоскости.

17

18

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

Лекция 1.3. Уравнения плоскости и прямой

Лекция 1.3. Уравнения плоскости и прямой Лекция.. Уравнения плоскости и прямой Аннотация: Помимо векторного, общего, нормального и в отрезках дается еще и параметрическое уравнение плоскости, с целью обобщения в дальнейшем понятия плоскости в

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Тема 4 ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Тема ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Лекция.. Прямые на плоскости П л а н. Метод координат на плоскости.. Прямая в декартовых координатах.. Условие параллельности и перпендикулярности

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия 5.. Прямая на плоскости Различные способы задания прямой на плоскости. Общее уравнение прямой на плоскости. Расположение прямой относительно системы координат. Геометрический смысл

Подробнее

Аналитическая геометрия Прямые и плоскости. Линейная алгебра (лекция 10) / 30

Аналитическая геометрия Прямые и плоскости. Линейная алгебра (лекция 10) / 30 Аналитическая геометрия Прямые и плоскости Линейная алгебра (лекция 10) 17.11.2012 2 / 30 Линейная алгебра (лекция 10) 17.11.2012 3 / 30 Расстояние между двумя точками M 1 (x 1, y 1 ) и M 2 (x 2, y 2 )

Подробнее

Уравнение плоскости. Шульц Денис Сергеевич

Уравнение плоскости. Шульц Денис Сергеевич Уравнение плоскости. Шульц Денис Сергеевич План занятия. Общее уравнение плоскости Взаимное расположение плоскостей Расстояние от точки до плоскости Типовые задачи Общее уравнение плоскости. Ax+By+Cz+D=0

Подробнее

Продолжение темы 3: «Элементы векторной алгебры и аналитической геометрии»

Продолжение темы 3: «Элементы векторной алгебры и аналитической геометрии» Плоскость. Прямая в пространстве 1 Продолжение темы 3: «Элементы векторной алгебры и аналитической геометрии» Объект изучения геометрические элементы: точки, прямые, линии, плоскости, поверхности; Метод

Подробнее

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы

IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.

Подробнее

~ 1 ~ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Уравнения линии и поверхности.

~ 1 ~ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Уравнения линии и поверхности. ~ ~ АНАЛИТИЧЕКАЯ ГЕОМЕТРИЯ Уравнения линии и поверхности. Определение: Уравнение f, называется уравнением линии на плоскости, если координата любой точки этой линии удовлетворяет данному уравнению. Определение:

Подробнее

12 ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ.

12 ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ. АНАЛИТИЧЕСКАЯ ГЕОЕТРИЯ ОБЩЕЕ УРАВНЕНИЕ ПЛОСКОСТИ. ОПР Плоскостью будем называть поверхность обладающую тем свойством что если две точки прямой принадлежат плоскости то и все точки прямой принадлежат данной

Подробнее

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия»

ТИПОВОЙ РАСЧЕТ «Векторная алгебра. Аналитическая геометрия» ТИПОВОЙ РАСЧЕТ «Векторная алгебра Аналитическая геометрия» Задание 1: а) показать, что векторы p, q, r образуют базис Найти координаты вектора x в этом базисе; б) проверить коллинеарность векторов и c

Подробнее

Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич

Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич Основные задачи аналитической геометрии. Прямая на плоскости. Шульц Денис Сергеевич План занятия. Содержание раздела «Аналитическая геометрия» Уравнение прямой на плоскости: с угловым коэффициентом общее

Подробнее

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения»

МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Государственное образовательное учреждение Среднего профессионального образования «Котовский индустриальный техникум» МАТЕМАТИКА Модуль по теме: «Прямая на плоскости и ее уравнения» Котовск, 4 г. Учебное

Подробнее

Ирина Алексеевна Чернявская Практикум по аналитической геометрии

Ирина Алексеевна Чернявская Практикум по аналитической геометрии Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» Ирина Алексеевна Чернявская Для

Подробнее

ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций)

ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций) МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ

