Факультатив. Элемент тока (продолжение). Вернемся к рассмотрению силы Ампера, которая пропорциональна элементу тока. I. 1 c

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Факультатив. Элемент тока (продолжение). Вернемся к рассмотрению силы Ампера, которая пропорциональна элементу тока. I. 1 c"

Транскрипт

1 Факультатив. Элемент тока (продолжение). Вернемся к рассмотрению силы Ампера, которая пропорциональна элементу тока. I df dl, B c > Другие формы силы Ампера: 1 df j, B dv c 1 > df i, B ds c > q F, B c V сила Лоренца. Строго говоря, выражение для силы Лоренца не следует из закона Ампера, так как в законе Ампера рассматриваются силы, действующие на постоянные токи. Однако, как показывает опыт, выражение для силы, действующей на движущийся заряд, именно такое. q Иногда силу Лоренца определяют иначе: F qe+, B c V. В системе СИ: F q V, B µ 0q V, H Экзамен. Закон Био-Савара (-Лапласа). I dl, db поле элемента тока I dl, где вектор, направленный из элемента тока в точку наблюдения. Другие формы закона Био-Савара: 1 j, db dv 1 i, db ds q [ V,] B магнитное поле заряда q, движущегося с постоянной скоростью V. Строго говоря, формула для магнитного поля движущегося заряда не следует из закона Био-Савара, так как закон Био-Савара относится только к постоянным токам. Однако, как показывает опыт, магнитное поле движущегося заряда именно такое. µ dl, В системе СИ: db 0I 1 dl,, dh I 4π 3 3 4π Факультатив. Формула для расчета магнитного поля B в плоской задаче. Плоская задача все токи и точка наблюдения поля B находятся в одной плоскости. В таком случае в плоскости задачи находятся векторы dl и

2 I dl, в законе Био-Савара db. Вектор db перпендикулярен плоскости задачи, как векторное произведение двух векторов в этой плоскости. Следовательно, все вклады db в магнитное поле параллельны друг другу, и их можно складывать, как числа, а не как векторы. I dl, В формуле для магнитного поля db заменим. Тогда новый вектор направлен из точки наблюдения к элементу тока, радиусвектор элемента тока, если считать, что начало координат расположено в точке наблюдения магнитного поля. Для нового I, dl : db. > I dl sin( θ) I dl sin( θ) db. c 2 Здесь θ угол между векторами и dl. Пусть O точка наблюдения магнитного поля, тогда Отрезок dl можно выразить двумя способами. С одной стороны dl dl sin( θ), а с другой стороны dl dϕ. Тогда dl sin( θ) dϕ I dl sin( θ) Подставим это в выражение db и получим c 2 I d db c ϕ, где dϕ угол, под которым элемент тока виден из точки наблюдения; расстояние от точки наблюдения до элемента тока; db вклад элемента тока в магнитное поле в точке наблюдения. Эта формула полезна для решения задач. Факультатив. Магнитное поле в центре кругового витка с током. Все токи и точка наблюдения находятся в одной плоскости. Тогда I dϕ db > c

3 I I I 2πI B db dϕ dϕ 2π c c c c > l l l 2πI B c 1 µ В системе СИ: 0 µ > 0I B. c 4π 2 Экзамен. Магнитное поле прямого провода с током. Рассмотрим прямой провод с током и одну точку наблюдения магнитного поля. Через прямую и точку вне нее проходит плоскость. Следовательно, задача плоская и можно воспользоваться формулой I dϕ db. c На экзамене этой формулой можно воспользоваться, как исходной. R cos( ϕ) > 1 cos( ϕ) R Подставим это выражение для 1 в выражение I cos( ϕ) db dϕ > c R π π 2 2 ( ϕ) I cos I 2I B db dϕ cos( ϕ) dϕ c R cr cr > π π 2 2 I d db c ϕ и получим 2I B cr Переобозначим R и получим 2I B, где расстояние от провода с током до точки наблюдения. c Факультатив. Правило правого винта. Ток и магнитное поле образуют правый винт. Магнитное поле направлено вокруг тока по правилу правого винта, и ток направлен вокруг магнитного поля по правилу правого винта.

4 Если нарисовать больше линий поля B, то картины перестанут быть так похожи. Факультатив. Взаимодействие параллельных и антипараллельных токов. Рассмотрим параллельные токи I 1 и I 2. Параллельные токи притягиваются, антипараллельные отталкиваются. 2I B 1 I 1 df 2 dl, B1 c c > df 2II 1 2 сила, действующая на единицу длины параллельных токов. dl 2 c df µ В системе СИ: 0 2II 1 2. dl 4π Параллельные токи притягиваются. Громоотвод из металлической трубки схлопывается в сплошной прут при попадании молнии. Токонесущие провода электропоезда брякают друг о друга при старте поезда. Факультатив. Магнитные силы, как релятивистский эффект электрических сил.

5 Рассмотрим два параллельных тока. Объясним притяжение токов без привлечения магнитного поля. Положительные ионы двух параллельных проводников неподвижны. Пусть все электроны этих проводников движутся с одной и той же скоростью вдоль проводников. Для начала заметим, что в исходной системе отсчета в системе отсчета положительных ионов проводники не заряжены, а в системе отсчета электронов проводники заряжены. И действительно, движущийся предмет сжимается в направлении движения. Тогда при переходе в систему отсчета электронов расстояния между электронами вдоль проводника увеличиваются, а расстояния между положительными ионами уменьшаются. При этом концентрация электронов уменьшается, а концентрация положительных ионов возрастает. В системе отсчета электронов проводники оказываются положительно заряженными Вы думаете, что положительно заряженные проводники отталкиваются? Не тут-то было! Чтобы обойтись без рассмотрения магнитного поля нужно рассматривать силу, действующую на каждый заряд в той системе отсчета, где сила Лоренца отсутствует: q V 0 > F V, B 0 c. Следовательно, нужно рассматривать силу на каждый заряд там, где скорость заряда равна нулю. Силу, действующую на положительные ионы нужно рассматривать там, где ионы покоятся, и проводники не заряжены. Там сила равна нулю. Силу на электроны нужно рассматривать там, где покоятся электроны, и где проводники положительно заряжены. Там сила, действующая на электроны, притягивает проводники друг к другу. Это и есть притяжение проводников с параллельными токами. Факультатив. Взаимодействие токов и 3-ий закон Ньютона. Рассмотрим два элемента тока, перпендикулярные друг другу: Idl 1 1 I2dl2. Покажем, что силы взаимодействия этих элементов тока не удовлетворяют третьему закону Ньютона: df1 2 df2 1. I df dl2, db1 2 c > I dl, db

