Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Глава 1. Введение. 1. Понятие дифференциального уравнения. Основные определения."

Транскрипт

1 Глава Введение Лекция Понятие дифференциального уравнения Основные определения Определение Дифференциальным уравнением (ДУ) называют уравнение, в котором неизвестная функция находится под знаком производной или дифференциала Определение Если неизвестная функция зависит от одной переменной, то уравнение называют обыкновенным дифференциальным уравнением (ОДУ) Примеры ) Задачу отыскания всех первообразных y для заданной функции f C[ a, b] можно dy записать в виде ОДУ y = f Как известно из курса математического анализа, это уравнение имеет на [ ab, ] однопараметрическое семейство решений вида yc (, ) = F + C, где F( ) одна из первообразных функции f ( ), а C R вещественный параметр ) Замечательным свойством функции y = e является равенство ее своей производной, что позволяет для этой функции записать ОДУ вида y = y, решениями которого будут все функции вида y = Ce Проверьте это самостоятельно ) Поскольку первая производная координаты по времени в механике называется скоростью, то ОДУ, описывающее прямолинейное равномерное движение со скоростью v, выглядит как = v, а его решение, удовлетворяющее начальному условию ( t ) =, dt имеет вид () t = + v( t t) 4) Аналогично, ОДУ для прямолинейного равноускоренного движения с ускорением a d записывается в форме a =, а его решение, удовлетворяющее начальным условиям dt a( t t ) ( t) =, ( t) = v имеет вид () t = + v( t t) + 5) Если в уравнении окружности + y = R переменные и y считать = параметра t, то после дифференцирования обеих частей равенства получится ОДУ семейства всех окружностей с центром в начале координат: dy dy + ydy =, или + y =, или = dt dt y Легко проверить, что одним из решений этих уравнений является пара функций = Rsi t, y= Rcost Видно, что это пара функций является также решением следующей системы дифференциальных уравнений: = y, y= 6) Уравнение малых линейных свободных колебаний без затухания имеет вид + ω = дифференцируемыми функциями = ( t), y y( t) Проверьте, что его решением является функция t = C cosω t+ C siω t, или

2 t = Asi ( ωt+ ϕ ) Убедитесь в том, что сделав замены =, =, уравнению + ω = можно сопоставить эквивалентную систему дифференциальных уравнений =, = ω 7) Уравнение малых линейных свободных затухающих колебаний имеет вид ω + γ + =, < γ < ω Проверьте, что его решением является функция γ t γ () = ( cosω + siω ), или t Ae t si ωt ϕ t e C t C t = +, где том, что сделав замены =, =, уравнению эквивалентную систему дифференциальных уравнений =, = γ ω ω ω = ω γ Убедитесь в + γ + = можно сопоставить Общий вид обыкновенного дифференциального уравнения В нашем курсе мы, как правило, будем обозначать значения неизвестной функции либо буквой, тогда независимой переменной будет t, либо буквой y, тогда независимой переменной будет Мы будем также использовать сокращенные обозначения J =,,,, t, или J y = ( y, y, y,, y ) В этом случае произвольное ОДУ с одной неизвестной функцией может быть записано в виде F t, J = F, J y =, или Определение Порядком дифференциального уравнения называется наивысший порядок входящей в него производной F, J y F, y, y, y = ОДУ -го порядка Например, Определение 4 Уравнением, разрешенным относительно старшей производной, называется ОДУ вида y = f, J y Определение 4а ОДУ, разрешенное относительно старшей производной, правая часть которого не содержит явно независимой переменной, называется автономным, те y = f J y Определение 5 Нормальной системой ОДУ называют систему дифференциальных уравнений первого порядка вида y = f( y,,, y), y = f( y,,, y),,, y = f( y,,, y) или векторной форме y = f, y,