Подробнее

Методические указания к контрольным работам

Методические указания к контрольным работам Методические указания к контрольным работам Контрольная работа «Переаттестация» Тема. Элементы аналитической геометрии на плоскости. Прямая на плоскости Расстояние между двумя точками M ( ) и ( ) плоскости

Подробнее

11-е занятие. Прямые на плоскости Линейная алгебра, прикл. матем., 1-й семестр

11-е занятие. Прямые на плоскости Линейная алгебра, прикл. матем., 1-й семестр 11-е занятие. Прямые на плоскости Линейная алгебра, прикл. матем., 1-й семестр Каноническое и параметрическое уравнения прямой A1 Даны точка M 0 (x 0 ; y 0 ) и ненулевой вектор a = (p; q). Составить уравнение

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

, и в этом случае линия является графиком функции f( x ). Пример 5.1. На оси Ox найти точку, одинаково удаленную от двух точек

, и в этом случае линия является графиком функции f( x ). Пример 5.1. На оси Ox найти точку, одинаково удаленную от двух точек ГЛАВА 5. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 5.. Уравнение линии на плоскости Уравнение вида F( x, y) 0 называется уравнением линии, если этому уравнению удовлетворяют координаты любой точки, лежащей на данной плоской

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Рубцовский индустриальный институт (филиал) ФГБОУ ВПО «Алтайский государственный технический университет им ИИ Ползунова» ИИ КУЛЕШОВА ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИНФОРМАЦИОННЫХ СИСТЕМ Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ УЧЕБНО-МЕТОДИЧЕСКОЕ

Подробнее

Глава 9 Кривые на плоскости. Кривые второго порядка

Глава 9 Кривые на плоскости. Кривые второго порядка Глава 9 Кривые на плоскости. Кривые второго порядка 9. Основные понятия Говорят, что кривая Г в прямоугольной системе координат Оху имеет уравнение F (, )=0, если точка М(х, у) принадлежит кривой в том

Подробнее

Прямая на плоскости. Степень уравнения (1) определяет порядок линии. Будем говорить, что уравнение (1) определяет (задает) линию L.

Прямая на плоскости. Степень уравнения (1) определяет порядок линии. Будем говорить, что уравнение (1) определяет (задает) линию L. Прямая на плоскости Общее уравнение прямой. Прежде чем вводить общее уравнение прямой на плоскости введем общее определение линии. Определение. Уравнение вида F(x,y)=0 (1) называется уравнением линии L

Подробнее

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12

Контрольная работа 1. c 13 C = c 21 c 22 c 23 c 31 c 32 c 33. c 11 c 12 Контрольная работа. Даны матрицы A, B и D. Найти AB 9D, если: 4 7 ( ) 6 9 6 A = 3 9 7, B =, D = 3 8 3. 3 7 7 3 7 Перемножим матрицы A 3 и B 3. Результирующая будет C размера 3 3, состоящая из элементов

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ 1 5 B D F K M A C G. Вписываем эти буквы в первую строку табл. 2 и выбираем строку, соответствующую четырнадцатому варианту:

ДОМАШНЕЕ ЗАДАНИЕ 1 5 B D F K M A C G. Вписываем эти буквы в первую строку табл. 2 и выбираем строку, соответствующую четырнадцатому варианту: ДОМАШНЕЕ ЗАДАНИЕ Для выполнения домашнего задания Вам необходимо, пользуясь табл., заполнить первую строку табл., затем выписать соответствующие Вашему номеру варианта данные из табл.. Например, Вы учитесь

Подробнее

КРАТКИЙ КУРС ГЕОМЕТРИИ Часть I

КРАТКИЙ КУРС ГЕОМЕТРИИ Часть I Министерство образования и науки РФ ФГБОУ ВПО «Камчатский государственный университет имени Витуса Беринга» О. В. Шереметьева КРАТКИЙ КУРС ГЕОМЕТРИИ Часть I Учебно-методическое пособие Петропавловск-Камчатский

