ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ"

Транскрипт

1 ОСНОВЫ ВЕКТОРНОГО ИСЧИСЛЕНИЯ Вектором называется количественная характеристика, имеющая не только числовую величину, но и направление Иногда говорят, что вектор это направленный отрезок Векторная система обозначений имеет два существенных преимущества 1 Формулировки физических законов в векторной форме не зависят от выбора осей координат Векторная система обозначений представляет собой такой язык, в котором формулировки имеют физическое содержание даже без введения системы координат Векторная система обозначений является компактной Многие физические законы выражаются через векторные величины Определим основные операции, которые можно производить с векторами Равенство двух векторов Два вектора и равны, если они имеют одинаковую абсолютную величину и одинаковое направление Можно сравнивать два вектора, определенные в разных точках пространства и в разные моменты времени Параллельный перенос не меняет значения вектора Сложение векторов Суммой двух векторов называют вектор c, проведенный из начальной точки вектора к конечной точке вектора, если вектор перенести параллельно самому себе так, чтобы его начало совпадало с концом вектора Причем c, если совместить начало векторов и, то вектор c является диагональю параллелограмма, построенного на векторах и как на его сторонах и выходящий из общего начала Сумма векторов не зависит от порядка, в котором складываются векторы Умножение вектора на скаляр Произведением вектора на число d называется вектор c, длина которого равна длине первого вектора, умноженной на модуль числа, а направление либо совпадает с начальным вектором, либо противоположно c 1

2 c d c d вектор c сонаправлен с вектором, если d > 0 (положительно) и направлен противоположно если d < 0 (отрицательное) Произведение числа 0 на любой вектор дает нулевой вектор, который по сути таковым не является ибо он не имеет длины она равна нулю и не имеет направления в пространстве Сумма двух векторов равна нулю тогда и только тогда, когда они равны по модулю и противоположны по направлению Если k число, то k ( ) k k т е умножение вектора на скаляр дистрибутивно Разность двух векторов Разность двух векторов c можно рассматривать как сумму векторов и Или является диагональю параллелограмма, построенного на векторах и как на его сторонах и выходящий из конца вычитаемого вектора в начало уменьшаемого c c Произведение векторов Известны два вида произведений двух векторов, широко используемые в физике Для обоих видов произведений векторов выполняется распределительный (дистрибутивный) закон умножения: произведение вектора c на сумму равно сумме произведений c на и c на одно из этих произведений представляет собой скаляр, другое вектор α Скалярное произведение двух векторов Скалярным произведением двух векторов называется число равное произведению длин этих векторов на косинус угла между ними c cos(α), скалярное произведение коммутативно: c α Векторное произведение Векторным произведением двух векторов и называют вектор c лежащий в плоскости, перпендикулярной плоскости в которой расположены вектора и Модуль вектора равен произведению

3 длин векторов и на синус угла между ними si ( α ) направление вектора c определяется правилом правой руки (правого винта) от первого вектора ко второму Векторное произведение не коммутативно Векторы в декартовой системе координат Выражение физических законов в векторной форме отличается изяществом и лаконичностью Однако бывает полезно перейти от векторов к определенным системам координат, из которых наиболее удобной является прямоугольная декартовая система координат Декартова система координат определяется заданием любой правой тройки взаимно перпендикулярных единичных векторов i,, k Направление вектора k определяется правилом правого винта, т е k i Любой вектор можно выразить так: i k,, проекции вектора на соответствующие координат- Здесь ные оси: i,, k Любой вектор считается заданным тройкой чисел (,, ) в данной системе координат Найдем скалярное произведение двух векторов в декартовой системе координат, воспользовавшись естественными равенствами: i i 1, 1, k k 1, i 0, i k 0, k 0 с ( i k ) ( i k ) Для квадрата вектора имеем Векторное произведение единичных векторов равно: i i k k 0, i k, k i, k i, i k, k i, i k, поэтому векторное произведение двух векторов равно: 3