6 I 2 I dl 1 1, 1 2 II df dl2, dl , dl1, 12 c c 1 2 c 12 II 1 2 { dl1( dl 2 3 2, 12 ) 12 ( dl2, dl1) } c 12 Но мы выбрали dl2 dl1 > ( dl2, dl 1) 0 > II df dl 2 3 1( dl2, 12 ) > df1 2 dl1 c 12 Аналогично df2 1 dl2. Тогда df1 2 dl1 df2 1 dl2 > df1 2 df2 1 > df1 2 df2 1, dl2 dl1 что и требовалось доказать Если просуммировать силы, действующие на все элементы замкнутого контура с током, то выясняется, что для замкнутых токов F1 2 F2 1, но парадокс не исчерпан, так как для пары точечных зарядов, движущихся с разными скоростями F1 2 F2 1. Дело в том, что когда точечные заряды пролетают друг относительно друга, возникает электромагнитное излучение, которое уносит энергию и импульс. Без учета этого импульса закон сохранения импульса несправедлив. Закон сохранения импульса тесно связан с третьим законом Ньютона, поэтому для пары точечных зарядов, движущихся с разными скоростями, не справедлив третий закон Ньютона. Факультатив. Формула для одной из составляющих магнитного поля поверхностного тока. I dl, db 1 i, > db ds закон Био-Савара для 3 c Idl ids di поверхностного тока, где i плотность поверхностного тока. dl Заменим, тогда новый вектор радиус-вектор элемента тока, если начало координат выбрать в точке наблюдения магнитного поля. Тогда 1, i db ds Найдем составляющую магнитного поля B такую, что

7 db i, где n нормаль к поверхности, по которой течет ток. db Любой вектор можно разложить на три взаимноортогональных составляющих: i i + n +, где. Тогда 1, i ds ds ds ds db ds,,,, 3 3 i+ n + i 3 i i + 3 n i + i c 3. c c c c В правой части первое слагаемое равно нулю, так как i i. Третье слагаемое перпендикулярно вектору, так как, i. Тогда третье слагаемое перпендикулярно вектору B, так как B. Следовательно, третье слагаемое не дает вклад в интересующую нас величину B. Второе слагаемое, наоборот, целиком входит в величину B, так как n, i B, потому что db i. db Тогда вклад в величину B целиком определяется вторым слагаемым: ds db 3 n, i. c С учетом того, что n i, получим ds i ds (, n i ds) i ds i ds i db i 3 n dω c 2 c c i db dω, где dω телесный угол, под которым поверхность с током c видна из точки наблюдения поля B ; B составляющая магнитного поля такая, B i что B, где i плотность поверхностного тока, n нормаль к поверхности с током. Экзамен. Магнитное поле внутри бесконечного соленоида. Соленоид это цилиндрическая катушка с проводящей обмоткой. По проводу соленоида пускают электрический ток. Можно сказать, что ток течет по боковой поверхности цилиндра вокруг оси цилиндра. Рассмотрим магнитное поле круглого витка с током.

8 Мысленно сложим поля нескольких витков, расположенных один над другим и получим поле соленоида. Внутри соленоида магнитное поле в основном направлено вдоль оси соленоида. Линии магнитного поля проходят внутри соленоида вдоль его оси, а возвращаются снаружи соленоида. Снаружи места много, поэтому плотность линий мала, и поле мало. Для бесконечного соленоида магнитное поле снаружи соленоида равно нулю. Для любого элемента токонесущей поверхности соленоида оказывается, B i что составляющая B такая, что, направлена вдоль оси соленоида. B i db d c Ω > i B Ω Bz, где ось z направлена вдоль оси c соленоида. Внутри бесконечного соленоида Ω 4π полный телесный угол (телесный угол во все стороны), так как куда ни посмотришь из точки наблюдения поля, взгляд упирается в поверхность с током. Тогда 4 B 4 i π π ni поле внутри бесконечного соленоида, где i c c плотность поверхностного тока соленоида, n число витков на единицу длины соленоида, I сила тока в одном витке соленоида.

Факультатив. Элемент тока (продолжение). Вернемся к рассмотрению силы Ампера, которая пропорциональна элементу тока. I. 1 c

Факультатив. Элемент тока (продолжение). Вернемся к рассмотрению силы Ампера, которая пропорциональна элементу тока. I. 1 c Факультатив. Элемент тока (продолжение). Вернемся к рассмотрению силы Ампера, которая пропорциональна элементу тока. I df dl, B c Другие формы силы Ампера: 1 df j, B dv c 1 df i, B ds c q F, B c V сила

Подробнее

Экзамен. Закон Био-Савара (-Лапласа).

Экзамен. Закон Био-Савара (-Лапласа). Экзамен Закон Био-Савара (-Лапласа) I dl, db поле элемента тока Idl, где вектор, направленный из элемента тока в точку наблюдения Другие формы закона Био-Савара: 1 j, db dv 1 i, db ds q [ V,] B магнитное

Подробнее

поле параллельно токонесущей плоскости и в этой плоскости перпендикулярно току. Экзамен. Векторный потенциал. векторный потенциал элемента тока I dl

поле параллельно токонесущей плоскости и в этой плоскости перпендикулярно току. Экзамен. Векторный потенциал. векторный потенциал элемента тока I dl Факультатив. Магнитное поле над токонесущей плоскостью. Магнитное поле закручено вокруг токов по правилу правого винта. В таком случае магнитное поле плоскости с током имеет следующий вид: Это поле перпендикулярно

Подробнее

Экзамен. 2. Магнитное поле B внутри и снаружи длинного цилиндрического проводника с заданной плотностью тока j.

Экзамен. 2. Магнитное поле B внутри и снаружи длинного цилиндрического проводника с заданной плотностью тока j. Экзамен 2 Магнитное поле B внутри и снаружи длинного цилиндрического проводника с заданной плотностью тока j B= Bz + B + B ϕ Докажем, что B z = 0 отсутствует составляющая поля вдоль провода внутри и снаружи

Подробнее

c c Найдем телесный угол Ω, под которым видна поверхность с током из точки наблюдения магнитного поля. => θ

c c Найдем телесный угол Ω, под которым видна поверхность с током из точки наблюдения магнитного поля. => θ Факультатив Магнитное поле на оси соленоида конечной длины Найдем магнитное поле в точке O на оси соленоида с поверхностной плотностью тока i= ni, где n число витков на единице длины соленоида, I сила

Подробнее

Изучение распределения магнитного поля вдоль оси соленоида

Изучение распределения магнитного поля вдоль оси соленоида Изучение распределения магнитного поля вдоль оси соленоида. Введение. Источником и объектом действия магнитного поля являются движущиеся заряды (электрические токи). Покоящиеся заряды магнитного поля не

Подробнее

19. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда.

19. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. 19. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. dφ ( E, ds) определение потока поля E через произвольно ориентированную площадку ds, где вектор

Подробнее

21. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда.

21. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. 1. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. dφ ( E, ds) определение потока поля E через произвольно ориентированную площадку ds, где вектор

Подробнее

Экзамен. Магнитный диполь. Момент сил, действующих на виток с током в однородном магнитном поле.

Экзамен. Магнитный диполь. Момент сил, действующих на виток с током в однородном магнитном поле. Экзамен Магнитный диполь Момент сил, действующих на виток с током в однородном магнитном поле I m S определение магнитного дипольного момента тока I в контуре, ограничивающем площадку S Направление дипольного

Подробнее

3. Магнитное поле. Демонстрации. Компьютерные демонстрации. 3.1.Силы, действующие в магнитном поле на движущиеся заряды и токи

3. Магнитное поле. Демонстрации. Компьютерные демонстрации. 3.1.Силы, действующие в магнитном поле на движущиеся заряды и токи 1 Магнитное поле В повседневной практике мы сталкиваемся с магнитной силой, когда имеем дело с постоянными магнитами, электромагнитами, катушками индуктивности, электромоторами, реле, отклоняющими системами

Подробнее

Тема 2.2. МАГНИТНОЕ ПОЛЕ

Тема 2.2. МАГНИТНОЕ ПОЛЕ Тема.. МАГНИТНОЕ ПОЛЕ. Магнитное поле и его характеристики. Закон Био Савара - Лапласа и его применение к расчету магнитного поля 3. Закон Ампера. Взаимодействие параллельных токов 4. Магнитная постоянная.

Подробнее

Конспект лекций по курсу общей физики Часть II Электричество и магнетизм Лекция 8 6. МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ

Конспект лекций по курсу общей физики Часть II Электричество и магнетизм Лекция 8 6. МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ Конспект лекций по курсу общей физики Часть II Электричество и магнетизм Лекция 8 6. МАГНИТНОЕ ПОЛЕ В ВАКУУМЕ 6.. Характеристики и графическое изображение магнитного поля Магнитное поле обусловлено электрическим

Подробнее

Магнитное поле. Лукьянов И.В.

Магнитное поле. Лукьянов И.В. Магнитное поле. Лукьянов И.В. Содержание: 1. Магнитное поле в вакууме. 2. Электромагнитная индукция. 3. Магнитное поле в веществе. Магнитное поле в вакууме. Содержание раздела: 1. Понятие магнитного поля

Подробнее

Электростатика. 1. Закон Кулона F. где F - сила взаимодействия точечных зарядов q 1 и q 2 ; -

Электростатика. 1. Закон Кулона F. где F - сила взаимодействия точечных зарядов q 1 и q 2 ; - Электростатика Закон Кулона F 4 r ; F r r 4 r где F - сила взаимодействия точечных зарядов q и q ; - E диэлектрическая проницаемость среды; Е напряженность электростатического поля в вакууме; Е напряженность

Подробнее

21. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда.

21. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. 1. Теорема Гаусса и ее применение к вычислению электрических полей простейших распределений плотности заряда. dφ ( E, ds) определение потока поля E через произвольно ориентированную площадку ds, где вектор

Подробнее

= [j 2 [j 1 r 12 ]] dv 1 dv 2. = [v 2 [v 1 r 12 ]] dq 1 dq 2. J [dl B] [j B] dv c. B l dl = 4π c

= [j 2 [j 1 r 12 ]] dv 1 dv 2. = [v 2 [v 1 r 12 ]] dq 1 dq 2. J [dl B] [j B] dv c. B l dl = 4π c 1 Магнитостатика 1 1 Магнитостатика Закон Ампера (µ 1): df 12 J 1J 2 [dl 1 [dl 2 r 12 ]] 2 r 3 12 Сила Ампера: J [dl B] df Закон Био Савара (µ 1, B H): [j 2 [j 1 r 12 ]] dv 1 dv 2 2 r 3 12 [v 2 [v 1 r

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 2 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА

ЛАБОРАТОРНАЯ РАБОТА 2 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА Цель работы: изучение магнитного поля конечного соленоида. Теоретическое введение. В пространстве, окружающем проводники с током или движущиеся заряды,

Подробнее

, РАЗДЕЛ III ЭЛЕКТРОМАГНЕТИЗМ Лекц ия 19 Магнитное поле

, РАЗДЕЛ III ЭЛЕКТРОМАГНЕТИЗМ Лекц ия 19 Магнитное поле , РАЗДЕЛ III ЭЛЕКТРОМАГНЕТИЗМ Лекц ия 19 Магнитное поле Вопросы Основные магнитные явления Магнитное поле электрического тока Индукция магнитного поля Линии магнитной индукции Магнитный поток Закон Био

Подробнее

Лекция 10 Электромагнетизм. Понятие о магнитном поле

Лекция 10 Электромагнетизм. Понятие о магнитном поле Лекция 10 Электромагнетизм Понятие о магнитном поле При рассмотрении электропроводности ограничивались явлениями, происходящими внутри проводников Опыты показывают, что вокруг проводников с током и постоянных

Подробнее

Экзамен. Энергия магнитного диполя в магнитном поле. В электростатике: =

Экзамен. Энергия магнитного диполя в магнитном поле. В электростатике: = поле Экзамен Энергия магнитного диполя в магнитном поле В электростатике: M = p, E момент сил, действующих на диполь в электрическом W = p E (, ) энергия диполя в электрическом поле Энергия диполя в электрическом

Подробнее

Лекц ия 3 Графический показ электрических полей. Теорема Гаусса и ее применение

Лекц ия 3 Графический показ электрических полей. Теорема Гаусса и ее применение Лекц ия Графический показ электрических полей. Теорема Гаусса и ее применение Вопросы. Графический показ электрических полей. Поток вектора напряженности электрического поля. Теорема Гаусса и ее применение..1.

Подробнее

4. Постоянное магнитное поле в вакууме. Движение заряженных частиц в однородном магнитном поле.

4. Постоянное магнитное поле в вакууме. Движение заряженных частиц в однородном магнитном поле. 4 Постоянное магнитное поле в вакууме Движение заряженных частиц в однородном магнитном поле Закон Био-Савара-Лапласа: [ dl, ] db =, 3 4 π где ток, текущий по элементу проводника dl, вектор dl направлен

Подробнее

В 1820 г. Эрстед установил, что под действием поля тока магнитная стрелка устанавливается перпендикулярно току.