Подробнее

Итоговый тест. Время выполнения 100 минут. Расстояние между точками A ( 1; равно. 1)5, 2)3, 3)41, 4)7 Ответ:1) 2

Итоговый тест. Время выполнения 100 минут. Расстояние между точками A ( 1; равно. 1)5, 2)3, 3)41, 4)7 Ответ:1) 2 Итоговый тест. Время выполнения минут. Расстояние между точками A ( ; ) и B( ;) ), ), ), )7 Ответ:) равно Координаты середины отрезка, соединяющего точки A ( ; ) и B ( ;) ) (;); ) (;), ) (;), ) (;) Ответ:)

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения Кафедра МиММЭ Направление подготовки 5 Педагогическое образование, профиль «Математика

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия Аналитическая геометрия имеет своей задачей изучение свойств геометрических объектов с помощью аналитических методов. Элементарные геометрические преобразования в машинной графике

Подробнее

ur uuur 2) для любой точки A из T и любого вектора p V существует единственная точка B в T, такая, что AB=

ur uuur 2) для любой точки A из T и любого вектора p V существует единственная точка B в T, такая, что AB= Глава 1 ПРЯМЫЕ И ПЛОСКОСТИ n R. 1.1. Точечные пространства Ранее было рассмотрено арифметическое пространство строк В математике конечный упорядоченный набор координат может интерпретироваться не только

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

Глава 7 ОСНОВНЫЕ ПОНЯТИЯ СТЕРЕОМЕТРИИ

Глава 7 ОСНОВНЫЕ ПОНЯТИЯ СТЕРЕОМЕТРИИ Глава 7 ОСНОВНЫЕ ПОНЯТИЯ СТЕРЕОМЕТРИИ 7.1. ПАРАЛЛЕЛЬНОСТЬ В СТЕРЕОМЕТРИИ 7.1.1. Аксиомы стереометрии (наличие четырех точек не на плоскости, принадлежность прямой B к плоскости, плоскость через три точки

Подробнее

Полученное уравнение и является уравнением прямой, проходящей через заданные точки А и В.

Полученное уравнение и является уравнением прямой, проходящей через заданные точки А и В. Уравнение Пусть даны точки A( x; y ), B( x2; y 2 2 Середина отрезка: x x ; y y 2 2. Это концы средней линии трапеции, треугольника, точка пересечения диагоналей (если они делятся пополам). Длина отрезка:

Подробнее

Плоскость в пространстве. Всякое уравнение первой степени относительно координат x, y, z. Ax + By + Cz +D = 0 (3.1)

Плоскость в пространстве. Всякое уравнение первой степени относительно координат x, y, z. Ax + By + Cz +D = 0 (3.1) Плоскость в пространстве. Всякое уравнение первой степени относительно координат x, y, z Ax + By + Cz +D = 0 (3.1) задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1),

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. к выполнению заданий модуля «Линейная и векторная алгебра. Аналитическая геометрия» по курсу «Высшая математика»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. к выполнению заданий модуля «Линейная и векторная алгебра. Аналитическая геометрия» по курсу «Высшая математика» Министерство образования и науки Украины ХАРЬКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ Специальности: ; ; ; МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению заданий модуля «Линейная

Подробнее

Элементарная поверхность. Гладкая поверхность. Кривые на поверхности. Касательная плоскость. поверхности

Элементарная поверхность. Гладкая поверхность. Кривые на поверхности. Касательная плоскость. поверхности МОДУЛЬ ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ ПОВЕРХНОСТЕЙ Структурно логическая схема модуля Явное задание Способы задания Элементарная поверхность Квадратичные формы Векторная параметризация Параметризация Регулярная

Подробнее

5. Система координат. Координаты точки

5. Система координат. Координаты точки 5. Система координат. Координаты точки 1. Понятие системы координат Определение. Системой координат в пространстве (на плоскости) называется совокупность базиса пространства (соответственно базиса плоскости)

