a......, a,... называют членами...

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "a......, a,... называют членами..."

Транскрипт

1 РЯДЫ Числовые ряды Основные понятия числового Пусть дана последовательность вещественных или комплексных чисел Числовым рядом называется сумма всех членов числовой последовательности: Числа,,,, называют членами Функциональную зависимость члена от его номера называют общим членом : f () - й частичной суммы числового и остатка Сумма первых членов называется его -й частичной суммой и обозначается S Остатком r называется разность суммы S и его й частичной суммы: r 3, те S S r сходящегося и расходящегося Ряд называется сходящимся, если существует конечный предел последовательности его частичных сумм, равный S, те если lim S S, S Ряд называется расходящимся, если не существует, lim S Критерий Коши Необходимый признак Критерий Коши Для того, чтобы числовой ряд сходился, необходимо и достаточно, чтобы любой его отрезок можно было сделать сколь угодно малым по величине: 0) ( N N( )): N, p ( p

2 Необходимый признак Если ряд сходится, то предел общего члена равен нулю: сходится lim 0 Следствие из необходимого признака (достаточный признак ра) Если предел общего члена не равен нулю, то ряд расходится: lim 0 расходится Некоторые свойства сходящихся рядов Свойство (об остатке) Ряд сходится тогда и только тогда, когда сходится любой из его остатков, те отбрасывание конечного числа членов не влияет на его сходимость Свойство (линейности) и Если ряды сходятся к числам S и σ соответственно, то ряд также сходится, и его сумма равна S ( и β произвольные константы) Свойство 3 (коммутативности) Если ряд сходится, и его сумма равна S, то члены этого можно, не переставляя, объединять в одно слагаемое произвольным образом, причём сумма полученного также будет равна S

3 Абсолютная и условная сходимость Ряд называется абсолютно сходящимся, если сходится ряд, составленный из модулей членов этого : условной Ряд называется условно сходящимся, если ряд из модулей членов расходится ( расходится), а исходный ряд сходится Теорема об Если сходится ряд, то сходится и ряд, те из следует сходимость исходного Теорема о коммутативности абсолютно сходящегося Если ряд ( сходится абсолютно сходится), и его сумма равна S, то при любой перестановке его членов вновь полученный ряд сходится к той же сумме S Теорема Римана Если ряд с вещественными членами сходится условно, то для любого вещественного числа L, конечного или нет, можно так переставить члены этого, чтобы полученный ряд имел сумму, равную L Критерий рядов Для рядов с положительными вещественными членами понятия и совпадают Критерий рядов Для того чтобы ряд с положительными членами сходился, необходимо и достаточно, чтобы последовательность его частичных сумм была ограничена в совокупности, те M S M

4 Достаточные признаки рядов Интегральный признак Коши рядов Пусть неотрицательная на луче,) функция f (x) монотонно убывает при x, и при целых,, имеет место равенство f ( ) Тогда ряд если сходится интеграл сходится (абсолютно), f ( x) dx и ряд f ( x) dx расходится, если расходится Первая теорема сравнения рядов с положительными членами Если для всех 0 выполняется неравенство, то из () следует (абсолютная) сходимость, а из ра следует ра Замечание Если ряд расходится, то ряд расходится, либо сходится условно Нужны дополнительные исследования Если же ряды вещественные члены, и то из ра либо содержат лишь положительные следует расходимость

5 Вторая теорема сравнения рядов с положительными членами Пусть существует предел Если q 0, ) (абсолютно), и ряд lim q сходится то сходится (абсолютно) и ряд Если q 0 и ряд расходится, Замечание Если то расходится и ряд q, то тогда lim 0, то из следует сходимость и Замечание 3 Если q 0 и q, то ряды ведут себя одинаково: или оба сходятся, или оба расходятся Для рядов и требуются дополнительные исследования Каждый из них, независимо от другого, может либо сходиться условно, либо расходиться Если же члены этих рядов вещественны и положительны, то при q 0, q ряды и или оба сходятся, или оба расходятся Признак Даламбера рядов Если существует предел отношения модулей последующего члена к предыдущему, те: lim q, то ряд сходится (абсолютно) при q и расходится при q (При q никакого вывода о сделать нельзя, требуются дополнительные исследования)