В 1820 г. Эрстед установил, что под действием поля тока магнитная стрелка устанавливается перпендикулярно току. III. Магнетизм 3.1 Магнитное поле Опыт показывает, что вокруг магнитов и токов возникает силовое поле, которое обнаруживает себя по воздействию на другие магниты и проводники с током. В 182 г. Эрстед установил,

Подробнее

Магнитные взаимодействия

Магнитные взаимодействия Магнитные взаимодействия В пространстве, окружающем намагниченные тела, возникает магнитное поле. Помещенная в это поле маленькая магнитная стрелка устанавливается в каждой его точке вполне определенным

Подробнее

Лабораторная работа 13. Измерение горизонтальной составляющей магнитного поля Земли и исследование магнитного поля кругового тока

Лабораторная работа 13. Измерение горизонтальной составляющей магнитного поля Земли и исследование магнитного поля кругового тока Лабораторная работа 13 Измерение горизонтальной составляющей магнитного поля Земли и исследование магнитного поля кругового тока Цель работы: измерить горизонтальную составляющую индукции магнитного поля

Подробнее

ЛЕКЦИЯ 6 МАГНЕТИЗМ. Рис. 6.1: Магнитное поле движущегося заряда.

ЛЕКЦИЯ 6 МАГНЕТИЗМ. Рис. 6.1: Магнитное поле движущегося заряда. ЛЕКЦИЯ 6 МАГНЕТИЗМ 1. Магнитное поле Магнитных зарядов не существует, поэтому определить магнитное поле аналогично электрическому, через закон Кулона, не получится. Определение из учебника Сивухина: заряд

Подробнее

Поток поля B может создавать только составляющая B r. Эта составляющая может создать поток только через боковую поверхность цилиндра.

Поток поля B может создавать только составляющая B r. Эта составляющая может создать поток только через боковую поверхность цилиндра. Экзамен 1 Магнитное поле длинного провода с током в цилиндрической оболочке из магнитного материала (продолжение) Докажем, что двух остальных составляющих магнитного поля нет B =? r Рассмотрим поток поля

Подробнее

'. И пусть для простоты dl dl F V, B

'. И пусть для простоты dl dl F V, B Экзамен Закон электромагнитной индукции Фарадея (продолжение) ЭДС возникает, если поток изменяется по любым причинам ЭДС возникает, если контур перемещается, поворачивается, деформируется, и если контур

Подробнее

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение 1. Электростатика 1 1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Уравнение для потенциала с источниками зарядами) уравнение Пуассона и уравнение без источников уравнение Лапласа Уравнение Пуассона

Подробнее

а) Рис. 1 Магнитное поле называется однородным, если вектор В в любой точке постоянен (рис.1б).

а) Рис. 1 Магнитное поле называется однородным, если вектор В в любой точке постоянен (рис.1б). 11 Лекция 16 Магнитное поле и его характеристики [1] гл14 План лекции 1 Магнитное поле Индукция и напряженность магнитного поля Магнитный поток Теорема Гаусса для магнитного потока 3 Закон Био-Савара-Лапласа

Подробнее

Рисунок 1 объясняет вихревой характер магнитного поля, то есть, что силовые линии замкнуты, это отличает магнитное поле от электрического.

Рисунок 1 объясняет вихревой характер магнитного поля, то есть, что силовые линии замкнуты, это отличает магнитное поле от электрического. Тема: Лекция 32 Магнитные явления. Открытие Эрстеда. Сила Ампера. Закон Ампера для витка с током. Магнитная индукция. Закон Био-Савара-Лапласа. Индукция прямолинейного проводника, витка и катушки с током.

Подробнее

8. Магнитное поле в вакууме. Закон Био-Савара (примеры решения задач)

8. Магнитное поле в вакууме. Закон Био-Савара (примеры решения задач) Круговой виток с током 8 Магнитное поле в вакууме Закон Био-Савара (примеры решения задач) Пример 8 По круговому витку радиуса из тонкой проволоки циркулирует ток Найдите индукцию магнитного поля: а) в

Подробнее

ЛАБОРАТОРНЫЕ РАБОТЫ по курсу физики

ЛАБОРАТОРНЫЕ РАБОТЫ по курсу физики Ю. В. Тихомиров ЛАБОРАТОРНЫЕ РАБОТЫ по курсу физики С ЭЛЕМЕНТАМИ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ. ОПТИКА для студентов всех специальностей всех форм обучения МОСКВА - 1 ЛАБОРАТОРНАЯ

Подробнее

3. Магнитное поле Вектор магнитной индукции. Сила Ампера

3. Магнитное поле Вектор магнитной индукции. Сила Ампера 3 Магнитное поле 3 Вектор магнитной индукции Сила Ампера В основе магнитных явлений лежат два экспериментальных факта: ) магнитное поле действует на движущиеся заряды, ) движущиеся заряды создают магнитное

Подробнее

Лекции 7. Проводники с током в магнитном поле. Теорема Гаусса для магнитного поля.

Лекции 7. Проводники с током в магнитном поле. Теорема Гаусса для магнитного поля. Лекции 7. Проводники с током в магнитном поле. Теорема Гаусса для магнитного поля. dl dl df А Закон Ампера. Магнитный момент контура с током. Контур с током в магнитном поле. Поток вектора магнитной индукции.

Подробнее

ЧАСТЬ ТРЕТЬЯ КЛАССИЧЕСКАЯ ЭЛЕКТРОДИНАМИКА

ЧАСТЬ ТРЕТЬЯ КЛАССИЧЕСКАЯ ЭЛЕКТРОДИНАМИКА ЧАСТЬ ТРЕТЬЯ КЛАССИЧЕСКАЯ ЭЛЕКТРОДИНАМИКА ГЛАВА 7 Введение в электродинамику 7 Основные понятия и величины электродинамики Электрический заряд Плотность заряда и плотность тока Многие наблюдаемые макроскопические

Подробнее

ПОСТОЯННОГО Томский политехнический университет, кафедра ТОЭ, автор Носов Геннадий Васильевич

ПОСТОЯННОГО Томский политехнический университет, кафедра ТОЭ, автор Носов Геннадий Васильевич 4 Лекция МАГНИТНОЕ ПОЛЕ ПОСТОЯННОГО ТОКА 00 Томский политехнический университет, кафедра ТОЭ, автор Носов Геннадий Васильевич МАГНИТНОЕ ПОЛЕ постоянного тока не изменяется во времени и является частным

Подробнее

S с плотностью стороннего заряда. По теореме Гаусса

S с плотностью стороннего заряда. По теореме Гаусса 5 Проводники в электрическом поле 5 Проводники Проводниками называются вещества, в которых при включении внешнего поля перемещаются заряды и возникает ток Наиболее хорошими проводниками электричества являются

Подробнее

3.3. Магнитное поле. Электромагнитная индукция

3.3. Магнитное поле. Электромагнитная индукция 3.3. Магнитное поле. Электромагнитная индукция Основные законы и формулы Электрический ток создает в пространстве, окружающем его, магнитное поле. Силовой характеристикой магнитного поля является вектор

Подробнее

Лекция 5. Магнитное поле в вакууме.