Подробнее

Лекция 3. Алгебра векторов. Скалярное произведение

Лекция 3. Алгебра векторов. Скалярное произведение Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB

Подробнее

Семинар 1 РЕШЕНИЕ ЗАДАЧ К ЭКЗАМЕНУ ПО КУРСУ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» 1. Кривые второго порядка

Семинар 1 РЕШЕНИЕ ЗАДАЧ К ЭКЗАМЕНУ ПО КУРСУ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» 1. Кривые второго порядка Семинар 1 РЕШЕНИЕ ЗАДАЧ К ЭКЗАМЕНУ ПО КУРСУ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ» 1 Кривые второго порядка Задача 1 Докажите, что произведение расстояний от фокусов эллипса до любой касательной к нему есть величина

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ Пензенский государственный педагогический университет им В Г Белинского О П Сурина М В Сорокина АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ Учебное пособие Пенза 9 Печатается по решению редакционно-издательского

Подробнее

ЛЕКЦИЯ N13. 1.Уравнение прямой с угловым коэффициентом. Пусть на плоскости xoy задана произвольная прямая, не параллельная оси Oy.

ЛЕКЦИЯ N13. 1.Уравнение прямой с угловым коэффициентом. Пусть на плоскости xoy задана произвольная прямая, не параллельная оси Oy. ЛЕКЦИЯ N3. Поверхности и линии в пространстве и на плоскости. Прямая на плоскости..уравнение прямой с угловым коэффициентом.....общее уравнение прямой.... 3.Угол между двумя прямыми. Условия параллельности

Подробнее

Овчинников Алексей Витальевич КУРС ЛЕКЦИЙ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ.

Овчинников Алексей Витальевич КУРС ЛЕКЦИЙ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. Овчинников Алексей Витальевич КУРС ЛЕКЦИЙ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ http://matematika.phs.msu.ru/ 2 Лекция 1 Системы координат Представление линий и поверхностей 1. ОБ УЧЕБНОМ ПЛАНЕ Лекции 36 ч. Семинары

Подробнее

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения

8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра М и ММЭ 2. Направление подготовки 01.03.02 (010400.62) Прикладная математика

Подробнее

Кинематика МЕХАНИКА. Система отсчета (СК+ часы, СО К) Абсолютно твердое тело. ньютоновская релятивистская. Физическая реальность и ее моделирование

Кинематика МЕХАНИКА. Система отсчета (СК+ часы, СО К) Абсолютно твердое тело. ньютоновская релятивистская. Физическая реальность и ее моделирование Л МЕХАНИКА Материальная точка Кинематика Физическая реальность и ее моделирование Система отсчета СК+ часы, СО К Абсолютно твердое тело Механика: ньютоновская релятивистская 1 Механика часть физики, которая

Подробнее

Задание 18 0;1. y 2 2. x y 2;3. Вебинар 17 ( ) 3. Найдите все значения параметра a, при каждом из которых множество значений функции

Задание 18 0;1. y 2 2. x y 2;3. Вебинар 17 ( ) 3. Найдите все значения параметра a, при каждом из которых множество значений функции Вебинар 7 (6-7) Тема: Параметры ЕГЭ Профиль Задание 8 Найдите все значения параметра, при каждом из которых множество значений функции 5 5 5 содержит отрезок Найдите все значения параметра, для каждого

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

РЕШЕНИЯ ЗАДАЧ по теме "ВЕКТОРНАЯ АЛГЕБРА" Составитель: В.П.Белкин. Занятие 1. Действия над векторами. x 1

РЕШЕНИЯ ЗАДАЧ по теме ВЕКТОРНАЯ АЛГЕБРА Составитель: В.П.Белкин. Занятие 1. Действия над векторами. x 1 РЕШЕНИЯ ЗАДАЧ по теме "ВЕКТОРНАЯ АЛГЕБРА" Составитель: ВПБелкин Пример Занятие Действия над векторами Построить векторы,,, где ( 4;) и ( ; ) Найти их проекции на координатные оси Решение Построим точки

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА Часть ВЕКТОРНАЯ АЛГЕБРА Методические указания для студентов -го

Подробнее

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА»

ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ, ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ТИПОВОЙ РАСЧЕТ «АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ ВЕКТОРНАЯ И МАТРИЧНАЯ АЛГЕБРА» ВАРИАНТ Даны вершины треугольника А ( ) В ( ) С ( ) Определить его внешний угол при вершине А Определить длины диагоналей параллелограмма

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

1 раздел. Матрицы и определители.

