ПОСЛЕДОВАТЕЛЬНОСТЬ НЕЗАВИСИМЫХ ИСПЫТАНИЙ. Лекция 4

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ПОСЛЕДОВАТЕЛЬНОСТЬ НЕЗАВИСИМЫХ ИСПЫТАНИЙ. Лекция 4"

Транскрипт

1 ЧАСТЬ 3 ПОСЛЕДОВАТЕЛЬНОСТЬ НЕЗАВИСИМЫХ ИСПЫТАНИЙ Лекция 4 НЕЗАВИСИМЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ. АСИМПТОТИЧЕСКИЕ ФОРМУЛЫ МУАВРА ЛАПЛАСА И ПУАССОНА ЦЕЛЬ ЛЕКЦИИ: ввести понятие независимого испытания и доказать формулу Бернулли; сформулировать асимптотические теоремы Муавра Лапласа и Пуассона и указать границы их применимости. При практических применениях теории вероятностей часто встречаются задачи, в которых один и тот же опыт или аналогичные опыты повторяются неоднократно. В результате каждого опыта может появиться или не появиться некоторое событие А. При этом нас интересует не результат каждого отдельного опыта, а общее число появлений события А в результате серии опытов. Например, если производится несколько выстрелов по одной и той же цели, то представляет интерес, как правило, не результат каждого выстрела, а общее число попаданий. В подобных задачах требуется определить вероятность любого заданного числа появлений события в результате серии опытов. Такие задачи решаются достаточно просто в случае, когда опыты являются независимыми. Независимые испытания Несколько опытов считаются независимыми, если вероятность того или иного исхода каждого из опытов не зависит от того, какие результаты имели другие опыты, например несколько последовательных бросаний монеты, несколько выниманий карты из колоды при условии ее возврата в колоду и перемешивания. Независимые испытания могут проводиться как в одинаковых, так и в различных условиях. В первом случае вероятность события А во всех опытах одна и та же, и к нему относится частная теорема о повторении опытов. 6

2 Во втором случае вероятность события А от опыта к опыту меняется общая теорема о повторении опытов. Пример. Производятся три независимых выстрела по мишени с вероятностью попадания p при каждом выстреле. Найти вероятность ровно двух попаданий при трех выстрелах. Р е ш е н и е. Событие B { в мишени ровно два попадания} может произойти тремя способами: ) попаданием в первом и втором выстрелах, промахом в третьем; ) попаданием в первом и третьем выстрелах, промахом во втором; 3) попаданием во втором и третьем выстрелах, промахом в первом. Событие B есть сумма трех несовместных вариантов: B, A A A3 A A A3 A A A3 где A i попадание в i -м выстреле, A i промах. Учитывая, что все три варианта события B несовместны, а события, входящие в произведения, независимы, по правилам сложения и умножения вероятностей ( B ) pp( p) p( p) p ( p) pp Обозначив. ( B ) p q. 3 q p, получаем Аналогичным образом, перечисляя все возможные варианты, в которых интересующее нас событие может появиться заданное число раз, можно решить более общую задачу. Формула Бернулли Проводится независимых опытов, в каждом из которых может появиться или не появиться некоторое событие А, вероятность появления равна p, а не появления q p. Требуется найти вероятность, того, что событие А в этих опытах появится ровно раз. Событие B появление А ровно раз разложим на сумму произведений событий, состоящих в появлении или непоявлении А в отдельном 7

3 опыте ( A i и A i ). Каждый вариант события B (каждый член суммы) должен состоять из появлений А и непоявлений, т. е. A A A A A A A A A A B 3 A A A A A, причем А входит в каждое слагаемое раз, а A 8 раз. Число комбинаций такого рода равно C. Вероятность каждой такой комбинации по теореме умножения для независимых событий равна p q. Так как варианты между собой несовместны, то по теореме сложения вероятность события ( B ), B имеем C p q p q Таким образом, можно сформулировать частную теорему о повторении опытов. Если производится независимых опытов, в каждом из которых событие А может появиться с вероятностью p, то вероятность того, что событие А появится ровно раз, равна, C p q, q p. (3.) Соотношение (3.) называется формулой Бернулли и описывает, как распределяются вероятности между возможными значениями некоторой случайной величины числа появлений события А в испытаниях. Так как вероятности, по форме представляют собой члены разложения бинома ( p q), то распределение вероятностей (3.) называется биноминальным распределением. В связи с тем что все возможные несовместные между собой исходы испытаний состоят в появлении события А раз, раз, раза,, раз, то понятно, что,. Этот же результат может быть получен без учета теоретиковероятностных соображений из равенства, p q) (. C p q.

4 Во многих практических задачах, кроме вероятности 9, появления события А ровно раз, необходимо найти вероятность появлений события А не менее. Для этого обозначим через C событие, состоящее в появлении события А не менее раз, а его вероятность обозначим через. Очевидно, что R, C B B B, откуда по теореме сложения т. е. R,,,,, R i, i,. (3.) При вычислении R, часто удобнее не использовать соотношение (3.), а перейти к противоположному событию и вычислять вероятность R, по формуле, R. i i, Локальная и интегральная предельные теоремы Рассмотрим пример, относящийся к независимым испытаниям, не доводя до конца вычисление искомых вероятностей. Пример. По каналу связи передано сообщение, состоящее из нулей и единиц. Вероятности передачи как единицы, так и нуля одинаковы и равны,5. Найти вероятность того, что из переданных двоичных цифр число нулей окажется: а) ровно 5; б) не более 5. Р е ш е н и е. В примере, p, 5, q, 5, и поэтому: а) число нулей окажется равным 5: ; (3.3) , C(,5) (,5) C(, 5) б) вероятность того, что число нулей окажется не более 5, равна сумме вероятностей, что число нулей окажется равным,,,, 5, т. е. 5 i 5 i i, (,5) (, ) i i { 5 } i C 5. (3.4)