6 Радикальный признак Коши рядов Если существует предел корня -й из модуля общего члена, те: lim q, то ряд сходится (абсолютно) при q и расходится при q (При q никакого вывода о сделать нельзя, требуются дополнительные исследования) Рекомендации по применению достаточных признаков рядов Признак Даламбера применяют, если общий член содержит показательные функции или факториалы! Если же общий член содержит только степенные функции, где любое конечное вещественное число, признак Даламбера, как правило, ответа не даёт Интегральный признак Коши применяют, если легко найти первообразную общего члена 3 Радикальный признак Коши применяют, если легко извлекается корень -й степени из общего члена При этом, lim, где любое конечное вещественное число Также полезной бывает формула Стирлинга:! ~ при e 4 Признаки сравнения применяют, когда легко подобрать для сравнения эталонные ряды, используя при этом сравнение бесконечно малых функций si ( x) ~ (x) ( x) 0 при x а 6 log ( ( x)) ~ ( x) l tg (x) ~ (x) 6а l( ( x)) ~ (x) 3 rcsi ( x) ~ (x) 7 ( x) ~ ( x) l 4 rctg (x) ~ (x) 7а ( x) 5 cos( x) ~ ( ( x)) e ~ (x) 8 ( ( x )) ~ (x) Следует иметь в виду, что при вычислении пределов отношений конечного числа б б складываемых функций слагаемые более низкого порядка роста можно отбрасывать, а сумму заменять слагаемым самого высокого порядка роста При самый высокий порядок роста имеет показательная функция f ( ) ; степенная функция f ( ) имеет порядок роста, более низкий по сравнению с показательной функцией, но более высокий по сравнению с логарифмической; логарифмическая функция f ( ) log имеет самый низкий порядок роста по сравнению и с показательной функцией, и со степенной Это обозначают так: log, при

7 Очень эффективным при вычислении пределов оказывается применение следующих правил: Предел отношения б м ф (б б ф) не изменится, если заменить эти функции эквивалентными Разность эквивалентных б м ф (б б ф) есть б м ф (б б ф) более высокого порядка малости (роста) по сравнению с уменьшаемой и вычитаемой б м ф (б б ф) 3 Сумма конечного числа б м (б б) слагаемых разного порядка малости (роста) эквивалентна слагаемому самого низкого (высокого) порядка малости (роста) 4 Если б м ф α (x) ~ α (x) при x, A=cost 0, то A+ α (x) ~ A+ α (x) при x Признаки Лейбница и Дирихле знакочередующегося Ряд с вещественными членами называется знакочередующимся, если два любых его соседних члена имеют противоположные знаки: ( ) 3 4 ( ) ( R, те вещественны и 0) Признак Лейбница Если члены знакочередующегося ) убывают по величине, те и ) стремятся к нулю при, те lim 0, то ряд ( ) сходится, его остаток не превышает первого члена остатка, а по знаку совпадает со знаком первого члена остатка Признак Дирихле Если последовательность частичных сумм S ограничена, а числовая последовательность монотонная и бесконечно малая, то ряд сходится


Числовые ряды. Лекции 6-7

Числовые ряды. Лекции 6-7 Числовые ряды Лекции 6-7 Понятие числового ряда Аналитическое выражение вида, a a2 a a a, a, a, где 2 последовательность чисел членов ряда, выражение a - называется общим членом ряда. Последовательность

Подробнее

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности.

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности. Числовые ряды Числовая последовательность Опр Числовой последовательностью называют числовую ф-цию, определенную на множестве натуральных чисел х - общий член последовательности х =, х =, х =,, х =,,,,,,,,

Подробнее

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2 Содержание Числовые ряды. Основные понятия 2 Необходимый признак сходимости ряда 3 Простейшие свойства числовых рядов 2 4 Знакоположительные ряды 3 5 Знакочередующиеся ряды 9 6 Знакопеременные ряды 0 7

Подробнее

Сходимость знакопеременных числовых рядов

Сходимость знакопеременных числовых рядов ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Сходимость знакопеременных числовых рядов Числовой ряд u, в котором имеется бесконечно много как положительных, так = и отрицательных элементов, называется числовым рядом с произвольными

Подробнее

Санкт-Петербургский государственный университет Кафедра математического анализа

Санкт-Петербургский государственный университет Кафедра математического анализа Санкт-Петербургский государственный университет Кафедра математического анализа МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по математическому анализу Часть 2 Числовые ряды М. Г. Голузина,

Подробнее

1. Числовые ряды, основные понятия.

1. Числовые ряды, основные понятия. Числовой ряд. Числовые ряды, основные понятия. () называется сходящимся, если его частичная сумма (2) имеет конечный предел Тогда называется суммой ряда, а разность lim. (3) (4) называют остатком ряда.