3 где y y y, y = y y y = y, f (, y) f( y,,, y) f ( y,,, y) f( y,,, y) = Замечание Если правая часть нормальной системы ОДУ не содержит явно независимой переменной, то ее называют динамической системой Подчеркнем характерную особенность обыкновенных дифференциальных уравнений, отличающую их от прочих уравнений, содержащих производные неизвестных функций: все неизвестные должны быть функциями одного вещественного аргумента; все они и их производные должны входить в уравнение только в виде своих значений в одной и той же переменной точке, которая также может фигурировать в уравнении Примеры дифференциальных уравнений, не являющихся ОДУ: ) () t = ( t) ; ) t () t ( ) = уравнение с запаздывающим аргументом или дифференциально-разностное уравнение; ) t () ( τ ) t t = dτ интегро-дифференциальное уравнение Определение 6 Если в ДУ неизвестная функция зависит от нескольких переменных, то такое уравнение называют дифференциальным уравнением в частных производных Примеры дифференциальных уравнений в частных производных ( Ar,grad ur ) = Fru (, ) ) уравнение в частных производных -го порядка ) ) u( r, t) = div ( k( r, u, t) grad u( r, t) ) + F( r, u, t) уравнение колебаний (волновое t уравнение) уравнение в частных производных -го порядка u r t (, ) = div,, grad, +,, ( k( r u t) u( r t) ) F( r u t) уравнение диффузии, t (теплопроводности, Шрёдингера и тд) уравнение в частных производных -го порядка div ( k r, u grad u r ) = F( r, u) уравнение Пуассона (Лапласа, если F ) уравнение в частных производных -го порядка 4) 5) f ( r, v, t) f e f v + + E+ v, B = t r m c уравнение Власова-Максвелла v уравнение в частных производных -го порядка

4 Общее решение дифференциального уравнения, общий интеграл Определение 7 Решением ДУ называют функцию, или совокупность функций, обращающих уравнение в тождество Определение 8 Частное решение ДУ конкретная функция, удовлетворяющая уравнению Например, для ОДУ y + 4 y = частными решениями будут функции y = π si, y cos =, y = ( + π ), y ( π ) si /4 4 = 4cos /6 и тд Множество решений ОДУ -го порядка зависит от произвольных постоянных Например, множество решений уравнения y = f есть y= F + C, где F( ) некоторая первообразная функции для f ( ), C произвольная постоянная Множество решений уравнения в частных производных -го порядка определено с u u точностью до произвольной функции Так множеством решений уравнения = y является u= f( + y) (проверьте самостоятельно), где f произвольная дифференцируемая функция, например u = ( + y) m, u= cos( + y), u= si e + y и тд Определение 9 Общим решением дифференциального уравнения называется совокупность всех его решений Например, общим решением ОДУ y + 4 y = является функция y = Csi + Ccos, или (что одно и то же) y = Asi ( + ϕ ), где C, C, A, ϕ произвольные постоянные Определение Процесс нахождения решения дифференциального уравнения называют интегрированием ОДУ Φ,, = Определение Если уравнение ( yc), где C = ( C C C ),,, вектор произвольных параметров, определяет все множество решений соответствующего ДУ, то его называют общим интегралом данного ДУ, а полученное из него параметрическое семейство решений также называют общим решением Замечание Определенное в общее решение является более узким, по сравнению с 9, поскольку возможны еще особые решения, которые не входят в это семейство ни при каких значениях параметров dy Пример Рассмотрим уравнение y = Проверьте, что его общим решением является + C функция y =, а функция y = будет особым решением Графическая иллюстрация приведена на рис

5 dy Рис y =, + C y =, y = В ряде случаев задача интегрирования ОДУ первого порядка сводится к исследованию соответствующей неявной функции с помощью первого интеграла Определение Функция F(, y ), определенная в области G R и не равная в ней постоянной функции, называется первым интегралом ОДУ первого порядка, если для любого решения y = ϕ этого уравнения, график которого лежит в области G, и для любых ( ab, ) существует такая постоянная C такая, что F(, ϕ ) = C Определение первого интеграла естественным образом переносится на системы, например, на динамические системы Определение Функция V, { V : R R}, определенная и непрерывная в области D R и не равная постоянной, называется первым интегралом динамической системы f dt = в области D, если для любого решения = ϕ() t этой системы существует постоянная C такая, что V( ( t)) = C для всех t ( a, b) Аналогично формулируется определение первого интеграла для уравнения го порядка Определение 4 Если для любого решения ОДУ y ϕ ( p) такая, что F, J ϕ = cost интегралом ОДУ ( p) = существует функция F(, J y) ( p) при всех, то такая функция F(, J y) называется первым В физических задачах первыми интегралами могут быть энергия, импульс, момент инерции, масса, заряд и тд Некоторые примеры даны в таблице