4 4 )k ( ) ( )i ( ) k i ( ) k i ( c Эквивалентная запись векторного произведения через определитель: k i c 11 Определите проекции на оси ОX и OY векторов представленных на рисунке 1 Пример: м ; м 3 1 Запишите векторы представленные на рисунке 1 в декартовой системе координат (через единичные орты осей ОX и OY i и ) Пример: i 3

5 13 Найдите сумму векторов с рисунка 1 графически и аналитически: а) ; б) c ;в) c d ; г) d l ; д) f ; е) c e m ; ж) o ; p ; и) e u ; к) r s ; л) m r ; м) s ; н) u e ; о) f з) t Пример: t ( 1 i 3 ) (1 i 4 ) ( 1 1) i (3 4) 0 i Найдите разность векторов с рисунка 1 графически и аналитически: а) ;в) c d ; г) d l ; ; б) c ; д) f ; е) c e ; ж) m o p ; и) e u ; к) r s ; л) m r ; м) s ; н) u e ; о) f з) t Пример: t ( 1 i 3 ) (1 i 4 ) ( 1 1) i (3 4) i 1 15 Определите скалярное произведение двух векторов с рисунка 1 а) ; б) c ;в) c d ; г) d l ; д) f ; е) c e ; ж) m o ; з) p t ; и) e u ; к) r s ; л) m r ; м) s ; н) u e ; о) f t ( 1 i 3 ) (1 i 4 ) ( 1) (1) (3) (4) Пример: Определите векторное произведение двух векторов с рисунка 1 а) ; б) c ;в) c d ; г) d l ; д) f ; е) c e m з) p t ; и) e u ; к) r s ; л) m r ; м) s ; н) u e f Пример: ; ж) o ; ; о) t ( 1 i 3 ) (1 i 4 ) ( 1) (4) k (3) (1) ( k ) 7 k 5

6 ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА Приложение Если функция f имеет в точке производную, то существует предел: lim f ( ), где f ( ) f ( ) 0 Отсюда следует, что f ( ) ε( ), где ε ( ) 0 при ( ) 0 Таким образом, f ( ) 0( ) ( 0) Если ввести обозначение А f ( ), то равенство (1) можно записать следующим образом: A 0( ) ( 0) () говорят, что функция f дифференцируема в точке если ее приращение в этой точке можно записать в виде (), где А некоторая константа, не зависящая от, но вообще говоря зависящая от Если функция f имеет в точке производную, то она дифференцируема в этой точке ( А f ( ) ) Верно и обратное утверждение: если функция дифференцируема в точке, т е ее приращение в точке представимо в виде (), то она имеет производную в точке равную А Если А f ( ) 0, то приращение функции эквивалентно при 0 первому слагаемому правой части () d A ( 0 ) В этом случае, когда A 0, член A называют главным линейным членом приращения Приближенно, пренебрегая бесконечно малой 0( ) высшего порядка, при малых можно считать равным главному члену Главный линейный член приращения называют дифференциалом функции f в точке (соответствующим приращению независимой переменной ) и обозначают так: d df f ( ) Приращение независимой переменной обозначают d ( d 1 для дифференциала функции от ), таким образом дифференциал функции f в точке записывается так d df f ( )d (1) 6

7 Отметим очевидные формулы: d(u ± V ) (U ± V ) d U d ± V d du d(uv ) (UV ) d (VU U d V V UV U VdU UdV d V )d UdV ± dv VdU Производная функции от функции Пусть задана функция от функции F( ) f ( ϕ( )), где ϕ( ), f ( ) При этом функция ϕ имеет производную в точке, а функция f имеет производную в точке Тогда существует производная от F в точке, равная: F ( ) f ( ) ϕ ( ) Таблица производных простейших элементарных функций ( ( C cost) 1 C ) 0 1 ( ) 1, а любое число 3 ( log ) log e, в частности ( ) 4 ( ) l l 1, в частности, при e 5 ( si ) cos 6 ( cos ) si 7 ( ) 8 ( ) 9 ( ) tg 1 cos ctg 1 si 1 rcsi 1 1 rccos 1 10 ( ) : ( e ) e 7