Подробнее

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости).

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости). «Ряды» Тесты для самопроверки Необходимый признак сходимости ряда Теорема необходимый признак сходимости Если ряд сходится то lim + Следствие достаточное условие расходимости ряда Если lim то ряд расходится

Подробнее

Лекция 1. Числовой ряд. Основные понятия, свойства сходящихся рядов. Знакоположительные ряды. Интегральный признак Коши

Лекция 1. Числовой ряд. Основные понятия, свойства сходящихся рядов. Знакоположительные ряды. Интегральный признак Коши Лекция. Числовой ряд. Основные понятия, свойства сходящихся рядов. Знакоположительные ряды. Интегральный признак Коши.. Некоторые сведения о последовательностях Пусть каждому значению N поставлено в соответствие

Подробнее

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ. Учебно-методическое пособие

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ. Учебно-методическое пособие КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ Учебно-методическое пособие КАЗАНЬ 008 Печатается по решению секции Научно-методического совета Казанского университета

Подробнее

Числовые ряды. lim. S n. Определение Числовым рядом называется выражение следующего вида:

Числовые ряды. lim. S n. Определение Числовым рядом называется выражение следующего вида: Тема 9 Определение Числовым рядом называется выражение следующего вида: a 1 a2 a3... a... a Если предел последовательности последовательностью частичных сумм ряда. lim S S 1 Необходимое условие сходимости:

Подробнее

Глава 6 Числовые ряды

Глава 6 Числовые ряды Глава 6 Числовые ряды Определение числового ряда и основные теоремы Определение : Последовательностью действительных чисел называется функция f, определённая на множестве всех натуральных чисел Число f

Подробнее

сгупс Методические указания к выполнению типового расчета «Ряды».

сгупс Методические указания к выполнению типового расчета «Ряды». сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Подробнее

Задача Первая теорема сравнения

Задача Первая теорема сравнения Первая теорема сравнения Постановка задачи: Исследовать сходимость ряда с неотрицательными членами где = f(, u (), u 2 (),...) и u (), u 2 (),...- функции с известными наименьшими и наибольшими значениями,

Подробнее

{основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными

{основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными {основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными членами признак Даламбера, признак Коши, интегральный

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд

Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд 3. Признаки сходимости знакопеременных рядов Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд Ряд u, не являющийся знакоположительным или знакоотрицательным

Подробнее

Определение 1. Наибольший из частных пределов последовательности называется верхним пределом последовательности и обозначается

Определение 1. Наибольший из частных пределов последовательности называется верхним пределом последовательности и обозначается Глава. РЯДЫ. Понятия верхнего и нижнего пределов последовательности Пусть дана ограниченная числовая последовательность ( ) (все её члены заключены на числовой прямой между числами а и b), т.е. По теореме

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Пусть дана числовая последовательность. Определение Числовым рядом называется выражение следующего вида: ... a n

Пусть дана числовая последовательность. Определение Числовым рядом называется выражение следующего вида: ... a n Тема 9 Пусть дана числовая последовательность { } {, 2,..., 1...}. Определение Числовым рядом называется выражение следующего вида: 1 2 3...... 1 Упрощенно : ряд это «бесконечная» сумма. { } Вместе с последовательностью

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

Лекция 2. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши

Лекция 2. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши Лекция. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши.. Ряды Дирихле и их сходимость, гармонический ряд Определение. Числовой ряд вида

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки:

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: 4 Сходимость знакопеременных рядов Определение 4 Ряд a с членами произвольных знаков называют знакопеременным Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: a

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Комплексный анализ Последовательности и ряды комплексных чисел

Комплексный анализ Последовательности и ряды комплексных чисел Комплексный анализ Последовательности и ряды комплексных чисел Никита Александрович Евсеев Физичеcкий факультет Новосибирского государственного университета Китайско-российский институт Хэйлунцзянского

Подробнее

sin n 100. n=1 sin k sin 1 k=1

sin n 100. n=1 sin k sin 1 k=1 Разберите предложенные ниже задачи с решениями Найдите принципиальные ошибки Для ошибочно решенных задач объясните, почему используемые методы не работают или работают неправильно, и предложите собственное

Подробнее

РЯДЫ МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ (с элементами квантования текста)

РЯДЫ МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ (с элементами квантования текста) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный университет путей сообщения»

Подробнее

Цель работы: исследование числового ряда на сходимость.