Лекция 5. Магнитное поле в вакууме. Лекция 5 Магнитное поле в вакууме Вектор индукции магнитного поля Закон Био-Савара Принцип суперпозиции магнитных полей Поле прямого и кругового токов Теорема о циркуляции вектора индукции магнитного поля

Подробнее

Рассмотрим теперь последовательное соединение двух конденсаторов. При последовательном соединении конденсаторов. Тогда

Рассмотрим теперь последовательное соединение двух конденсаторов. При последовательном соединении конденсаторов. Тогда Экзамен. Электрическая емкость параллельного и последовательного соединения конденсаторов. Пусть два конденсатора с емкостями C и C соединены параллельно и помещены в черный ящик, из которого торчат два

Подробнее

Магнитное поле прямолинейного проводника с током

Магнитное поле прямолинейного проводника с током Магнитное поле прямолинейного проводника с током Основные теоретические сведения Магнитное поле. Характеристики магнитного поля Подобно тому, как в пространстве, окружающем неподвижные электрические заряды,

Подробнее

Контур с током в магнитном поле

Контур с током в магнитном поле Лабораторная работа 1 Контур с током в магнитном поле Цель работы: измерение момента M сил Ампера, действующих на рамку с током в магнитном поле, экспериментальная проверка формулы M = [ pmb], где p m

Подробнее

3.8 Применение закона полного тока для расчета магнитных полей Найдем с помощью закона полного тока магнитное поле прямого тока.

3.8 Применение закона полного тока для расчета магнитных полей Найдем с помощью закона полного тока магнитное поле прямого тока. 3.8 Применение закона полного тока для расчета магнитных полей Найдем с помощью закона полного тока магнитное поле прямого тока. Пусть ток I выходит перпендикулярно из плоскости листа. Выберем вокруг него

Подробнее

Магнитное поле. Тест 1

Магнитное поле. Тест 1 Магнитное поле. Тест 1 1. Магнитное поле: чем создается, чем обнаруживается. 1.1 Магнитное поле создается (выберите правильные варианты ответа): 1) заряженными частицами 2)!!! постоянными магнитами 3)!!!

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21

Д. А. Паршин, Г. Г. Зегря Физика Электромагнетизм (часть 1) Лекция 21 ЛЕКЦИЯ 21 1 ЛЕКЦИЯ 21 Электростатика. Медленно меняющиеся поля. Уравнение Пуассона. Решение уравнения Пуассона для точечного заряда. Потенциал поля системы зарядов. Напряженность электрического поля системы зарядов.

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Электростатика Лекция 21 ЛЕКЦИЯ 21

Д. А. Паршин, Г. Г. Зегря Физика Электростатика Лекция 21 ЛЕКЦИЯ 21 ЛЕКЦИЯ 21 Электростатика. Медленно меняющиеся поля. Условия медленно меняющихся полей. Уравнение Пуассона. Решение уравнения Пуассона для точечного заряда. Потенциал поля системы зарядов. Напряженность

Подробнее

3.6. Поток и циркуляция вектора магнитной индукции.

3.6. Поток и циркуляция вектора магнитной индукции. 1 3.6. Поток и циркуляция вектора магнитной индукции. 3.6.1.Поток вектора магнитной индукции. Как и любое векторное поле, магнитное поле может быть наглядно представлено с помощью линий вектора магнитной

Подробнее

Лабораторная работа 2.20 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА

Лабораторная работа 2.20 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА Лабораторная работа.0 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА Цель работы: теоретический расчет и экспериментальное измерение величины индукции магнитного поля на оси соленоида. Задание:

Подробнее

1 = = 0. (1) R + 1 = C, (2) 1(R)

1 = = 0. (1) R + 1 = C, (2) 1(R) . Электростатика. Электростатика Урок 7 Разделение переменных в сферической и цилиндрической системах координат Оператор Лапласа в сферической системе координат записывается в виде = 2 = 2 ) + sin θ )

Подробнее

ЛЕКЦИЯ 9. Циркуляция и поток вектора магнитной индукции. 1. Циркуляция вектора B Циркуляция вектора B это интеграл вида:

ЛЕКЦИЯ 9. Циркуляция и поток вектора магнитной индукции. 1. Циркуляция вектора B Циркуляция вектора B это интеграл вида: ЛЕКЦИЯ 9 Циркуляция и поток вектора магнитной индукции Вектор магнитной индукции физическая величина, характеризующая магнитное поле точно так же, как напряженность электрического поля характеризует электрическое

Подробнее

Применим теорему Гаусса для пунктирного цилиндра соосного обоим проводникам: = 4π Q.

Применим теорему Гаусса для пунктирного цилиндра соосного обоим проводникам: = 4π Q. Экзамен Емкости простейших конденсаторов 3 Цилиндрический конденсатор Цилиндрический конденсатор это два соосных проводящих цилиндра Длина цилиндров гораздо больше радиусов l0 >> > Применим теорему Гаусса

Подробнее

Изучение магнитного поля на оси соленоида

Изучение магнитного поля на оси соленоида Лабораторная работа 3 Изучение магнитного поля на оси соленоида Цель работы. Исследование распределения индукции магнитного поля вдоль оси соленоида. Приборы и оборудование. Генератор синусоидального тока,

Подробнее

3.5. Поле движущегося заряда. Закон Био-Савара.