8 1 rctg 1 1 rcctg 1 11 ( ) 1 ( ) Производные и дифференциалы высшего порядка Производная от функции f есть снова функция Поэтому можно попытаться взять от нее производную Полученная функция (если она существует, то называется второй производной от f ( ) и обозначается через f " ( ) Таким образом, " f ( ) ( f ( )) По индукции, производная ( ) порядка определяется как первая производная от производной f 1 ( ) порядка ( 1): 1 f ( ) ( f ( )) f Дифференциал от функции f d f ( ) d мы будем называть первым дифференциалом от f в точке, соответствующим дифференциалу (приращению) независимой переменной d Дифферециал -го порядка от функции f в точке, соответствующий дифференциалу независимой переменной d определяется по индукции: d d( d ) d( f ( )d ) f d Из этого равенства следует, что -я производная от f в точке, есть отношение d f ( ) d Первообразная Неопределенный интеграл Пусть на интервале (а, ) задана непрерывная функция f По определению функция F называется первообразной функцией для f на интервале (а, ), если на нем производная от F равна f : F ( ) f ( ) ( (, )) Очевидно, что если функция F ( ) - первообразная для f на (а,), а С некоторая постоянная, то функция F 1 ( ) F( ) C есть также первообразная для f, потому, что 8

9 F1 ( ) ( F( ) C ) F ( ) C F ( ) f ( ) Если F какая-либо первообразная от f на интервале (а, ), то возможные первообразные от f на этом интервале выражаются формулой F ( ) C, где вместо С можно подставить любое число Неопределенным интегралом от непрерывной функции f на интервале (а, ) называется произвольная ее первообразная функция Неопределенный интеграл обозначается так: f ( )d и равен F( ) C Если f 1, f непрерывные на интервале (а, ) функции и А 1, и А постоянные, то имеет место следующее равенство, выражающее основное свойство неопределенного интеграла: ( А1 f1 A f )d A1 f1d A fd C, где С некоторая постоянная Таблица основных неопределенных интегралов 1 0 d C ; A d A C, A cost ; α 1 α 3 d C, α 1 ; α 1 d 4 l C ; ( C ; l 6 si d cos C ; 5 d C 0 < 1) в частности e d e 7 cos d si C ; d π 8 ( 1 tg )d tg C ( π, где 0, ± 1,) ; cos d 9 ( 1 ctg )d ctg C ( π, где 0, ± 1,) ; si d rcsi C 10 ( 1 < < 1) ; 1 rccos C 9

10 d rctg C, 11 1 rcctg C; d 1 l 1 C ; 1 d 13 l 1 C где > 1; 1 d l C ( 1) 1 1 Понятие определенного интеграла Площадь криволинейной фигуры Зададим на отрезке [ а,] (а и конечные числа) неотрицательную непрерывную функцию f ( ) Изобразим ее график и определим понятие площади фигуры, ограниченной кривой f ( ), осью, прямыми и и вычислим эту площадь Проведем разбиение отрезка [ а,] на частей точками а 0 < 1 < <, выберем на каждом из полученных от-, ξ, опре- резков [ ] ( 0, 1,, 1) по произвольной точке [ ] 1 делим значения f ( ξ ) функции в этих точках и составим сумму: 1 f ( ξ ) ( 1 ) 0 S которую называют интегральной суммой и которая равна сумме площадей прямоугольников Будем теперь стремить все к нулю, причем так, чтобы максимальный (самый большой) частичный отрезок разбиения стремиться к нулю Если при этом величина S стремиться к определенному пределу S, не зависящему от способов разбиения и выбора точек ξ Тогда величину S назовем площадью нашей криволинейной фигуры Т о: S m lim f ( ξ Отвлекаясь от операции нахождения площади, будем рассматривать эту операцию как нахождение некоторого числа S по данной функции f, заданной на отрезке [,] т 1 ) а : S lim f ( ξ ) m 0 0 в а f ( )d 1 10