Цель работы: исследование числового ряда на сходимость. Практическая работа 0 Сходимость числовых рядов с положительными членами. Цель работы: исследование числового ряда на сходимость. Содержание работы. Основные понятия. Сумма членов бесконечной числовой

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

Лекция 5. Абсолютная и условная сходимости

Лекция 5. Абсолютная и условная сходимости С. А. Лавренченко www.lwreceko.ru Лекция 5 Абсолютная и условная сходимости. Понятие абсолютной и условной сходимостей Пусть дан ряд (данный ряд). Поставим ему в соответствие ряд, члены которого равны

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

Глава 12. Ряды Числовые ряды. Формальная запись суммы членов некоторой числовой последовательности

Глава 12. Ряды Числовые ряды. Формальная запись суммы членов некоторой числовой последовательности Глава Ряды Формальная запись суммы членов некоторой числовой последовательности Числовые ряды называется числовым рядом Суммы S, называются частичными суммами ряда Если существует предел lim S, S то ряд

Подробнее

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,,

Подробнее

Российский Университет Дружбы Народов. Марченко В. В., Сорокина М. В. Числовые ряды. Учебно-методическое пособие

Российский Университет Дружбы Народов. Марченко В. В., Сорокина М. В. Числовые ряды. Учебно-методическое пособие Российский Университет Дружбы Народов Марченко В. В., Сорокина М. В. Числовые ряды Учебно-методическое пособие Москва 205 Аннотация Учебное пособие знакомит студентов с основными понятиями, методами доказательств

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1 Глава 3. Числовые ряды 3.. Занятие 0 3... Сумма ряда Рассмотрим числовую последовательность {a k } k=. ОПРЕДЕЛЕНИЕ 3... Рядом называется выражение вида a + a 2 +...+ a k +...= a k. k= Величина a k называется

Подробнее

2. Степенные ряды. 1. Определения, теоремы и формулы для решения задач. Теорема. (теорема Абеля). Если степенной ряд

2. Степенные ряды. 1. Определения, теоремы и формулы для решения задач. Теорема. (теорема Абеля). Если степенной ряд Степенные ряды Определения, теоремы и формулы для решения задач Определение Функциональный ряд ( ) ( ) ( ) ( ) 0 0 0 0 0 0 называется степенным рядом, числа R,,, называются коэффициентами степенного ряда

Подробнее

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

Рецензенты Канд. ф.-м. наук, доцент.

Рецензенты Канд. ф.-м. наук, доцент. Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

Àáñîëþòíàÿ è óñëîâíàÿ ñõîäèìîñòè

Àáñîëþòíàÿ è óñëîâíàÿ ñõîäèìîñòè Àáñîëþòíàÿ è óñëîâíàÿ ñõîäèìîñòè Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Знакочередующийся ряд. Признак сходимости Лейбница. Знакопеременный ряд. Абсолютная и условная сходимости. Общий комплексный ряд. Теорема

Подробнее

4. Понятие числового ряда. Критерий Коши сходимости числового ряда.

4. Понятие числового ряда. Критерий Коши сходимости числового ряда. 4. Понятие числового ряда. Критерий Коши сходимости числового ряда. Под словом "ряд"в математическом анализе понимают сумму бесконечного числа слагаемых. Рассмотрим произвольную числовую последовательность

Подробнее

Третий семестр. Лектор: Князева Людмила Павловна

Третий семестр. Лектор: Князева Людмила Павловна Третий семестр Лектор: Князева Людмила Павловна Темы: Наименование раздела, темы Всего аудиторных часов Лекции, часы Практически е занятия, часы 1 2 3 4 Тема 1. Аналитическая геометрия и линейная алгебра

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Демина ЕЛ, Демин СЕ РЯДЫ г Нижний Тагил 00 Предисловие В настоящем

Подробнее

Несобственные интегралы

Несобственные интегралы 7 Занятие Несобственные интегралы. Несобственные интегралы первого и второго рода Понятие определенного интеграла f() от ограниченной функции по конечному отрезку [; b] распространяют на случаи, когда

Подробнее

0. В таком ряде знаки + и - чередуются и идут через один, откуда и название ряда. Достаточный признак сходимости знакочередующегося ряда:

0. В таком ряде знаки + и - чередуются и идут через один, откуда и название ряда. Достаточный признак сходимости знакочередующегося ряда: Сходимость произвольных рядов. Ниже будут рассматриваться ряды, в которых имеется бесконечное количество положительных членов и бесконечное количество отрицательных членов. Такие ряды называют знакопеременными.