6 Уравнение Общий интеграл Общее решение Частное решение y = f y f ( ) C = y = f ( ) + C ( ξ ) y = f dξ Первый интеграл F = cost y f y y + C = = y C + ω = cosωt+ Csiωt = или A ( ω t ϕ) si + = y + = C = C cosω t+ C siω t или = Asi ( ω t+ ϕ ) y + = y + = cosωt + ω Об интегрировании ОДУ в квадратурах Выражение общего решения или полного интеграла через элементарные функции и интегралы от них (берущихся или не берущихся в элементарных функциях) называют интегрированием данного ОДУ в квадратурах Интегрирование в квадратурах допускают лишь уравнения некоторых простейших типов Большинство же ОДУ можно решать только приближенно или исследовать их качественными методами, то есть методами, позволяющими выяснять свойства решений без явного их отыскания Качественные и приближенные методы составляют основное содержание современной теории обыкновенных дифференциальных уравнений Пример Движение материальной точки массы m под действием силы F ( r) = { F, Fy( y), Fz( z) }, которая зависит только от положения точки (не зависит явно от времени), а каждая декартова проекция силы зависит только от соответствующей проекции радиуса вектора Уравнения движения имеют вид mr = F r или в координатах m = F, my = Fy ( y ), mz = Fz ( z ) Общее решение этих уравнений может быть получено в квадратурах Рассмотрим, например первое из них и проделаем следующие выкладки = m F d = F => = F => d = F m dt m dt m / / =± F + C m => =± F + C dt m => t+ C =± F + C m Если заданы начальные условия /, t = t =, то решение задачи Коши выражается в квадратурах и имеет вид => = F + C m dt =± / F + C m

7 dξ t t =± / ξ F ( η) dη+ m Пример Решение уравнения функции, те в квадратурах y = y нельзя записать в виде интеграла от элементарной Постановка основных задач для обыкновенных дифференциальных уравнений Дополнительные условия Наряду с ОДУ для постановки задач используют начальные и граничные условия, количество и вид которых определяются «физической» постановкой задачи Начальная задача (задача Коши) (Огюстен Луи Коши ( ) - французский математик): ( y = f, J y ) ( ) J y( ) = Y начальные условия y( ) = Y, y ( ) = Y,, y ( ) = Y Пример Рассмотрим задачу Коши: dy = y + y = решение задачи существует и единственно y() = Пример Рассмотрим задачу Коши: dy = y y =, y = решение задачи существует, но не единственно y() = Краевая задача (-х точечная): y = f (, y, y ), ( ab, ) граничные условия первого рода (задача Дирихле): y( a) = ya, y( b) = yb ; граничные условия второго рода (задача Неймана): y ( a) = ya, y ( b) = yb ; граничные условия третьего рода: y ( a) + α y( a) = ya, y ( b) + β y( b) = yb ; периодические граничные условия: ya = yb, y ( a) = y ( b) Пример Рассмотрим краевую задачу: d y =, (,) y = ( ) решение задачи существует и единственно y() =, y() = Пример Рассмотрим краевую задачу: d y =, (,) решение задачи не существует y () =, y () =