5 Пример показывает, что непосредственное вычисление вероятностей по формулам (3.3) и (3.4) весьма трудоемко, и возникает задача нахождения простых приближенных формул для вычислений вероятностей, и s k, при больших. Исследуем поведение вероятностей, при постоянном в зависимости от. Для получаем, C p q ( ) p. (3.5) C p q ( ) q, Из выражения (3.5) следует, что:,,,,,,, если ( ) p ( ) q, т. е. p q ;, если p q ;, если p q. Видим, что с ростом вероятность, сначала возрастает, затем достигает максимума и наконец убывает. При этом если величина p q является целым числом, то максимального значения вероятность 3, достигает при двух значениях : p q и p q p p. Если же p q не является целым, то максимального значения вероятность, достигает при большему, чем p q. Если p q, то,,,. При p q,,,,., равном наименьшему целому числу, Оказалось, что при больших почти все вероятности, очень малы. И только для близких к вероятнейшему значению вероятности, сколько-нибудь заметно отличаются от нуля. Такое поведение

6 вероятности, при больших и лежит в основе локальной и интегральной теорем Муавра Лапласа. Впервые асимптотическую формулу, облегчающую вычисление 3, при больших, нашел Муавр в 73 г. для частного случая при p q, а затем обобщил Лаплас для произвольного p, отличного от и. Вводится обозначение p x, т. е. величина x зависит как от и p, так и от. Локальная теорема Муавра Лапласа (без доказательства). Если вероятность наступления некоторого события А в независимых испытаниях постоянна и равна p ( p ), то вероятность, того, что в этих испытаниях событие А наступит ровно раз, удовлетворяет соотношению x,. (3.6) Теперь решим задачу а) рассматриваемого примера, используя соотношение (3.6). Нужно найти, при, 5 и p, 5. По формуле (3.6) имеем p,. Для нашего примера получаем 5,8, x и соответственно,. 5,8 x Функция ( x ) табулирована (см. прил. ). Так как значение ( ), 3989, то окончательно получаем,3989,,53. 5,8

7 Точные подсчеты по формуле Бернулли (3.) дают,55., Интегральная теорема Муавра Лапласа (без доказательства). Если есть число наступлений события А в независимых испытаниях, в каждом из которых вероятность этого события равна p, причем p, то равномерно относительно a и b ( a b ) имеет место соотношение b z p a b a dz. (3.7) Решение задачи б) при использовании формулы (3.7) требует умения вычислять значение интеграла Лапласа x z ( x) dz (3.8) при любых значениях x. Так как интеграл (3.8) при x через элементарные функции не выражается, то для вычислений интеграла Лапласа требуются специальные таблицы (прил. ). Интеграл b z a dz ( b) ( a) вычисляем через значения функции (x), причем в приложении приведены значения (x) только для положительных x, так как интеграл Лапласа является нечетной функцией, для которой выполняется условие, что ( x ) ( x) (см. рис. 3.). Теперь решим задачу б) рассматриваемого примера, используя соотношение (3.7). { 5} p { p 5} 5 p. (x) / Рис. 3.. Интеграл Лапласа (x) / x 3

8 После подстановки значений 34,79 p, p, q получаем,6 (,6) ( 34,79),3967,5, 8967.,6 34,79 Значение ( 34,79), 5, так как уже величина ( 5), (прил. ). Типичная задача, приводящая к интегральной теореме Муавра Лапласа. Проводится независимых испытаний, в каждом из которых вероятность наступления события А равна p. Чему равна вероятность того, что частота наступления события А отклонится от вероятности p не более чем на? Р е ш е н и е. Искомая вероятность равна z dz p p z z dz dz. Естественно, что в задачах, относящихся к определению вероятностей, при конечных и асимптотическими формулами Муавра Лапласа, требуется производить оценку совершаемой при этом ошибки. В течение очень долгого времени теоремы Муавра Лапласа применялись к решению подобного рода задач без сколько-нибудь удовлетворительной оценки остаточного члена. Создалась чисто эмпирическая уверенность, что при порядка нескольких сотен или еще больше и p, не слишком близких к и, использование теорем Муавра Лапласа приводит к удовлетворительным результатам. В настоящее время существуют достаточно хорошие оценки погрешностей, совершаемых при употреблении асимптотических формул Муавра Лапласа. 33

9 Терема Пуассона Было замечено, что асимптотическое представление вероятности, посредством функции (x) получается тем хуже, чем больше p отличается от, т. е. чем меньшее p или q приходится рассматривать. Однако значительное количество задач связано с необходимостью вычислять вероятности, именно при малых p. То есть, чтобы теорема Му- авра Лапласа дала приемлемый результат, необходимо произвести очень большое число независимых испытаний. Задача нахождения асимптотической формулы вычисления вероятностей, при малых p решена теоремой Пуассона. Теорема Пуассона. Если p, то вероятность ровно положительных исходов при испытаниях равна,, (3.9)! где p. Пример. Из одной ЭВМ на другую необходимо передать файл объемом 8 символов. Вероятность ошибки при передаче символа равна,. Найти вероятность того, что будет не менее двух ошибок при передаче файла. Р е ш е н и е. Считая передачу каждого символа как испытание, а ошибку как событие, можно вычислить вероятность { }, используя формулу (3.9) при p 8 { ( } ,8 ), (,, Вычисление по точной формуле (3.) дает { },99699, т. е. ошибка меньше, %. Практические соображения по применению теоремы Пуассона: p,; 9. )


ЛЕКЦИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ ТЕМА 7: СХЕМА БЕРНУЛЛИ

ЛЕКЦИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ ТЕМА 7: СХЕМА БЕРНУЛЛИ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЛЕКЦИЯ ПО ТЕОРИИ

Подробнее

n = 4, k = 3, p = 0,9, q = 0,1

n = 4, k = 3, p = 0,9, q = 0,1 Лекция 4. Повторение независимых испытаний. Формула Бернулли Если производится несколько испытаний причем вероятность события A в каждом испытании не зависит от исходов других испытаний то такие испытания

Подробнее

И ЕГО ПРЕДЕЛЬНЫЕ ФОРМЫ. Методические указания и примерная программа проведения. лабораторной работы (практического занятия ) в среде MathCad

И ЕГО ПРЕДЕЛЬНЫЕ ФОРМЫ. Методические указания и примерная программа проведения. лабораторной работы (практического занятия ) в среде MathCad БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ И ЕГО ПРЕДЕЛЬНЫЕ ФОРМЫ Методические указания и примерная программа проведения лабораторной работы (практического занятия в среде MathCad по курсу «Теория вероятностей и математическая

Подробнее

{ схема независимых испытаний - пример формула Бернулли - биномиальный закон распределения - геометрическое распределение теорема Муавра-Лапласа

{ схема независимых испытаний - пример формула Бернулли - биномиальный закон распределения - геометрическое распределение теорема Муавра-Лапласа { схема независимых испытаний - пример формула Бернулли - биномиальный закон распределения - геометрическое распределение теорема Муавра-Лапласа интегральная теорема Муавра-Лапласа - распределение Пуассона

Подробнее

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) БИНОМИАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ

Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) БИНОМИАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ Разработчик курса доцент кафедры высшей математики кандидат технических наук Некряч Е.Н.(2009 г.) БИНОМИАЛЬНЫЙ ЗАКОН РАСПРЕДЕЛЕНИЯ Очень часто приходится встречаться с задачами, когда один и тот же опыт

Подробнее

ТЕМА 5. ПОВТОРЕНИЕ ОПЫТОВ. ПОТОК СОБЫТИЙ

ТЕМА 5. ПОВТОРЕНИЕ ОПЫТОВ. ПОТОК СОБЫТИЙ ТЕМА 5 ПОВТОРЕНИЕ ОПЫТОВ ПОТОК СОБЫТИЙ Последовательность независимых испытаний Формула Бернулли Асимптотическая формула Пуассона и условия ее применения Локальная теорема Муавра Лапласа Свойства функции

Подробнее

«Теория вероятностей»

«Теория вероятностей» ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по дисциплине

Подробнее

m раз. Тогда m называется частотой, а отношение f = - относительной

m раз. Тогда m называется частотой, а отношение f = - относительной Лекция Теория вероятностей Основные понятия Эксперимент Частота Вероятность Теория вероятностей раздел математики, изучающий закономерности случайных явлений Случайные события это события, которые при

Подробнее

Оглавление. Глава 1. Случайные события (продолжение). Схема Бернулли. 19. Схема Бернулли

Оглавление. Глава 1. Случайные события (продолжение). Схема Бернулли. 19. Схема Бернулли Оглавление Глава. Случайные события (продолжение).... Схема Бернулли.... Формула Бернулли.... Наивероятнейшее число успехов в схеме Бернулли.... 5 Вероятность хотя бы одного успеха в схеме Бернулли....

Подробнее

ЛЕКЦИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ ТЕМА 5: ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ

ЛЕКЦИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ ТЕМА 5: ОСНОВНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЛЕКЦИЯ ПО ТЕОРИИ

Подробнее

Асимптотическая формула Пуассона.

Асимптотическая формула Пуассона. Асимптотическая формула Пуассона. ) Вероятность рождения белого тигра равна.. Найти вероятность того что среди рождённых тигрят окажется от до белых тигрят. Обозначим события: A - среди рождённых тигрят

Подробнее

ГЛАВА 4. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ. 1. Неравенства Чебышева

ГЛАВА 4. ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ. 1. Неравенства Чебышева ГЛАВА 4 ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ Неравенства Чебышева Доказательство теоремы Чебышева основывается на неравенстве Чебышева Докажем это неравенство Неравенство Чебышева Вероятность того что отклонение (СВ) ξ

Подробнее

1.33. Неравенство Чебышева. ε ε. = ε. = 2 ε ( x) P( X ε). (Для дискретной случайной величины доказательство аналогично).

1.33. Неравенство Чебышева. ε ε. = ε. = 2 ε ( x) P( X ε). (Для дискретной случайной величины доказательство аналогично). Т Неравенство Чебышева.33. Неравенство Чебышева Пусть случайная величина имеет второй начальный момент MХ, тогда: M 0 P( ) неравенство Чебышева () Док ( непрерывная случайная величина) MХ = x f( x) dx

Подробнее

Схема независимых испытаний Бернулли. Предельные теоремы в схеме Бернулли.

Схема независимых испытаний Бернулли. Предельные теоремы в схеме Бернулли. Схема независимых испытаний Бернулли. Предельные теоремы в схеме Бернулли. Рассмотрим некоторый стохастический эксперимент, который будем называть испытанием. Среди исходов этого испытания будем различать

Подробнее

Теория вероятностей. Алгебра событий. , или обоих этих событий; б) Умножение (пересечение) событий. Произведением событий B = A 1

Теория вероятностей. Алгебра событий. , или обоих этих событий; б) Умножение (пересечение) событий. Произведением событий B = A 1 Теория вероятностей В контрольную работу по этой теме входят четыре задания Приведем основные понятия теории вероятностей необходимые для их выполнения Для решения задач 50 50 необходимо знание темы Случайные

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Схема Бернулли.