1 раздел. Матрицы и определители. Министерство образования и науки РФ еверный (рктический) федеральный университет им МЛомоносова Кафедра математики Примерные задания к экзамену по математике ( часть) для студентов 9 группы ИЭИТ направление

Подробнее

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественно-научная школа при КрасГУ Математика: Модуль 3 для класса. Учебно-методическая часть./

Подробнее

Лекция 7. Теорема. Система линейных уравнений AX = B совместна тогда и только тогда, когда ранг ее основной матрицы равен рангу расширенной

Лекция 7. Теорема. Система линейных уравнений AX = B совместна тогда и только тогда, когда ранг ее основной матрицы равен рангу расширенной Лекция 7 1 ТЕОРЕМА КРОНЕКЕРА КАПЕЛЛИ Теорема Система линейных уравнений AX = B совместна тогда и только тогда, когда ранг ее основной матрицы равен рангу расширенной матрицы: Совместность системы rka =

Подробнее

Математика 6 класс. Тема 1. Делимость чисел.

Математика 6 класс. Тема 1. Делимость чисел. Математика 6 класс Тема. Делимость чисел. Основные понятия. Делитель натурального числа а натуральное число, на которое а делится без остатка. Например, ; 2; 5; 0 делители числа 0. Число 3 является делителем

Подробнее

Сборник задач по высшей математике

Сборник задач по высшей математике С. А. Логвенков П. А. Мышкис В. С. Самовол Сборник задач по высшей математике Учебное пособие для студентов социально-управленческих специальностей Москва Издательство МЦНМО 24 УДК 52 (75.8) ББК 22.43

Подробнее

Контрольная 3 Геометрия-1. Матфак ВШЭ, осень Если в условии не оговорено обратное, то система координат предполагается прямоугольной декартовой.

Контрольная 3 Геометрия-1. Матфак ВШЭ, осень Если в условии не оговорено обратное, то система координат предполагается прямоугольной декартовой. Вариант 1 Задача 1. Дать определение собственного и несобственного пучка плоскостей. Сформулировать и доказать критерий принадлежности плоскости пучку, которому принадлежат две данные плоскости. Задача

Подробнее

ВАРИАНТ 1. на плоскость. 6. Найти уравнение проекции прямой

ВАРИАНТ 1. на плоскость. 6. Найти уравнение проекции прямой ВАРИАНТ 1 1 Найти угловой коэффициент k прямой проходящей через точки M 1 (18) и M ( 14); записать уравнение прямой в параметрическом виде Составить уравнения сторон и медиан треугольника с вершинами A()

Подробнее

Уравнения прямой в пространстве. Шульц Денис Сергеевич

Уравнения прямой в пространстве. Шульц Денис Сергеевич Уравнения прямой в пространстве. Шульц Денис Сергеевич План занятия. Уравнения прямой в пространстве канонические параметрические Взаимное расположение пространственных прямых Прямая в пространстве, заданная

Подробнее

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В

Подробнее

Лекция 6 Поверхности второго порядка. Эллиптический тип

Лекция 6 Поверхности второго порядка. Эллиптический тип Лекция 6 Поверхности второго порядка Пространственным аналогом кривых второго порядка являются поверхности второго порядка, имеющие уравнение вида F(x,y,z) =, где F(x,y,z) многочлен второй степени от x,y,z.

Подробнее

Алексей Витальевич Овчинников. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Курс лекций. 2008/2009 учебный год. Лекция 1 1.