8 Пример Рассмотрим краевую задачу: d y =, (,) y = C задача имеет бесконечное множество решений y () =, y () = Периодическая задача В общем случае задача о периодических решениях это = f t, с T -периодической по задача о нахождении T -периодического решения уравнения переменной t правой частью: f ( t, ) f( t T, ) = + Эта задача весьма важна в приложениях, поскольку такие решения описывают периодические колебательные процессы в реальных системах, например в механических и электрических устройствах 4 Задача Штурма-Лиувилля (краевая задача на собственные значения) Оператором Штурма-Лиувилля называется дифференциальный оператор -го порядка d dy Ly = p q y, где коэффициенты p C[ ab, ], p >, q Cab [, ], q Поставим вопрос: при каких значениях параметра λ существует нетривиальное решение краевой задачи ( α + α, β + β ) Ly + λρ y =, αya + αy ( a) =, βyb + βy ( b) = где ρ C[ a, b], ρ > Такая задача называется краевой задачей на собственные значения и собственные функции для оператора Штурма-Лиувилля (сокращенно задача Штурма-Лиувилля); числа λ, при которых существуют нетривиальные решения, называются собственными значениями, а соответствующие нетривиальные решения собственными функциями Пример Найти собственные значения и собственные функции задачи Штурма-Лиувилля y + λ y=, (, l) y() =, y( l) = μ μ Решение В случае λ = μ < имеем общее решение y = Ce + Ce Учитывая граничные условия, получаем единственное решение y =, те собственных функций (и собственных значений) нет В случае λ = общее решение рассматриваемого уравнения y = C + C С учетом граничных условий получаем y = нет собственных функций Пусть λ = μ >, тогда общее решение уравнения имеет вид y = Csiμ + Ccosμ Дополнительные условия дают y() = C =, y() l = C siμl =, откуда получаем π π si μl = μ =, N Следовательно, искомые собственные значения λ = μ = l l, π N, а отвечающие им собственные функции имеют вид y = Csi l В курсе интегральных уравнений будет доказано следующее утверждение Теорема (Стеклова) Любая функция f C [ a, b], удовлетворяющая однородным краевым условиям, представима в виде абсолютно и равномерно сходящегося ряда Фурье по

9 ортонормированной с весом ρ системе собственных функций y( ) задачи Штурма- Лиувилля (с теми же краевыми условиями) f = f y, b где коэффициенты Фурье определяются формулой f = f y ρ = a 4 Геометрическая интерпретация ОДУ Графики решений y y относительно производной = скалярного ОДУ первого порядка, разрешенного (, ) y = f y, () называются его интегральными кривыми В геометрических терминах данное уравнение выражает следующий факт: кривая на (, y)-плоскости является его интегральной кривой в том и только том случае, когда в любой точке (, y ) этой кривой она имеет касательную с угловым коэффициентом k = f(, y ) Таким образом, зная правую часть уравнения (), можно заранее построить касательные ко всем интегральным кривым во всех точках: для этого каждой точке (, y ) нужно сопоставить проходящую через нее прямую с угловым коэффициентом k = f(, y ) Полученное соответствие между точками плоскости и проходящими через нее прямыми, называется полем направлений уравнения () Конечно, фактически поле направлений можно построить лишь в виде достаточно густой сетки отрезков с отмеченными на них точками После этого задача построения интегральных кривых становится похожей на отыскание нужного пути в большом парке, снабженном густой сетью стрелок-указателей Метод изоклин Построение поля направлений значительно облегчается предварительным нахождением изоклин кривых на (, y)-плоскости, вдоль которых угловой коэффициент k сохраняет неизменное значение Уравнение изоклин имеет вид f ( y, ) = k Вдоль изоклин отрезок, принадлежащий полю направлений, переносится параллельно своему

10 первоначальному положению: переход к другой изоклине осуществляется изменением k и построением отрезка с новым угловым коэффициентом Например, для уравнения y = + y изоклины описываются уравнением + y = k и представляют собой семейство концентрических окружностей с центром в начале координат На рисунке изображены изоклины (синим цветом), поля направлений (черные стрелки) и интегральные кривые (красные линии)

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М В Ломоносова Ф И З И Ч Е С К И Й Ф А К У Л Ь Т Е Т НН Нефедов, ВЮ Попов, ВТ Волков Основные понятия теории обыкновенных дифференциальных уравнений Примеры

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г.

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г. Дифференциальные уравнения Тема: Уравнения n-го порядка, допускающие понижение порядка Лектор Янущик О.В. 2012 г. Глава II. Дифференциальные уравнения высших порядков 12. Основные понятия и определения

Подробнее

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными.