Лекция 5 Тема. Содержание темы. Основные категории. Схема Бернулли. Лекция 5 Тема Схема Бернулли. Содержание темы Схема Бернулли. Формула Бернулли. Наивероятнейшее число успехов в схеме Бернулли. Биномиальная случайная величина. Основные категории бином Ньютона, схема

Подробнее

1.7.6 Теорема гипотез (формула Бейеса)

1.7.6 Теорема гипотез (формула Бейеса) Лекция 4 План лекции.7.6 Теорема гипотез.7.7 Независимые повторные испытания.7.7. Формула Бернулли.7.7. Локальная теорема Лапласа.7.7. Интегральная теорема Лапласа.7.6 Теорема гипотез (формула Бейеса)

Подробнее

Лекция 2. Теоремы сложения и умножения вероятностей. Сумма и произведение события

Лекция 2. Теоремы сложения и умножения вероятностей. Сумма и произведение события Лекция 2. Теоремы сложения и умножения вероятностей Сумма и произведение события Суммой или объединением, нескольких событий называется событие, состоящее в появлении наступления хотя бы одного из этих

Подробнее

Лекция 3 УСЛОВНАЯ ВЕРОЯТНОСТЬ И НЕЗАВИСИМОСТЬ СОБЫТИЙ. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ И ТЕОРЕМА БАЙЕСА

Лекция 3 УСЛОВНАЯ ВЕРОЯТНОСТЬ И НЕЗАВИСИМОСТЬ СОБЫТИЙ. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ И ТЕОРЕМА БАЙЕСА Лекция 3 УСЛОВНАЯ ВЕРОЯТНОСТЬ И НЕЗАВИСИМОСТЬ СОБЫТИЙ ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ И ТЕОРЕМА БАЙЕСА ЦЕЛЬ ЛЕКЦИИ: определить понятия условной вероятности и независимости событий; построить правило умножения

Подробнее

функции. многочленов на ошибку степени многочлена степени ростом ошибку? таблицы?

функции. многочленов на ошибку степени многочлена степени ростом ошибку? таблицы? Разработчик методических указаний для выполнения лабораторных работ доцент, к.ф.-м.н. Ласуков В. В. Интерполяция с помощью многочленов Задание 1. С помощью интерполяционных многочленов Лагранжа (илии Ньютона)

Подробнее

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа

Тема 11. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Тема. Неравенство Чебышева. Теорема Чебышева. Теорема Бернулли. Центральная предельная теорема. Интегральная теорема Муавра-Лапласа Содержание Предельные теоремы теории вероятности 2 Неравенство Чебышева

Подробнее

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 13

ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 13 ЧАСТЬ 7 ПРЕДЕЛЬНЫЕ ТЕОРЕМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Лекция 3 ЗАКОН БОЛЬШИХ ЧИСЕЛ И ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА ЦЕЛЬ ЛЕКЦИИ: доказать неравенство Чебышева; сформулировать и доказать закон больших чисел и

Подробнее

Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН. . Производящей функцией для случайной величины X называется функция вида

Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН. . Производящей функцией для случайной величины X называется функция вида Лекция 7 РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить производящую функцию и вычислить параметры биномиального, пуассоновского, геометрического и гипергеометрического распределений;

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ

ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ ОГЛАВЛЕНИЕ ЧАСТЬ I. ЛЕКЦИИ... 8 ВВЕДЕНИЕ... 9 ЛЕКЦИЯ 1... 13 ВВЕДЕНИЕ В ТЕОРИЮ ВЕРОЯТНОСТЕЙ... 13 1. Определение теории вероятностей... 13 2. Некоторые примеры... 14 3. Устойчивость частот в массовых статистических

Подробнее

рисунке 10 изображен полигон распределения для p=0,2 при числе испытаний n, равном 6.

рисунке 10 изображен полигон распределения для p=0,2 при числе испытаний n, равном 6. Тема 7 Случайная величина, распределенная по закону Бернулли. При двух заданных числах: ) количество повторных независимых испытаний, ) p вероятность события A в одном испытании можно по формуле Бернулли

Подробнее

ПОВТОРНЫЕ ИСПЫТАНИЯ. Схема независимых испытаний Бернулли

ПОВТОРНЫЕ ИСПЫТАНИЯ. Схема независимых испытаний Бернулли ПОВТОРНЫЕ ИСПЫТАНИЯ Схема независимых испытаний Бернулли До сих пор мы в основном разбирали задачи нахождения вероятности события в единичном испытании, т.е. когда эксперимент производится один раз. Теперь

Подробнее

Теория вероятностей. Случайные события. Параграф 1: Общие понятия.