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

Методические указания

Методические указания Московский государственный технический университет имени Н. Э. Баумана Методические указания В.Я. Томашпольский, М.Н. Шевченко, И.О. Янов ЧИСЛОВЫЕ РЯДЫ Издательство МГТУ им. Н. Э. Баумана Московский государственный

Подробнее

Санкт-Петербургский государственный университет Кафедра математического анализа

Санкт-Петербургский государственный университет Кафедра математического анализа Санкт-Петербургский государственный университет Кафедра математического анализа ФУНКЦИОНАЛЬНЫЕ РЯДЫ Поточечная и равномерная сходимость. Действия над рядами, связанные с предельным переходом методические

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Несобственные интегралы 1.Определения, теоремы и формулы для решения задач.

Несобственные интегралы 1.Определения, теоремы и формулы для решения задач. Несобственные интегралы.определения, теоремы и формулы для решения задач. Интегралы с бесконечными пределами и интегралы от неограниченных функций называются несобствнными интегралами I и II рода соответственно.

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

РЯДЫ А.А. ЗЛЕНКО, C.А. ИЗОТОВА, Л.А. МАЛЫШЕВА. МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике

РЯДЫ А.А. ЗЛЕНКО, C.А. ИЗОТОВА, Л.А. МАЛЫШЕВА. МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) АА ЗЛЕНКО, CА ИЗОТОВА, ЛА МАЛЫШЕВА РЯДЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ

Подробнее

Математический анализ Ряды

Математический анализ Ряды Тема 6. Пределы последовательностей и функций, их свойства и приложения Математический анализ Ряды Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики

Подробнее

Тема: Несобственные интегралы

Тема: Несобственные интегралы Математический анализ Раздел: Определенный интеграл Тема: Несобственные интегралы Лектор Рожкова С.В. 23 г. 5. Несобственные интегралы Для существования необходимы условия: [;] конечен, 2 f ограничена

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8 Министерство образования и науки РФ Ачинский филиал федерального государственного автономного образовательного учреждения высшего профессионального образования «Сибирский федеральный университет» МАТЕМАТИКА

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» НВ Комиссарова МАТЕМАТИКА Часть 6 РЯДЫ Методические указания для студентов -го и -го курсов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр 9-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр Необх. усл. равномерной сходимости функц. ряда f x): f 0. A Исследовать функ. ряд на сх-ть:

Подробнее

Т. А. Матвеева, В. Б. Светличная, Н. Н. Короткова ЧИСЛОВЫЕ РЯДЫ

Т. А. Матвеева, В. Б. Светличная, Н. Н. Короткова ЧИСЛОВЫЕ РЯДЫ Т А Матвеева, В Б Светличная, Н Н Короткова ЧИСЛОВЫЕ РЯДЫ Волгоград 00 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ НОВОСИБИРСК 200 2 МИНОБРНАУКИ РОССИИ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Е.М. Рудой МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Подробнее

Лекция 1. Функциональные ряды

Лекция 1. Функциональные ряды С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Подробнее

1. Числовые ряды. результату одно следующее число, мы будем получать частичные суммы: 1 ; ; ; ;...

1. Числовые ряды. результату одно следующее число, мы будем получать частичные суммы: 1 ; ; ; ;... ЛЕКЦИЯ N25. Числовые ряды. Сходимость и сумма ряда. Необходимый признак сходимости рядов с положительными членами. Достаточные признаки сходимости знакоположительных рядов..числовые ряды 2.Основные теоремы....

Подробнее

{функциональные ряды степенные ряды область сходимости порядок нахождения интервала сходимости - пример радиус интервала сходимости примеры }

{функциональные ряды степенные ряды область сходимости порядок нахождения интервала сходимости - пример радиус интервала сходимости примеры } {функциональные ряды степенные ряды область сходимости порядок нахождения интервала сходимости - пример радиус интервала сходимости примеры } Пусть задана бесконечная последовательность функций, Функциональные

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Рязанский государственный университет им СА Есенина» ЛГ Насыхова, МТ Терехин ЧИСЛОВЫЕ

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды Числовые и функциональные ряды Основные понятия Знакочередующиеся ряды Функциональные ряды Степенные ряды и разложение функций в степенной ряд Применение степенных рядов Ряды Фурье Основные понятия Пусть