ЛЕКЦИЯ N29. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными. ЛЕКЦИЯ N9. Дифференциальные уравнения. Общие понятия. Дифференциальные уравнения I-го порядка. Уравнения с разделяющимися переменными..дифференциальные уравнения. Общие понятия.....дифференциальные уравнения

Подробнее

Лекция 1. Дифференциальные уравнения первого порядка

Лекция 1. Дифференциальные уравнения первого порядка Лекция 1 Дифференциальные уравнения первого порядка 1 Понятие дифференциального уравнения и его решения Обыкновенным дифференциальным уравнением 1-го порядка называется выражение вида F( x, y, y ) 0, где

Подробнее

Интегралы и дифференциальные уравнения. Лекция 16

Интегралы и дифференциальные уравнения. Лекция 16 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 16 Геометрическая

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ В.В.Поддубный ДИФФЕРЕНЦИАЛЬНЫЕ И РАЗНОСТНЫЕ УРАВНЕНИЯ 1. Введение и основные определения Многие задачи естествознания и техники связаны с решением уравнений, содержащих неизвестные функции некоторых независимых

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения ГЛАВА 4 Системы обыкновенных дифференциальных уравнений ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Основные определения Для описания некоторых процессов и явлений нередко требуется несколько функций Отыскание этих функций

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

14. Задача Штурма-Лиувилля.

14. Задача Штурма-Лиувилля. Лекция 8 4 Задача Штурма-Лиувилля Рассмотрим начально-краевую задачу для дифференциального уравнения в частных производных второго порядка описывающего малые поперечные колебания струны Струна рассматривается

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения.

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения. 4 Дифференциальные уравнения высших порядков Понижение порядка уравнения 4 Основные понятия и определения Дифференциальными уравнениями высшего порядка называют уравнения порядка выше первого В общем случае

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме

ОГЛАВЛЕНИЕ Предисловие Введение в теорию обыкновенных дифференциальных уравнений первого порядка Методы интегрирования уравнений в нормальной форме ОГЛАВЛЕНИЕ Предисловие............................................. 5 Глава 1 Введение в теорию обыкновенных дифференциальных уравнений первого порядка................................. 8 1. Основные понятия

Подробнее

Уравнения в частных производных первого порядка

Уравнения в частных производных первого порядка Уравнения в частных производных первого порядка Некоторые задачи классической механики, механики сплошных сред, акустики, оптики, гидродинамики, переноса излучения сводятся к уравнениям в частных производных

Подробнее

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание

Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Обыкновенные дифференциальные уравнения. Лекционные наброски. Конев В.В. Содержание Часть 1. Основные понятия. 1.1. Введение 2 1.2. Начальные условия 4 1.3. Составление дифференциальных уравнений 5 1.4.

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ Глава 2 УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ Уравнение с частными производными это уравнение, содержащее частные производные. В отличие от обыкновенных дифференциальных уравнений (ОДУ), в которых неизвестная

Подробнее

a β, откуда следует α справедливость формулы (13.1).

a β, откуда следует α справедливость формулы (13.1). Лекция. Замена переменной и интегрирование по частям в определенном интеграле. Применение определенного интеграла к вычислению площадей плоских фигур. Теорема.. Если: функция непрерывна на отрезке [,],

Подробнее

Лекция2. Дифференциальные уравнения первого порядка

Лекция2. Дифференциальные уравнения первого порядка Лекция. Дифференциальные уравнения первого порядка Уравнения с разделяющимися переменными... Однородные уравнения... 3 Линейные уравнения первого порядка.... 7 Линейные однородные дифференциальные уравнения....

Подробнее

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие

Аксёнов А.П. СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. Учебное пособие Министерство общего и профессионального образования Российской Федерации Санкт-Петербургский государственный технический университет Аксёнов АП СИСТЕМЫ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Учебное пособие

Подробнее

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению.