3.5. Поле движущегося заряда. Закон Био-Савара. .5. Поле движущегося заряда. Закон Био-Савара..5..Магнитное поле движущегося заряда. Если точечный заряд покоится, то он создает в окружающем его пространстве только электрическое поле. Это поле изотропное,

Подробнее

НПО УЧЕБНОЙ ТЕХНИКИ «ТУЛАНАУЧПРИБОР» МЕТОДИЧЕСКОЕ РУКОВОДСТВО ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ ФЭЛ-3

НПО УЧЕБНОЙ ТЕХНИКИ «ТУЛАНАУЧПРИБОР» МЕТОДИЧЕСКОЕ РУКОВОДСТВО ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ ФЭЛ-3 НПО УЧЕБНОЙ ТЕХНИКИ «ТУЛАНАУЧПРИБОР» МЕТОДИЧЕСКОЕ РУКОВОДСТВО ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ ФЭЛ-3 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА. Тула, 007 г ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ

Подробнее

НПО УЧЕБНОЙ ТЕХНИКИ «ТУЛАНАУЧПРИБОР» МЕТОДИЧЕСКОЕ РУКОВОДСТВО ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ ФЭЛ-3

НПО УЧЕБНОЙ ТЕХНИКИ «ТУЛАНАУЧПРИБОР» МЕТОДИЧЕСКОЕ РУКОВОДСТВО ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ ФЭЛ-3 НПО УЧЕБНОЙ ТЕХНИКИ «ТУЛАНАУЧПРИБОР» МЕТОДИЧЕСКОЕ РУКОВОДСТВО ПО ВЫПОЛНЕНИЮ ЛАБОРАТОРНОЙ РАБОТЫ ФЭЛ-3 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА. Тула, 010 г ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ

Подробнее

9. МАГНИТНОЕ ПОЛЕ ТОКА

9. МАГНИТНОЕ ПОЛЕ ТОКА Тема 9. МАГНИТНОЕ ПОЛЕ ТОКА 9.1. Магнитные взаимодействия 9.. 3акон Био Савара Лапласа и его применение к расчету полей 9..1. Магнитное поле прямого тока 9... Магнитное поле кругового тока 9..3. Магнитное

Подробнее

Закон Био-Савара-Лапласа

Закон Био-Савара-Лапласа Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики «УТВЕРЖДАЮ» Декан ЕНМФ И.П. Чернов г. Закон Био-Савара-Лапласа Методические

Подробнее

Определение напряженности магнитного поля Земли, изучение магнитных полей проводников с током

Определение напряженности магнитного поля Земли, изучение магнитных полей проводников с током Лабораторная работа 1 Определение напряженности магнитного поля Земли, изучение магнитных полей проводников с током ЦЕЛЬ РАБОТЫ Изучение магнитных полей проводников с током различной формы. ПРИБОРЫ И ПРИНАДЛЕЖНОСТИ

Подробнее

Магнитное поле в веществе

Магнитное поле в веществе Магнитное поле в веществе Эта лекция представлена в неокончательном виде Первые два параграфа уйдут в предыдущую лекцию, а материал о магнитном поле в веществе будет дополнен Сила Ампера На движущийся

Подробнее

Основные законы и формулы физики Электричество и магнетизм Электростатика q + q q = const q q q q q q = k 4 πεε 0 r

Основные законы и формулы физики Электричество и магнетизм Электростатика q + q q = const q q q q q q = k 4 πεε 0 r Электричество и магнетизм Электростатика Электростатика - это раздел электродинамики в котором изучаются свойства и взаимодействия неподвижных электрически заряженных тел. При решении задач на электростатику

Подробнее

ОБЩАЯ ФИЗИКА. Электромагнетизм. Лекции МАГНИТНОЕ ПОЛЕ

ОБЩАЯ ФИЗИКА. Электромагнетизм. Лекции МАГНИТНОЕ ПОЛЕ ОБЩАЯ ФИЗИКА. Электромагнетизм. Лекции 13-14 МАГНИТНОЕ ПОЛЕ Понятие о магнитном поле Вектор магнитной индукции силовая характеристика магнитного поля Силовые линии магнитного поля Магнитный поток. Закон

Подробнее

Теория движения электромагнитного поля. 7. Электромагнитное поле и заряды

Теория движения электромагнитного поля. 7. Электромагнитное поле и заряды Теория движения электромагнитного поля. 7. Электромагнитное поле и заряды Л.Н. Войцехович На основе принципов теории движения электромагнитного поля в работе получены общие выражения для дивергенции электрического

Подробнее

Давление и импульс электромагнитных волн. Давление электромагнитной волны на поверхность идеального проводника

Давление и импульс электромагнитных волн. Давление электромагнитной волны на поверхность идеального проводника 1 Давление и импульс электромагнитных волн Давление электромагнитной волны на поверхность идеального проводника 1. Электромагнитные волны, отражаясь или поглощаясь в телах, оказывают на них давление. Это

Подробнее

Лекция 11. Магнитные взаимодействия. Магнитная индукция. Силы Лоренца и Ампера. Закон электромагнитной. к.ф.-м.н. С.Е.Муравьев

Лекция 11. Магнитные взаимодействия. Магнитная индукция. Силы Лоренца и Ампера. Закон электромагнитной. к.ф.-м.н. С.Е.Муравьев Лекция 11. Магнитные взаимодействия. Магнитная индукция. Силы Лоренца и Ампера. Закон электромагнитной индукции к.ф.-м.н. С.Е.Муравьев 1. Магнитные явления Немного истории 1. Независимо развивались «электричество»

Подробнее

РАБОТА 7 ИЗУЧЕНИЕ МАГНИТНЫХ ПОЛЕЙ

РАБОТА 7 ИЗУЧЕНИЕ МАГНИТНЫХ ПОЛЕЙ РАБОТА 7 ИЗУЧЕНИЕ МАГНИТНЫХ ПОЛЕЙ Цель работы: Исследование магнитного поля прямого тока, определение магнитной постоянной. Введение Магнитное поле возникает в пространстве, окружающем проводники с током,

Подробнее

1.5 Поток вектора напряженности электрического поля

1.5 Поток вектора напряженности электрического поля 1.5 Поток вектора напряженности электрического поля Ранее отмечалось, что величина вектора напряженности электрического поля равна количеству силовых линий, пронизывающих перпендикулярную к ним единичную

Подробнее

1. Электрическое поле. В этом разделе мы будем изучать физику неподвижных электрических зарядов - электростатику Электрический заряд

1. Электрическое поле. В этом разделе мы будем изучать физику неподвижных электрических зарядов - электростатику Электрический заряд 1 Электричество и магнетизм Первым исследователям электрических явлений могло показаться, что эти явления являются некоторой экзотикой, не имеют отношения ко многим явлениям природы и вряд ли найдут значительное

Подробнее

r 2 r. E + = 2κ a, E = 2κ a

r 2 r. E + = 2κ a, E = 2κ a 1. Электростатика 1 1. Электростатика Урок 2 Теорема Гаусса 1.1. (1.19 из задачника) Используя теорему Гаусса, найти: а) поле плоскости, заряженной с поверхностной плотностью σ; б) поле плоского конденсатора;

Подробнее

1.3. Теорема Гаусса.