Теория вероятностей. Случайные события. Параграф 1: Общие понятия. Параграф : Общие понятия Теория вероятностей Случайные события Определение : Теория вероятностей математическая наука, изучающая количественные закономерности в случайных явлениях Теория вероятностей не

Подробнее

Схема независимых испытаний. Повторные испытания Бернулли

Схема независимых испытаний. Повторные испытания Бернулли Схема независимых испытаний Повторные испытания Бернулли 1 Схема независимых испытаний Предположим, что производятся независимые испытания, в каждом из которых событие A может появиться с вероятностью

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 2011/2012 учебный год, 1-й семестр Лекция 5. Тема: Комбинаторика, введение в теорию вероятностей 1 Тема: Комбинаторика Комбинаторика это раздел математики, изучающий

Подробнее

ТЕМА 3. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ

ТЕМА 3. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ ТЕМА. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ Операции над случайными событиями. Алгебра событий. Понятие совместности событий. Полная группа событий. Зависимость и независимость случайных событий. Условная

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Комбинаторика, правила произведения и суммы. Виды соединений

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Комбинаторика, правила произведения и суммы. Виды соединений ТЕОРИЯ ВЕРОЯТНОСТЕЙ Комбинаторика, правила произведения и суммы Комбинаторика как наука Комбинаторика это раздел математики, в котором изучаются соединения подмножества элементов, извлекаемые из конечных

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Общее определение вероятности было дано на лекции 1. Напомним его.

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. Общее определение вероятности было дано на лекции 1. Напомним его. С А Лавренченко http://lawrencenkoru ТЕОРИЯ ВЕРОЯТНОСТЕЙ Практическое занятие 2 Условная вероятность Формула Бернулли Стоят девчонки, стоят в сторонке, Платочки в руках теребят, Потому что на десять девчонок

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

Определение. Произведение всех натуральных чисел от 1 до n включительно называют n-факториалом и пишут. 6 Перестановки

Определение. Произведение всех натуральных чисел от 1 до n включительно называют n-факториалом и пишут. 6 Перестановки 1 Основные понятия комбинаторики 1 Приложение Определение Произведение всех натуральных чисел от 1 до n включительно называют n-факториалом и пишут Пример Вычислить 4! 3! n! 1 3 n 4!-3!= 1 3 4 1 3 4 18

Подробнее

Схема Бернулли (продолжение). Предельные теоремы схемы Бернулли. 22. Предельные теоремы в схеме Бернулли

Схема Бернулли (продолжение). Предельные теоремы схемы Бернулли. 22. Предельные теоремы в схеме Бернулли Оглавление Глава. Случайные события (продолжение.... Схема Бернулли (продолжение. Предельные теоремы схемы Бернулли.... Теорема Пуассона.... Локальная теорема Муавра-Лапласа.... 3 Интегральная теорема

Подробнее

Формула полной вероятности.

Формула полной вероятности. Формула полной вероятности. Пусть имеется группа событий H 1, H 2,..., H n, обладающая следующими свойствами: 1) Все события попарно несовместны: H i H j =; i, j=1,2,...,n; ij 2) Их объединение образует

Подробнее

6.7. Статистические испытания

6.7. Статистические испытания Лекция.33. Статистические испытания. Доверительный интервал. Доверительная вероятность. Выборки. Гистограмма и эмпирическая 6.7. Статистические испытания Рассмотрим следующую общую задачу. Имеется случайная

Подробнее

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск 018 018 Кафедра высшей

Подробнее

ТЕМА 1. Комбинаторика. Вычисление вероятностей = 4080.

ТЕМА 1. Комбинаторика. Вычисление вероятностей = 4080. ТЕМА 1 Комбинаторика Вычисление вероятностей Задача 1Б В розыгрыше кубка страны по футболу берут участие 17 команд Сколько существует способов распределить золотую, серебряную и бронзовую медали? Поскольку

Подробнее

М. М. Попов Теория вероятности Конспект лекций

М. М. Попов Теория вероятности Конспект лекций 2009 М. М. Попов Теория вероятности Конспект лекций Выполнил студент группы 712 ФАВТ А. В. Димент СПбГУКиТ Случайное событие всякий факт, который в результате опыта может произойти или не произойти, и

Подробнее

ЧАСТЬ 1 ВВЕДЕНИЕ. Лекция 1 ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ

ЧАСТЬ 1 ВВЕДЕНИЕ. Лекция 1 ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ ЧАСТЬ 1 ВВЕДЕНИЕ Лекция 1 ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ ЦЕЛЬ ЛЕКЦИИ: определить предмет курса; ввести понятия опыта, случайного явления, случайного события, а также вероятности и частоты события;

Подробнее

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций

Теория вероятностей и математическая статистика 4. Тип заданий Контрольные работы Количество этапов формирования компетенций 8. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):. Кафедра Общие сведения. Направление подготовки Экономика Математики и математических методов в экономике

Подробнее

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение

ГЛАВА 3. СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ. 1. Биномиальное распределение ГЛАВА СТАНДАРТНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Биномиальное распределение Пусть эксперимент проводится по схеме Бернулли Определение Дискретная случайная величина имеет биномиальное распределение с параметрами

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ (Пензенский филиал) Кафедра «Менеджмент, информатика и

Подробнее

М.П. Харламов Конспект

М.П. Харламов  Конспект М.П. Харламов http://vlgr.ranepa.ru/pp/hmp Конспект Теория вероятностей и математическая статистика Краткий конспект первого раздела (вопросы и ответы) Доктор физ.-мат. наук профессор Михаил Павлович Харламов

Подробнее

Основные положения теории вероятностей

Основные положения теории вероятностей Основные положения теории вероятностей Случайным относительно некоторых условий называется событие, которое при осуществлении этих условий может либо произойти, либо не произойти. Теория вероятностей имеет

Подробнее

Лекции 8 и 9 Тема: Закон больших чисел и предельные теоремы теории вероятностей

Лекции 8 и 9 Тема: Закон больших чисел и предельные теоремы теории вероятностей Лекции 8 и 9 Тема: Закон больших чисел и предельные теоремы теории вероятностей Закономерности в поведении случайных величин тем заметнее, чем больше число испытаний, опытов или наблюдений Закон больших