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению. ТЕМА 7 Задача Штурма-Лиувилля Собственные значения и собственные функции Сведение задачи Штурма-Лиувилля к интегральному уравнению Основные определения и теоремы Оператором Штурма-Лиувилля называется дифференциальный

Подробнее

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ

МАТЕМАТИКА. Вопросы для самоподготовки ПО ДИСЦИПЛИНЕ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ»

Подробнее

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ АНГАРСКАЯ ГОСУДАРСТВЕННАЯ ТЕХНИЧЕСКАЯ АКАДЕМИЯ Иванова СВ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Учебное пособие АНГАРСК АГТА 4 Иванова СВ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ УЧЕБНОЕ

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный машиностроительный

Подробнее

Тема 9. Обыкновенные дифференциальные уравнения

Тема 9. Обыкновенные дифференциальные уравнения Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный морской технический университет» (СПбГМТУ) Кафедра

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

DIRECTION FIELDS AND THEIR CORRESPONDING TRAJECTORIES. å. à. Çàòàä M. I. VISHIK. This paper is an introduction

DIRECTION FIELDS AND THEIR CORRESPONDING TRAJECTORIES. å. à. Çàòàä M. I. VISHIK. This paper is an introduction ÇË ËÍ å.à., 1996 DIRECTION FIELDS AND THEIR CORRESONDING TRAJECTORIES M. I. VISHIK This paper is an introduction to the theory of the first order ordinary differential equations on a plane. The following

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Тесты по курсу Уравнения в частных производных. 1. Какое из названий правильно характеризует уравнение

Тесты по курсу Уравнения в частных производных. 1. Какое из названий правильно характеризует уравнение Тесты по курсу Уравнения в частных производных. Какое из названий правильно характеризует уравнение 3 ( + u) + = u : а) квазилинейное уравнение с частными производными второго порядка; б) линейное уравнение

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1. ПОНЯТИЕ ВЕКТОРА

ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1. ПОНЯТИЕ ВЕКТОРА ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1 ПОНЯТИЕ ВЕКТОРА Вектором называется направленный прямолинейный отрезок Длину отрезка в установленном масштабе называют модулем вектора Векторы считаются

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

1 n α. сходимости обобщенного гармонического ряда

1 n α. сходимости обобщенного гармонического ряда СОДЕРЖАНИЕ КУРСА ВЫСШЕЙ МАТЕМАТИКИ ФТК, 2-ой семестр Матрицы и определители. 1. Понятие матрицы. Основные действия с матрицами и их свойства. 2. Пространство квадратных матриц. Обратная матрица и ее свойства.

Подробнее

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И.В. Ребро, С.Ю. Кузьмин, Н.Н. Короткова, Д.А. Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ИВ Ребро, СЮ Кузьмин, НН Короткова, ДА Мустафина ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

3. Используемые методы обучения

3. Используемые методы обучения 3.2 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПРЕПОДАВАТЕЛЯМ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ Семестр I Раздел 1. Векторная и линейная алгебра. Практическое занятие 1 1. Цель: Рассмотреть задачи на вычисление определителей второго

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Функции комплексного переменного. Дифференцирование функций комплексного переменного

Функции комплексного переменного. Дифференцирование функций комплексного переменного Функции Дифференцирование функций 1 Правила дифференцирования Так как производная функции определяется, как и в действительной области, т.е. в виде предела, то, используя это определение и свойства пределов,

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

Всего 66 вопросов. 1 год обучения. Модули 1 2.

Всего 66 вопросов. 1 год обучения. Модули 1 2. ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ к итоговому экзамену по дисциплине «Математический анализ» Прикладная математика На устном экзамене студент получает два теоретических вопроса и две задачи Всего 66 вопросов год

Подробнее

ДУ 2курс 4 семестр 1 задание

ДУ 2курс 4 семестр 1 задание . ДУ курс семестр задание. Постановка задачи Коши для нормальной системы дифференциальных уравнений.. Выяснить, при каких начальных условиях существует единственное решение уравнения y y y.. Решить уравнения,

Подробнее

Составитель: доц. Никонова Т.В. 2012/2013 учебный год

Составитель: доц. Никонова Т.В. 2012/2013 учебный год Практические занятия по курсу высшей математики (II семестр) на основе учебного пособия «Сборник индивидуальных заданий по высшей математике», том, под ред Рябушко АП для студентов дневной формы обучения