1.3. Теорема Гаусса. 1 1.3. Теорема Гаусса. 1.3.1. Поток вектора через поверхность. Поток вектора через поверхность одно из важнейших понятий любого векторного поля, в частности электрического d d. Рассмотрим маленькую площадку

Подробнее

- закон Кулона в вакууме. Здесь. 1 4πε. где. Ф - электрическая постоянная.

- закон Кулона в вакууме. Здесь. 1 4πε. где. Ф - электрическая постоянная. Лекция (часть ). Электростатика. Электроемкость. Конденсаторы. Электростатика. Закон Кулона. Напряжённость. Принцип суперпозиции. Электрический диполь. Вопросы. Электризация тел. Взаимодействие заряженных

Подробнее

Квазистационарное электромагнитное поле. Экзамен. Закон электромагнитной индукции Фарадея.

Квазистационарное электромагнитное поле. Экзамен. Закон электромагнитной индукции Фарадея. Квазистационарное электромагнитное поле. Экзамен. Закон электромагнитной индукции Фарадея. d инд = закон электромагнитной индукции Фарадея. При dt изменении потока магнитного поля через контур в контуре

Подробнее

Подготовка к КР-1 (часть1). Закон Кулона. Вектор Напряженности. Теорема Гаусса.

Подготовка к КР-1 (часть1). Закон Кулона. Вектор Напряженности. Теорема Гаусса. 1 Подготовка к КР-1 (часть1) Закон Кулона Вектор Напряженности Теорема Гаусса 11 Электрический заряд Электрическое взаимодействие является одним из четырех фундаментальных взаимодействий С одним из них,

Подробнее

Глава 7 МАГНИТНОЕ ПОЛЕ СТАЦИОНАРНОГО ТОКА В ВАКУУМЕ Теоретический материал

Глава 7 МАГНИТНОЕ ПОЛЕ СТАЦИОНАРНОГО ТОКА В ВАКУУМЕ Теоретический материал 04 ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ МЕТОДИКА РЕШЕНИЯ ЗАДАЧ Глава 7 МАГНИТНОЕ ПОЛЕ СТАЦИОНАРНОГО ТОКА В ВАКУУМЕ 7 Теоретический материал Магнитостатическое поле Всякий движущийся заряд порождает в окружающем пространстве

Подробнее

Теорема Гаусса. Применение теоремы Гаусса к расчету полей

Теорема Гаусса. Применение теоремы Гаусса к расчету полей Теорема Гаусса Применение теоремы Гаусса к расчету полей Основные формулы Электростатическое поле можно задать, указав для каждой точки величину и направление вектора Совокупность этих векторов образует

Подробнее

1. Постоянное электрическое поле в вакууме.

1. Постоянное электрическое поле в вакууме. Постоянное электрическое поле в вакууме Закон Кулона: F e, πε где F - сила, действующая на точечный заряд со стороны точечного заряда, расстояние между зарядами, e - единичный вектор, направленный от заряда

Подробнее

1. ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ

1. ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ В ВАКУУМЕ Введение Ещё в глубокой древности было известно, что янтарь, потертый о шерсть притягивает легкие предметы. Английский врач Джильберт (конец 8 века) назвал тела, способные после натирания притягивать легкие

Подробнее

Электромагнитная индукция (примеры решения задач) Проводник движется в постоянном магнитном поле. Рис.1

Электромагнитная индукция (примеры решения задач) Проводник движется в постоянном магнитном поле. Рис.1 Пример 1 Электромагнитная индукция (примеры решения задач) Проводник движется в постоянном магнитном поле В однородном магнитном поле с индукцией B расположен П-образный проводник, плоскость которого перпендикулярна

Подробнее

Решение задач по теме «Магнетизм»

Решение задач по теме «Магнетизм» Решение задач по теме «Магнетизм» Магнитное поле- это особая форма материи, которая возникает вокруг любой заряженной движущейся частицы. Электрический ток- это упорядоченное движение заряженных частиц

Подробнее

Экзамен. Система уравнений Максвелла. (один из основных вопросов курса) Уравнения Максвелла справедливы для переменных электромагнитных полей.

Экзамен. Система уравнений Максвелла. (один из основных вопросов курса) Уравнения Максвелла справедливы для переменных электромагнитных полей. Экзамен Система уравнений Максвелла (один из основных вопросов курса) Уравнения Максвелла справедливы для переменных электромагнитных полей div( D) = ρ 1 B = c система уравнений Максвелла в div( B) = 0

Подробнее

4. Электромагнитная индукция

4. Электромагнитная индукция 1 4 Электромагнитная индукция 41 Закон электромагнитной индукции Правило Ленца В 1831 г Фарадей открыл одно из наиболее фундаментальных явлений в электродинамике явление электромагнитной индукции: в замкнутом

Подробнее

ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ. Студент группа. Допуск Выполнение Защита

ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ. Студент группа. Допуск Выполнение Защита профессор, к.т.н Лукьянов Г.Д. ЛАБОРАТОРНАЯ РАБОТА ОПРЕДЕЛЕНИЕ ГОРИЗОНТАЛЬНОЙ СОСТАВЛЯЮЩЕЙ НАПРЯЖЕННОСТИ МАГНИТНОГО ПОЛЯ ЗЕМЛИ Студент группа Допуск Выполнение Защита Цель работы: экспериментально определить

Подробнее

Модуль 2 ПРОМЕЖУТОЧНОЕ ТЕСТИРОВАНИЕ ПО ТЕМЕ «МАГНЕТИЗМ»

Модуль 2 ПРОМЕЖУТОЧНОЕ ТЕСТИРОВАНИЕ ПО ТЕМЕ «МАГНЕТИЗМ» 1 Модуль ПРОМЕЖУТОЧНОЕ ТЕСТИРОВАНИЕ ПО ТЕМЕ «МАГНЕТИЗМ» Вариант 1 1. ПО КРУГОВЫМ КОНТУРАМ ТЕКУТ ОДИНАКОВЫЕ ТОКИ. ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ, СОЗДАННОГО ТОКАМИ В ТОЧКЕ А, БУДЕТ МАКСИМАЛЬНОЙ В СЛУЧАЕ А) В)

Подробнее

dt dt Частная производная по времени вместо полной производной подчеркивает неизменность пространственных координат при вычислении производной.

dt dt Частная производная по времени вместо полной производной подчеркивает неизменность пространственных координат при вычислении производной. Факультатив Намагниченность и связанные токи для переменных полей j Соотношение ot( M) = справедливо только для постоянных магнитных полей, независящих от времени В более общем случае P j = + ot( M) t

Подробнее

Обсудим начальное самое грубое так называемое нулевое

Обсудим начальное самое грубое так называемое нулевое Факультатив Метод последовательных приближений вычисления квазистационарных электромагнитных полей (этого вопроса нет в учебниках) Если электромагнитные поля изменяются во времени медленно, то уравнения

Подробнее

Ответы: 1) а, б; 2) а, в; 3) б, в. 2. Жесткий электрический диполь находится однородном электростатическом поле.