Подробнее

Лекция 4. Рис.1. называется знакоположительным, если a

Лекция 4. Рис.1.  называется знакоположительным, если a С А Лавренченко wwwlawrecekoru Лекция Знакопостоянные и знакочередующиеся ряды Рис http://casioru/educatio/program/serie/ Знакопостоянные ряды Ряд a называется знакоположительным, если a 0, и знакоотрицательным,

Подробнее

Нижнетагильский технологический институт (филиал) Ряды

Нижнетагильский технологический институт (филиал) Ряды Министерство образования и науки РФ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого Президента России

Подробнее

Лекция 1 (13 января 2017)

Лекция 1 (13 января 2017) КОНСПЕКТ ЛЕКТОРА математический анализ, курс, 2 семестр, 207, А.М. Красносельский Числовые ряды Лекция (3 января 207) Рассмотрим последовательность R и напишем «бесконечную сумму»: a k a + a 2 +... + a

Подробнее

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а прикладной математики

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте   Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Типовой расчет по математическому анализу Контрольные задания по теме Ряды Задание. Найти сумму числового ряда ) ) = + + ( )( 5) + ) ( ) = 5 = Решение ) 5 ( ) + + = = = = + + 5 + + 5 + + 5 + + 5

Подробнее

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx.

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Лекция 5. Понятие несобственного интеграла -го рода, его вычисление. Критерий сходимости. Интегралы от положительных функций. Признаки сравнения, абсолютная

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Министерство образования Российской Федерации МАТИ Российский государственный технологический университет им.к.э.циолковского Кафедра «Высшая математика» ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Варианты курсовых

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА МАТЕМАТИКА МАТЕМАТИЧЕСКИЙ АНАЛИЗ РЯДЫ Методические рекомендации

Подробнее

Лекция Несобственные интегралы

Лекция Несобственные интегралы Лекция..9. Несобственные интегралы Аннотация: Рассматриваются несобственные интегралы первого и второго рода. Вводится понятие главного значения несобственного интеграла. Определенный интеграл был введен

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики

Подробнее

3. Ряды Числовые ряды

3. Ряды Числовые ряды . Ряды Числовые ряды Определение. Числовым рядом называется выражение вида u u u... u..., где числа u, u, u,... называются членами ряда u называется общим членом ряда. Определение. -ой частичной суммой

Подробнее

ХVIII. Ряды. 1. Понятие о числовом ряде. Числовым рядом называется выражение вида

ХVIII. Ряды. 1. Понятие о числовом ряде. Числовым рядом называется выражение вида ХVIII Ряды Понятие о числовом ряде Числовым рядом называется выражение вида (8) где,, 3, некоторые числа, называемые членами ряда Если п произвольный (текущий) номер, то число а п называют общим членом

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

Определенный интеграл Несобственные интегралы

Определенный интеграл Несобственные интегралы Математический анализ Тема: Определенный интеграл Несобственные интегралы Лектор Пахомова Е.Г. 2017 г. ГЛАВА II. Определенный интеграл и его приложения 1. Определенный интеграл и его свойства 1. Задачи,

Подробнее

Несобственные интегралы первого рода

Несобственные интегралы первого рода ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им НИЛобачевского» Несобственные интегралы

Подробнее

Конспекты семинаров по курсу математического анализа

Конспекты семинаров по курсу математического анализа И.Х. Сабитов Конспекты семинаров по курсу математического анализа Тема: Числовые ряды 1. Определения и общие свойства. Числовым рядом называется формальная сумма счетного числа слагаемых, которые называются

Подробнее

ТЕМА 1. РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ. 3 0, n. Ряд сходится. В). Применим признак сравнения с гармоническим рядом: 1!!

ТЕМА 1. РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ. 3 0, n. Ряд сходится. В). Применим признак сравнения с гармоническим рядом: 1!! ТЕМА РЯДЫ С ПОЛОЖИТЕЛЬНЫМИ ЧЛЕНАМИ Выяснить, какие из указанных рядов сходятся, а какие нет А) cos - расходится не выполнено необходимое условие cos, Б) arctg Применим признак Даламбера:! arctg! arctg

Подробнее

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности Математический анализ (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности 1 Предварительные сведения о действительных (вещественных) числах Рациональное число m Q, m, -целые числа.

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ

ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ Вектором называется количественная характеристика, имеющая не только числовую величину, но и направление Иногда говорят, что вектор это направленный отрезок Векторная система

Подробнее