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

Дисциплина «Математический анализ в агроинженерии»

Дисциплина «Математический анализ в агроинженерии» Дисциплина «Математический анализ в агроинженерии» 1. Цель и задачи дисциплины Место дисциплины в структуре основной профессиональной образовательной программы Дисциплина «Математический анализ в агроинженерии»

Подробнее

ПРИКЛАДНАЯ МАТЕМАТИКА

ПРИКЛАДНАЯ МАТЕМАТИКА ПРИКЛАДНАЯ МАТЕМАТИКА ЕАКОГАН ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ Учебное пособие по дисциплине математика для студентов обучающихся по специальности Автомобиле-и тракторостроение

Подробнее

Обыкновенные дифференциальные уравнения.

Обыкновенные дифференциальные уравнения. Обыкновенные дифференциальные уравнения Решение различных геометрических физических инженерных и финансовых задач часто приводят к уравнениям которые связывают независимые переменные характеризующие ту

Подробнее

Уравнение Лапласа в полярной системе координат.

Уравнение Лапласа в полярной системе координат. Линейные и нелинейные уравнения физики Уравнение Лапласа в полярной системе координат. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич 518 Глава 5. Уравнения эллиптического типа 25.2. Разделение

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y)

Пример 2 Найти полную производную сложной функции z = x sin v cos w, где 2 2. Найдем теперь полный дифференциал сложной функции z f u( x y) v( x y) 44 Пример Найти полную производную сложной функции = sin v cos w где v = ln + 1 w= 1 По формуле (9) d v w v w = v w d sin cos + cos cos + 1 sin sin 1 Найдем теперь полный дифференциал сложной функции f

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

Лекция 4. СПЕЦИАЛЬНЫЕ ВИДЫ ВЕКТОРНЫХ ПОЛЕЙ. циала U 1. r =. Тогда

Лекция 4. СПЕЦИАЛЬНЫЕ ВИДЫ ВЕКТОРНЫХ ПОЛЕЙ. циала U 1. r =. Тогда Лекция 4 СПЕЦИАЛЬНЫЕ ВИДЫ ВЕКТОРНЫХ ПОЛЕЙ 1 Потенциальное векторное поле Соленоидальное векторное поле 3 Гармоническое поле 4 Операторы Гамильтона и Лапласа 1 Потенциальное векторное поле Определение 1

Подробнее

3 Следствия теоремы Коши

3 Следствия теоремы Коши 3 Следствия теоремы Коши Дифференцируемость интегралов типа Коши позволяет получить важное следствие: Теорема 3.1. Дифференцируемая в области Ω C функция f(z) является бесконечно дифференцируемой в каждой

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

Дифференциальные уравнения высших порядков. Лекции 2-3

Дифференциальные уравнения высших порядков. Лекции 2-3 Дифференциальные уравнения высших порядков Лекции 2-3 Дифференциальным уравнением порядка n называется уравнение вида F( x, y, y,..., y() n ) 0, () в котором обязательно наличие n-ой производной. Будем

Подробнее

Интегралы и дифференциальные уравнения. Лекция 15

Интегралы и дифференциальные уравнения. Лекция 15 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция 15 Решение

Подробнее

МАТЕМАТИКА ПОСОБИЕ. по изучению дисциплины и. выполнению контрольных работ по темам. «Дифференциальные уравнения» и «Ряды»

МАТЕМАТИКА ПОСОБИЕ. по изучению дисциплины и. выполнению контрольных работ по темам. «Дифференциальные уравнения» и «Ряды» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ ------------------------------------------------------------------------------------------------- О.Г. Илларионова, В.А. Ухова МАТЕМАТИКА

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Министерство образования Российской Федерации КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Лекция 4. Идеальная несжимаемая жидкость.