Ответы: 1) а, б; 2) а, в; 3) б, в. 2. Жесткий электрический диполь находится однородном электростатическом поле. ВАРИАНТ 1 1. Относительно статических электрических полей справедливы утверждения: а) электростатическое поле действует на заряженную частицу с силой, не зависящей от скорости частицы, б) силовые линии

Подробнее

Лабораторная работа 27 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА.

Лабораторная работа 27 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА. Лабораторная работа 7 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА. Цель работы: ознакомление с одним из методов получения магнитного поля в пространстве при помощи плоской катушки с током,

Подробнее

1. СИЛА ЛОРЕНЦА И СИЛА АМПЕРА

1. СИЛА ЛОРЕНЦА И СИЛА АМПЕРА 1. СИЛА ЛОРЕНЦА И СИЛА АМПЕРА Основные теоретические сведения Все проявления магнетизма в природе и технике могут быть сведены к фундаментальному взаимодействию между движущимися зарядами, или между токами

Подробнее

ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ

ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ ПО ОСНОВАМ ЭЛЕКТРОДИНАМИКИ ФИЗИЧЕСКИЕ ОПРЕДЕЛЕНИЯ 1. В каких единицах измеряется электрический заряд в СИ и СГСЭ (ГС)? Как связаны между собой эти единицы для заряда? Заряд протона

Подробнее

6.12. Примеры расчётов магнитных полей

6.12. Примеры расчётов магнитных полей 6.. Примеры расчётов магнитных полей Магнитное поле постоянного тока Пример. Напряжённость магнитного поля Н 79,6 ка/м. Определить магнитную индукцию этого поля в вакууме В.. Магнитная индукция В связана

Подробнее

[m r] [r j ]dv. F = (mb) = (m )B, N = [m B].

[m r] [r j ]dv. F = (mb) = (m )B, N = [m B]. 1 Магнитостатика 1 1 Магнитостатика Урок 19 Векторный потенциал, магнитный диполь Векторный магнитный потенциал A (B = rot A) удовлетворяет уравнениям Векторный потенциал магнитного диполя ϕ t = 0 A =

Подробнее

РЕПЕТИТОР ПО ФИЗИКЕ ЭЛЕКТРОМАГНЕТИЗМ

РЕПЕТИТОР ПО ФИЗИКЕ ЭЛЕКТРОМАГНЕТИЗМ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНЫЙ ИНСТИТУТ РЕПЕТИТОР ПО ФИЗИКЕ ЭЛЕКТРОМАГНЕТИЗМ Учебное пособие Новосибирск 15 УДК 537 (75) ББК.33, Я 73 Р 411 Кафедра теоретической и прикладной

Подробнее

Лекция 9. Магнетизм. Курс: Физика Глава 6 учебника

Лекция 9. Магнетизм. Курс: Физика Глава 6 учебника Лекция 9 Магнетизм Курс: Физика Глава 6 учебника 9.1. Магнитное поле Сила Лоренца В скалярной форме F qe q v, B Л F qvb sin v, B Л Направление силы Лоренца 9.1. Магнитное поле Направление магнитной индукции

Подробнее

Глава 2. Природа движущих

Глава 2. Природа движущих Глава 2. Природа движущих сил Оглавление 1. Расчет и измерение магнитного поля постоянного магнита 2. Магнитные заряды постоянного магнита 3. Уравнения Максвелла для постоянного магнита 4. Силы взаимодействия

Подробнее

B = df Idl. r r I 1 I 2. друг с другом и с магнитами ЭЛЕКТРОМАГНЕТИЗМ. ними. окружает любой ток (движущийся заряд)

B = df Idl. r r I 1 I 2. друг с другом и с магнитами ЭЛЕКТРОМАГНЕТИЗМ. ними. окружает любой ток (движущийся заряд) Сафронов В.П. 2012 ЭЛЕКТРОМАГНЕТИЗМ - 1 - Глава 13 ЭЛЕКТРОМАГНЕТИЗМ 13.1. Магнитное поле I I 1 I 2 Рис. 13.1 I 3 Магнитное взаимодействие. Любые токи или движущиеся заряды взаимодействуют друг с другом

Подробнее

1.9. Преобразования векторов электромагнитного поля. c v

1.9. Преобразования векторов электромагнитного поля. c v .9. Преобразования векторов электромагнитного поля..9.. Преобразования компонент электромагнитного поля. Полученные и изученные нами законы электродинамики применимы для описания явлений, которые происходят

Подробнее

ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА

ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА С ПОМОЩЬЮ ДАТЧИКА ХОЛЛА Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет 38 ИЗУЧЕНИЕ МАГНИТНОГО ПОЛЯ СОЛЕНОИДА

Подробнее

Лекц ия 20 Действие магнитного поля на проводник с током и на движущийся заряд

Лекц ия 20 Действие магнитного поля на проводник с током и на движущийся заряд Лекц ия 0 Действие магнитного поля на проводник с током и на движущийся заряд Вопросы. Сила Ампера. Сила взаимодействия параллельных токов. Контур с током в магнитном поле. Магнитный момент тока. Действие

Подробнее

Факультатив. Связь силы и потенциальной энергии для любых потенциальных полей. W. = мы получили E= ϕ. ϕ r E dl

Факультатив. Связь силы и потенциальной энергии для любых потенциальных полей. W. = мы получили E= ϕ. ϕ r E dl Факультатив Связь силы и потенциальной энергии для любых потенциальных полей W F ' ϕ и E ϕ r E d q' q' = мы получили E= ϕ и из ( ) r Тогда, повторив выкладки, мы из равенства W( r) ( F, d) = r получим

Подробнее

Магнитное поле в вакууме

Магнитное поле в вакууме Федеральное агентство по образованию ГОУ ВПО Уральский государственный технический университет УПИ Магнитное поле в вакууме Вопросы для программированного контроля по физике для студентов всех форм обучения

Подробнее