Подробнее

Предельные теоремы 1

Предельные теоремы 1 Предельные теоремы 1 Неравенства Чебышёва Теорема. X 0 1. Если случайная величина неотрицательна и имеет конечное математическое ожидание MX, то для любого числа справедливо первое неравенство Чебышёва

Подробнее

1. Срединная формула прямоугольников

1. Срединная формула прямоугольников Срединная формула прямоугольников Введем обозначение I d Пусть -непрерывны на [ ] Разделим отрезок [ ] равных частичных отрезков [ ] где на Введем обозначения ( ) ( ) ( ) интеграл I в виде Представим где

Подробнее

АКСИАМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 2

АКСИАМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Лекция 2 ЧАСТЬ АКСИАМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ Лекция ТЕОРЕТИКО-МНОЖЕСТВЕННАЯ ТРАКТОВКА ОСНОВНЫХ ПОНЯТИЙ ТЕОРИИ ВЕРОЯТНОСТЕЙ АКСИОМЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ И ИХ СЛЕДСТВИЯ ЦЕЛЬ ЛЕКЦИИ: познакомить с

Подробнее

Случайные события Действия над событиями

Случайные события Действия над событиями TTÜ VIRUMAA KOLLEDŽ RAR0530 Tõenäosusteooria ja matemaatiline statistika Лекция 1 Случайные события Действия над событиями Õppejõud: I. Gusseva ТЕОРИЯ ВЕРОЯТНОСТЕЙ Введение Tеория вероятностей занимается

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Принцип умножения. 2. Построение функции распределения для дискретной случайной величины. 3. Генеральная и выборочная совокупности, свойство репрезентативности. Экзаменационный

Подробнее

Тест 02. Б2.Б.1.3 Теория вероятности и математическая статистика шифр и наименование дисциплины по учебному плану направления подготовки

Тест 02. Б2.Б.1.3 Теория вероятности и математическая статистика шифр и наименование дисциплины по учебному плану направления подготовки Тест 01 1. Случайные события и их классификация. 2. Математическое ожидание случайной величины. 3. В ящике находятся 15 красных, 9 голубых и 6 зеленых шаров. Наудачу вынимают 6 шаров. Какова вероятность

Подробнее

Вероятность. Что это? Теория вероятностей случайного события Как решать задачи: классическая вероятность Вероятностью события

Вероятность. Что это? Теория вероятностей случайного события Как решать задачи: классическая вероятность Вероятностью события Вероятность. Что это? Теория вероятностей, как следует из названия, имеет дело с вероятностями. Нас окружают множество вещей и явлений, о которых, как бы ни была развита наука, нельзя сделать точных прогнозов.

Подробнее

4. Теория вероятностей

4. Теория вероятностей 4. Теория вероятностей В контрольную работу по этой теме входят четыре задания. Приведем основные понятия теории вероятностей, необходимые для их выполнения. Для решения задач 50 50 необходимо знание темы

Подробнее

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ

ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ ТЕМА 8. СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН. ЗАКОН БОЛЬШИХ ЧИСЕЛ Случайные векторы. Закон распределения. Условные распределения случайных величин. Числовые характеристики случайных векторов. Условные математические

Подробнее

Решение типовых задач

Решение типовых задач типовых задач Теоремы сложения и умножения вероятностей 1) В урне 5 белых и 10 черных шаров. Из урны последовательно достают два шара. Найти вероятность того, что: а) шары будут одинакового цвета (шары

Подробнее

МГАПИ. Типовой расчет по высшей математике. Раздел: «Теория вероятностей» Вариант 31

МГАПИ. Типовой расчет по высшей математике. Раздел: «Теория вероятностей» Вариант 31 МГАПИ Типовой расчет по высшей математике Раздел: «Теория вероятностей» Вариант 31 Задача 1. Наладчик обслуживает одновременно 3 автоматических станках. Вероятность того, что в течение часа станки будут

Подробнее

)? (Вероятность попадания непрерывной СВ

)? (Вероятность попадания непрерывной СВ Случайные величины. Определение СВ ( Случайной называется величина, которая в результате испытания может принимать то или иное значение, заранее не известное).. Какие бывают СВ? ( Дискретные и непрерывные.

Подробнее

def Интервал ( 1 ; 2 ) называют доверительным интервалом для

def Интервал ( 1 ; 2 ) называют доверительным интервалом для .0. Определение доверительного интервала Пусть θ некоторый неизвестный параметр распределения. По выборке X,..., Х из данного распределения построим интервальную оценку параметра θ распределения, то есть

Подробнее

ПРИЛОЖЕНИЕ 1 ЛИТЕРАТУРА. 1 Таблица значений функции ϕ ( x)

ПРИЛОЖЕНИЕ 1 ЛИТЕРАТУРА. 1 Таблица значений функции ϕ ( x) ЛИТЕРАТУРА. Венцель Е. С., Овчаров Л. А. Теория вероятностей и ее инженерные приложения. М.: Наука,. 0 с.. Венцель Е. С. Теория вероятностей. М.: Наука,. с.. Гнеденко Б. В. Курс теории вероятностей. М.:

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

игральных костях): C6 C6 а) Подсчитаем количество благоприятствующих исходов:

игральных костях): C6 C6 а) Подсчитаем количество благоприятствующих исходов: Задачник Чудесенко, теория вероятностей, вариант Бросаются две игральные кости. Определить вероятность того, что: а сумма числа очков не превосходит N ; б произведение числа очков не превосходит N ; в

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ.

ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Теория вероятностей - раздел математики, изучающий закономерности, возникающие в случайных испытаниях. Исход испытания - случайный по отношению к испытанию, если в ходе этого

Подробнее

8. Вероятность попадания в цель для двух стрелков равна соответственно 0.7 и 0.8. Тогда вероятность поражения цели равна

8. Вероятность попадания в цель для двух стрелков равна соответственно 0.7 и 0.8. Тогда вероятность поражения цели равна Тема: Теория вероятностей Дисциплина: Математика Авторы: Нефедова Г.А. Дата: 9.0.0. Вероятность случайного события может быть равна. 0.5. 3. 0. 0.7 5..5 6. - 7. 0.3. Вероятность достоверного события равна.

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Распределение числа успехов (появлений события A) носит название биномиального распределения.

Распределение числа успехов (появлений события A) носит название биномиального распределения. 1.6. Независимые испытания. Формула Бернулли При решении вероятностных задач часто приходится сталкиваться с ситуациями, в которых одно и то же испытание повторяется многократно и исход каждого испытания

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль СЛУЧАЙНЫЕ СОБЫТИЯ

Подробнее

по дисциплине «Математика» для студентов второго курса строительных специальностей

по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к самостоятельной подготовке за четвертый семестр по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск

Подробнее

М.В.Дубатовская Теория вероятностей и математическая статистика. Основные законы распределения дискретных случайных величин

М.В.Дубатовская Теория вероятностей и математическая статистика. Основные законы распределения дискретных случайных величин МВДубатовская Теория вероятностей и математическая статистика Лекция 9 Основные законы распределения случайных величин Основные законы распределения дискретных случайных величин Биномиальное распределение

Подробнее

Лекция 2 Тема: АЛГЕБРА СОБЫТИЙ. ОСНОВНЫЕ ТЕОРЕМЫ О ВЕРОЯТНОСТИ

Лекция 2 Тема: АЛГЕБРА СОБЫТИЙ. ОСНОВНЫЕ ТЕОРЕМЫ О ВЕРОЯТНОСТИ Лекция Тема: АЛГЕБРА СОБЫТИЙ ОСНОВНЫЕ ТЕОРЕМЫ О ВЕРОЯТНОСТИ Алгебра событий Суммой событий и называется событие S = +, которое состоит в наступлении хотя бы одного из них Произведением событий и называется

Подробнее

ЛЕКЦИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ ТЕМА 4: ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ СОБЫТИЯ

ЛЕКЦИЯ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ ТЕМА 4: ОПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ СОБЫТИЯ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ЛЕКЦИЯ ПО ТЕОРИИ

Подробнее

Решение задач из сборника Чудесенко Теория вероятностей Задачи Вариант 6

Решение задач из сборника Чудесенко Теория вероятностей Задачи Вариант 6 Решение задач из сборника Чудесенко Теория вероятностей Задачи -0. Вариант 6 Задача. Бросаются две игральные кости. Определить вероятность того, что: а) сумма числа очков не превосходит N; б) произведение

Подробнее

Теория вероятностей. Методические указания к выполнению РГР. Для студентов ФТКиТ

Теория вероятностей. Методические указания к выполнению РГР. Для студентов ФТКиТ МИНИСТЕРСТВО КУЛЬТУРЫ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КИНО И

Подробнее

Числовые характеристики нормального распределения

Числовые характеристики нормального распределения Числовые характеристики нормального распределения X Если случайная величина, имеющая нормальное распределение с параметрами a и, то математическое ожидание совпадает с параметром, дисперсия с M X a, D

Подробнее

Тема Основные теоремы и формулы теории вероятностей

Тема Основные теоремы и формулы теории вероятностей Лекция 3 Тема Основные теоремы и формулы теории вероятностей Содержание темы Алгебра событий. Теоремы сложения вероятностей. Условная вероятность. Теоремы умножения вероятностей. Формула полной вероятности.

Подробнее

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ Роганов В. Р., Роганова С. М., Новосельцева М. Е. Учебное пособие Пенза, 007 УДК 59.73;59.68;59.764800.9

Подробнее

Вероятность. достоверные. случайные

Вероятность. достоверные. случайные 1 Вероятность Обработка экспериментальных данных происходит с помощью различных методов. Обычно исследователь, получив данные эксперимента на одной или нескольких группах испытуемых и определив по ним

Подробнее

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения.

X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Варианты контрольной работы

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

Теория вероятностейсвойства. Основные теоремы теории вероятностей. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю.

Теория вероятностейсвойства. Основные теоремы теории вероятностей. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Теория вероятностейсвойства вероятностей. Основные теоремы теории вероятностей. Составитель: доцент кафедры ИТОиМ, к. ф.-м. н. Романова Н.Ю. Свойства вероятностей: вероятность достоверного события равна

Подробнее

что и требовалось доказать. При доказательстве мы использовали свойство неотрицательности функции плотности и неравенство (*)).