Лекция 4. Идеальная несжимаемая жидкость. Лекция 4. Идеальная несжимаемая жидкость. Жидкость называется идеальной, если коэффициенты вязкости равны нулю. Предположим, что ρt, x является константой. Тогда уравнения, описывающие движение идеальной

Подробнее

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики

Методические рекомендации по проведению внеаудиторных самостоятельных работ дисциплины Элементы высшей математики Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования «Казанский национальный исследовательский технический университет

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу

На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу На устном экзамене студент получает два вопроса и две задачи. Вопросы к итоговому экзамену по всему курсу 1. Дайте определение конечного предела последовательности. Приведите пример последовательности,

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ. ПОСТАНОВКА ЗАДАЧ И ОСНОВНЫЕ АНАЛИТИТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ. ПОСТАНОВКА ЗАДАЧ И ОСНОВНЫЕ АНАЛИТИТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ. ПОСТАНОВКА ЗАДАЧ И ОСНОВНЫЕ АНАЛИТИТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ. Классические уравнения математической физики. Вывод и классификация. Основные краевые задачи

Подробнее

А.А. Дегтярев ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Тесты для самоконтроля знаний студентов

А.А. Дегтярев ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Тесты для самоконтроля знаний студентов МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Образцы решения уравнений из «Сборника типовых заданий по курсу высшей математики» Кузнецова Л.А. Авторы: Смирнов А.Н., Беловодский В.Н., кафедра компьютерных систем мониторинга,

Подробнее

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши)

. Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Лекция 7 Дифференциальные уравнения Дифференциальные уравнения -го порядка f (, ). Интегральные кривые. Теорема о существовании и единственности решения с данными начальными условиями (задача Коши) Дифференциальным

Подробнее

Методы решения начальных задач для обыкновенных дифференциальных уравнений

Методы решения начальных задач для обыкновенных дифференциальных уравнений Методы решения начальных задач для обыкновенных дифференциальных уравнений Постановка задачи Рассмотрим обыкновенное дифференциальное уравнение сокращенно ОДУ первого порядка f,, [,b ] 6 с начальным условием

Подробнее

Курсовая работа по дисциплине «Вариационное исчисление» Тема: Постановка задач классического вариационного исчисления оптимального управления

Курсовая работа по дисциплине «Вариационное исчисление» Тема: Постановка задач классического вариационного исчисления оптимального управления МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию у f х и производные искомой функции n n :

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА»

ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА» ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ ПО ПРЕДМЕТУ «ВЫСШАЯ МАТЕМАТИКА» Тема 1. Множества. Введение в логику. Понятие функции. Кривые второго порядка. Основные понятия о множествах. Символика, ее использование.

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент

Учебная дисциплина Б Математика Профиль подготовки: Производственный менеджмент ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ, ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ Учебная дисциплина Б.2.1 - Математика Профиль подготовки: Производственный менеджмент Тематика

Подробнее

Теоретические вопросы

Теоретические вопросы V ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Теоретические вопросы 1 Основные понятия теории дифференциальных уравнений Задача Коши для дифференциального уравнения первого порядка Формулировка теоремы существования и

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики

Подробнее

Элементы теории поля

Элементы теории поля Элементы теории поля Пусть Ω некоторая область в R 3. Будем говорить, что в Ω задано скалярное поле, если каждой точке M Ω поставлено в соответствие некоторое число U(M). Примерами скалярных полей могут

Подробнее

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ.

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. ЛЕКЦИЯ Вводные замечания Дифференциальные уравнения занимают в математике особое место. Математическое исследование разнообразных природных явлений

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл Задачи, приводящие к понятию производной Определение Касательной S к линии y f (x) в точке A x ; f (

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ЛЕКЦИИ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ

ЛЕКЦИИ ПО ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =.

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =. ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) Определение векторного поля Определение векторной линии Задача о работе силового поля Полем называется множество, элементы которого удовлетворяют

Подробнее

Лекция 3. Математическое описание систем управления

Лекция 3. Математическое описание систем управления Лекция 3 Математическое описание систем управления В теории управления при анализе и синтезе систем управления имеют дело с их математической моделью Математическая модель САУ представляет собой уравнения

Подробнее

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2) Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В.ЛОМОНОСОВА ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ А.М. ДЕНИСОВ, А.В. РАЗГУЛИН ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное пособие для подготовки

Подробнее