Алексей Витальевич Овчинников. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Курс лекций. 2008/2009 учебный год.  Лекция 1 1. Алексей Витальевич Овчинников АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Курс лекций. 2008/2009 учебный год http://matematika.phs.msu.ru/ Лекция 1 1. ВВЕДЕНИЕ Об учебном плане. Лекции 36 ч. Семинары 18 ч. Самостоятельная

Подробнее

ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ . ВЕКТОРНАЯ АЛГЕБРА и АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 1 1. Векторная алгебра 1. Понятие вектора Вектором будем называть направленный отрезок, т. е. отрезок с заданным на нём направлением. На рисунке направление

Подробнее

Раздел V. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ

Раздел V. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ Раздел V. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ И В ПРОСТРАНСТВЕ В раздел включены задачи, которые рассматриваются в теме «Аналитическая геометрия на плоскости и в пространстве» составление различных уравнений

Подробнее

Образцы базовых задач по ЛА

Образцы базовых задач по ЛА Образцы базовых задач по ЛА Метод Гаусса Определенные системы линейных уравнений Решите систему линейных уравнений методом Гаусса x 6 y 6 8, 6 x 6 y 6 Решите систему линейных уравнений методом Гаусса 6

Подробнее

Прямая на плоскости. 1.1

Прямая на плоскости. 1.1 1.1 Прямая на плоскости. Даны три точки A, B, C, не лежащие на одной прямой. 1. Составить уравнение прямой А В. 2. Составить уравнение прямой, проходящей через точку С параллельно прямой АВ. 3. Составить

Подробнее

3. Гипербола и её свойства

3. Гипербола и её свойства 3. Гипербола и её свойства Определение 3.. Гиперболой называется кривая определяемая в некоторой прямоугольной декартовой системе координат уравнением 0. (3.) а Равенство (3.) называется каноническим уравнением

Подробнее

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ Билет 1 Дисциплина высшая математика Факультет нефтемеханический специальность АТ,ОБД семестр II.

ГРОЗНЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ Билет 1 Дисциплина высшая математика Факультет нефтемеханический специальность АТ,ОБД семестр II. Билет 1 1 Определители -го и -го порядка, их свойства и способы вычисления Решение систем линейных уравнений методом Крамера Решить систему уравнений методам Гаусса и матричного исчисления: Найти координаты

Подробнее

1 Задачи механики. 2 Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и

1 Задачи механики. 2 Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и 1 Задачи механики. Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и полное ускорения. Структура механики Механика Механика Кинематика

Подробнее

Контрольная работа 3

Контрольная работа 3 Контрольная работа 3 ВАРИАНТ 1 Составить уравнение прямой, перпендикулярной и проходящей через точку пересечения прямых и.. Записать уравнение прямой проходящей через точки и и найти расстояние от точки

Подробнее

Лекция 13: Классификация квадрик на плоскости

Лекция 13: Классификация квадрик на плоскости Лекция 13: Классификация квадрик на плоскости Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В предыдущих трех

Подробнее

Кривые второго порядка

Кривые второго порядка Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кривые второго порядка Индивидуальные

Подробнее

Лекция 16: Классификация квадрик в пространстве

Лекция 16: Классификация квадрик в пространстве Лекция 16: Классификация квадрик в пространстве Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Данная лекция

Подробнее

1.3. Теорема Гаусса.

1.3. Теорема Гаусса. 1 1.3. Теорема Гаусса. 1.3.1. Поток вектора через поверхность. Поток вектора через поверхность одно из важнейших понятий любого векторного поля, в частности электрического d d. Рассмотрим маленькую площадку

Подробнее

ВЫСШИЙ КОЛЛЕДЖ СВЯЗИ СБОРНИК ТИПОВЫХ РАСЧЕТОВ

ВЫСШИЙ КОЛЛЕДЖ СВЯЗИ СБОРНИК ТИПОВЫХ РАСЧЕТОВ ВЫСШИЙ КОЛЛЕДЖ СВЯЗИ СБОРНИК ТИПОВЫХ РАСЧЕТОВ по дисциплине «ВЫСШАЯ МАТЕМАТИКА» часть II для студентов специальности Т 000 Почтовая связь Минск 00 Составитель Рябенкова ЛА Издание утверждено на заседании

Подробнее

1.Дивергенция векторного поля.