что и требовалось доказать. При доказательстве мы использовали свойство неотрицательности функции плотности и неравенство (*)). Оглавление Глава 5 Предельные теоремы 5 Неравенство Чебышѐва 5 Типы сходимости случайных величин 3 Диаграмма зависимости видов сходимости 3 53 Суммы случайных величин 4 Среднее арифметическое случайных

Подробнее

2) если случайные события образуют полную группу несовместных событий, то имеет место равенство P(A 1 + A A k )= P(A 1 )+ P(A 2 )+ + P(A k )=1

2) если случайные события образуют полную группу несовместных событий, то имеет место равенство P(A 1 + A A k )= P(A 1 )+ P(A 2 )+ + P(A k )=1 13 Сложение и умножение вероятностей Событие А называется частным случаем события В, если при наступлении А наступает и В Записывается: События А и В называются равными, если каждое из них является частным

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

вероятность того, что произведение очков не превзойдет в) Подсчитаем количество благоприятствующих исходов: , в) p 5

вероятность того, что произведение очков не превзойдет в) Подсчитаем количество благоприятствующих исходов: , в) p 5 ) Бросаются две игральные кости. Определить вероятность того, что: а) сумма числа очков не превосходит N ; б) произведение числа очков не превосходит N ; в) произведение числа очков делится на N. Решение:

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. РЕШЕНИЕ ЗАДАЧ ПО ТЕМЕ: «ДИСКРЕТНЫЕ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН»

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. РЕШЕНИЕ ЗАДАЧ ПО ТЕМЕ: «ДИСКРЕТНЫЕ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН» Министерство сельского хозяйства РФ Департамент научно-технологической политики и образования ФГОУ ВПО Волгоградская государственная сельскохозяйственная академия Кафедра высшей математики ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Лекция 12. Понятие о системе случайных величин. Законы распределения системы случайных величин

Лекция 12. Понятие о системе случайных величин. Законы распределения системы случайных величин МВДубатовская Теория вероятностей и математическая статистика Лекция Понятие о системе случайных величин Законы распределения системы случайных величин Часто возникают ситуации когда каждому элементарному

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. 1. Комбинации событий в свете общего определения вероятности

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. 1. Комбинации событий в свете общего определения вероятности С А Лавренченко http://lawrencenkoru ТЕОРИЯ ВЕРОЯТНОСТЕЙ Лекция 2 Условная вероятность Формула Бернулли «Меч он же клинок символизирует все мужское Думаю его можно изобразить вот так И Мари указательным

Подробнее

3. Определители высших порядков

3. Определители высших порядков Определители высших порядков Понятие определителя п-го порядка и его основные свойства Понятие определителя п-го порядка вводится на основе изучения структуры определителей -го и -го порядков Так например

Подробнее

Вопросы выносимые на экзамен по дисциплине «Высшая математика» для слушателей 1-го курса ФРК

Вопросы выносимые на экзамен по дисциплине «Высшая математика» для слушателей 1-го курса ФРК Вопросы выносимые на экзамен по дисциплине «Высшая математика» для слушателей -го курса ФРК I Раздел: Линейная алгебра Определения: матрицы, строки и столбцы матрицы Прямоугольная, квадратная матрица Главная

Подробнее

Постановка задачи Якоб Бернулли нашел следующую формулу для суммы (m)=!" : ($)=% + ' ()*

Постановка задачи Якоб Бернулли нашел следующую формулу для суммы (m)=! : ($)=% + ' ()* УДКК 51 О СУММИРОВАНИИ ПОСЛЕДОВАТЕЛЬНОСТИ СТЕПЕНЕЙ НАТУРАЛЬНЫХ ЧИСЕЛ. Одегов Владимир и Варламов Павел. Научный руководитель: Лейнартас Евгений Константинович доктор физико-математических наук, профессор

Подробнее

ЛЕКЦИЯ 4. Схема Бернулли

ЛЕКЦИЯ 4. Схема Бернулли ЛЕКЦИЯ 4 Схема Бернулли Определение 41 Опыт, состоящий из n независмых испытаний, в каждом из которых событие A наступает с постоянной вероятностью p, называется схемой независимых испытаний с двумя исходами

Подробнее

ПОВТОРЕНИЕ ИСПЫТАНИЙ

ПОВТОРЕНИЕ ИСПЫТАНИЙ Федеральное агентство по образованию Томский государственный архитектурно-строительный университет ПОВТОРЕНИЕ ИСПЫТАНИЙ Методические указания к практическим занятиям Составитель Н.С. Дорофеева Томск Повторение

Подробнее

Вероятность события, классическое определение вероятности. Графическое представление в виде диаграмм Эйлера Венна.

Вероятность события, классическое определение вероятности. Графическое представление в виде диаграмм Эйлера Венна. Лекция 2 Тема Основные понятия теории вероятностей Содержание темы Предмет ТВ. Случайное событие. Вероятность события, классическое определение вероятности. Операции с событиями. Графическое представление

Подробнее

ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ. КЛАССИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ВЕРОЯТНОСТИ

ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ. КЛАССИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ВЕРОЯТНОСТИ ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ. КЛАССИЧЕСКАЯ И ГЕОМЕТРИЧЕСКАЯ ВЕРОЯТНОСТИ Предмет теории вероятностей. Понятие случайного события. Пространство элементарных событий. Классическое и геометрическое

Подробнее

Дискретные случайные величины. естественно рассматривать случайную величину как функцию, заданную на множестве исходов случайного эксперимента.

Дискретные случайные величины. естественно рассматривать случайную величину как функцию, заданную на множестве исходов случайного эксперимента. Тема 8 Дискретные случайные величины. Часто результатом случайного эксперимента является число. Например, можно подбросить игральную кость и получить одно из чисел:,,3,4,5,6. Можно подъехать к бензоколонке

Подробнее

1. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Случайные события и вероятности Случайные события

1. ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Случайные события и вероятности Случайные события ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ Случайные события и вероятности Случайные события Одним из основных понятий теории вероятностей является случайное событие Случайным событием называется событие, которое должно

Подробнее

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр

Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр Ликбез по курсу Алгебра для студентов 1 курса, 1-ый семестр лектор Панов АН 1 Наиболее часто задаваемые вопросы Вопрос 11 Что такое перестановка и что такое знак перестановки? Ответ Перестановка это множество

Подробнее