1.Дивергенция векторного поля. ЛЕКЦИЯ N Дивергенция векторного поля Циркуляция Ротор отенциальные соленоидальные гармонические поля Операторы Лапласа и Гамильтона Дивергенция векторного поля Соленоидальные поля Циркуляция 4Формула Стокса

Подробнее

ЛЕКЦИЯ 2 ТЕОРЕМЫ ЭЙЛЕРА И ШАЛЯ. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ПРИ ДВИЖЕНИИ ТВЁРДОГО ТЕЛА

ЛЕКЦИЯ 2 ТЕОРЕМЫ ЭЙЛЕРА И ШАЛЯ. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ПРИ ДВИЖЕНИИ ТВЁРДОГО ТЕЛА ЛЕКЦИЯ 2 ТЕОРЕМЫ ЭЙЛЕРА И ШАЛЯ. СКОРОСТИ И УСКОРЕНИЯ ТОЧЕК ПРИ ДВИЖЕНИИ ТВЁРДОГО ТЕЛА Рис. 2.1 Имеется неподвижная система координат OXY Z. Обозначим её как S Рассмотрим твёрдое тело, имеющее жёстко привязанные

Подробнее

13. Смешанное произведение векторов

13. Смешанное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Определение смешанного произведения Определение Смешанным произведением векторов a, b

Подробнее

МНОГОМЕРНАЯ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Б.В. Заятуев

МНОГОМЕРНАЯ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Б.В. Заятуев МНОГОМЕРНАЯ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В пособии изложены необходимые теоретические сведения из линейной алгебры и многомерной геометрии базовые примеры с подробными решениями и задачи для самостоятельного

Подробнее

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b.

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b. ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» А.Н. Канатников, А.П. Крищенко

Подробнее

Преобразование АСК на плоскости Рассмотрим на плоскости две аффинные системы координат O e 1

Преобразование АСК на плоскости Рассмотрим на плоскости две аффинные системы координат O e 1 Лекция 9 Тема: Преобразование координат Полярные координаты План лекции Преобразование АСК на плоскости Преобразование ПДСК на плоскости 3 Полярные координаты 4 Переход от полярной системы к присоединенной

Подробнее

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ «ВЕКТОРНАЯ АЛГЕБРА В ПРИМЕРАХ И ЗАДАЧАХ»

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ «ВЕКТОРНАЯ АЛГЕБРА В ПРИМЕРАХ И ЗАДАЧАХ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет геосистем и технологий»

Подробнее

Лекция 1.03 Кинематика твердого тела

Лекция 1.03 Кинематика твердого тела Лекция Кинематика твердого тела Кинематика твердого тела Поступательное движение Твердым телом или неизменяемой системой точек называется трехмерная неизменяемая среда элементами которой служат точки Неизменяемость

Подробнее

Лекция 10 V V R, (αx,y) = α(x,y) (x,x) > 0.

Лекция 10 V V R, (αx,y) = α(x,y) (x,x) > 0. Лекция 10 1 ЕВКЛИДОВО ПРОСТРАНСТВО 11 Определение Пусть V (R) ЛП над полем вещественных чисел Скалярное произведение на V это произвольная функция V V R, ставящая в соответствие упорядоченной паре векторов

Подробнее

1. Поверхности второго порядка

1. Поверхности второго порядка 1 1. Поверхности второго порядка Здесь мы познакомимся с некоторыми вопросами теории поверхностей второго порядка, уравнения которых будут иметь вид A + B + Cz 2 + Dxy + Eyz + F yz + Gx + Hy + Kz + L =

Подробнее

Кривые второго порядка

Кривые второго порядка Министерство образования и науки Российской Федерации Ярославский государственный университет им. П. Г. Демидова Кафедра алгебры и математической логики Кривые второго порядка Часть I Методические указания

Подробнее

ЗАДАНИЕ N 1 Формула вычисления определителя третьего порядка следующие произведения: 1) aek 2) cdk 3) bfd 4) adf

ЗАДАНИЕ N 1 Формула вычисления определителя третьего порядка следующие произведения: 1) aek 2) cdk 3) bfd 4) adf ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Б1.ДВ.2.1 Аналитическая геометрия Примерные тестовые задания Тест 1 ЗАДАНИЕ N 1 Формула вычисления

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c);

Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c); Лекция 4 1. ВЕКТОРЫ Вектор направленный отрезок. Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны) Противоположные векторы: имеют одинаковые длины

Подробнее

ТЕОРЕМА О ТРЕХ СИЛАХ

ТЕОРЕМА О ТРЕХ СИЛАХ ТЕОРЕМА О ТРЕХ СИЛАХ Если твердое тело находится в равновесии под действием трех непараллельных сил, то линии действия этих сил лежат в одной плоскости и пересекаются в одной точке. ТЕОРЕМА О ТРЕХ СИЛАХ

Подробнее

Действительно, AB + BC + CA = АА = 0. При этом модуль суммы любых двух из этих векторов равен модулю третьего, например, BC + CA = BA = 1.

Действительно, AB + BC + CA = АА = 0. При этом модуль суммы любых двух из этих векторов равен модулю третьего, например, BC + CA = BA = 1. 0 класс Первый тур (0 минут; каждая задача 6 баллов)... Известно, что tg + tg = p, ctg + ctg = q. Найдите tg( + ). pq Ответ: tg. q p Из условия p tg q tg tg tg tg p и равенства ctg ctg q, получим, что

Подробнее

Лекция 6. f 1 = c 1 1e 1 + c 2 1e 2, f 2 = c 1 2e 1 + c 2 2e 2. c 1 1 c 2 1 E = (e 1,e 2 ), F = (f 1,f 2 ), C =. c 1 2 c 2 2 F = EC.

Лекция 6. f 1 = c 1 1e 1 + c 2 1e 2, f 2 = c 1 2e 1 + c 2 2e 2. c 1 1 c 2 1 E = (e 1,e 2 ), F = (f 1,f 2 ), C =. c 1 2 c 2 2 F = EC. Лекция 6 1 ПРЕОБРАЗОВАНИЕ БАЗИСОВ И ОРИЕНТАЦИЯ Пусть на плоскости заданы два произвольных базиса (условно назовем их старым и новым) e 1, e, f 1, f Векторы нового базиса можно выразить через векторы старого

Подробнее

Задачи с параметром (графический прием решения) Введение. План решения задач с параметром графическим методом

Задачи с параметром (графический прием решения) Введение. План решения задач с параметром графическим методом Задачи с параметром (графический прием решения) Введение Применение графиков при исследовании задач с параметрами необычайно эффективно. В зависимости от способа их применения выделяют два основных подхода.

Подробнее

Лекция 2 Векторы Определители второго и третьего порядка

Лекция 2 Векторы Определители второго и третьего порядка Лекция 2 Векторы Определители второго и третьего порядка 1 ВЕКТОРЫ Вектор направленный отрезок Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны)

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные

Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Лекция 8.1. Функции нескольких переменных. Частные производные Тема 8 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Лекция 8.1. Функции нескольких переменных. Частные производные П л а н 1. Понятие функции двух и нескольких переменных.. Предел и непрерывность

Подробнее

Практическая работа: Решение задач по теме "Геометрический смысл производной. Механический смысл первой и второй производной"

Практическая работа: Решение задач по теме Геометрический смысл производной. Механический смысл первой и второй производной Молодечненский государственный политехнический колледж Практическая работа: Решение задач по теме "Геометрический смысл производной Механический смысл первой и второй производной" Разработчик: И А Кочеткова

Подробнее