11 Определенным интегралом от функции на отрезке [,] а называется предел интегральной суммы, когда максимальный частичный отрезок разбиения стремиться к нулю Пусть задана непрерывная на [ а,] функция f ( ) и пусть F ( ) есть ее первообразная Теорема Ньютона-Лейбница утверждает справедливость следующего равенства: f ( )d F( ) F( а ) а Основные методы интегрирования 1 Интегрирование заменой переменной (подстановкой) Пусть функция t ϕ( ) определена и дифференцируема на некотором множестве {}, и пусть {} t множество всех значений этой функции Пусть далее для функции g ( t ) существует на множестве { t } первообразная функция G ( t ), т е g ( t )dt G( t ) C Тогда всюду на множестве {} для функ- ции g[ ϕ ( )] ϕ ( ) существует первообразная функция, равная [ ( )] g[ ϕ( )] ϕ ( )d G[ ϕ( )] C G ϕ, т е Пусть нам требуется вычислить интеграл f ( ) d и можно выбрать в качестве новой переменной функцию t ϕ( ) причем g ( t ) легко интегрируется те: так, что f ( ) g[ ϕ( )] ϕ ( ), ( t )dt G( t ) C f ( )d G ϕ( ) C этот прием вычисления называется интегрированием путем замены переменной g и [ ] Интегрирование по частям Пусть каждая из функций u ( ) и v ( ) дифференцируема на множестве {} и, кроме того, на этом множестве существует первообразная для функции v( )u ( ) Тогда на множестве { } существует первообразная и для функции u( )v ( ), причем справедлива формула ( )v ( )d u( )v( ) u v( )u ( )d dv du 11

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО.

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО. ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО Понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пример: А множество натуральных чисел а В множество квадратов натуральных чисел

Подробнее

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ].

Лекция 8. Определённый интеграл. Определенный интеграл Римана. Пусть f ( x ) некоторая функция, определенная на отрезке [ a, b ]. Лекция 8 Определённый интеграл Определенный интеграл Римана Пусть f ( ) некоторая функция, определенная на отрезке [, ] Произведем разбиение R отрезка [, ] на п частей: = < 1 < K < n = Выберем на каждом

Подробнее

9. Неопределенный интеграл.

9. Неопределенный интеграл. 9. Неопределенный интеграл. Функция F() называется первообразной для функции f() на промежутке (b), если для всех (b) выполняется равенство F() = f(). Например, для функции первообразной будет функция

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е.

3. Свойства неопределенного интеграла 1. Производная неопределенного интеграла равна подынтегральной функции, т.е. Приложение. Определение первообразной функции Определение. Дифференцируемая функция F() называется первообразной для функции f() на заданном промежутке, если для всех из этого промежутка. справедливо равенство

Подробнее

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ]

( ) ( ) ( ) ( ) ( ) ( ) () ( ) ( ) x [ ; ] 8 Барроу Исаак (Brrow Is) -77 английский математик, филолог, богослов. Профессор Кембриджского университета. Автор труда лекции по оптике и геометрии (9-7). Из теоремы следует, что определенный интеграл

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Контрольная работа 1 ...

Контрольная работа 1 ... Контрольная работа Тема Матрицы, операции над матрицами Решение систем линейных уравнений Матрицей называется прямоугольная таблица чисел, имеющая m срок n столбцов Для обозначения матриц применяются круглые

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

Тема6. «Определенный интеграл»

Тема6. «Определенный интеграл» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема6. «Определенный интеграл» Кафедра теоретической и прикладной математики. разработана доц. Е.Б.Дуниной

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее

ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1. ПОНЯТИЕ ВЕКТОРА

ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1. ПОНЯТИЕ ВЕКТОРА ПРИЛОЖЕНИЕ НЕКОТОРЫЕ МАТЕМАТИЧЕСКИЕ ПОНЯТИЯ И ФОРМУЛЫ 1 ПОНЯТИЕ ВЕКТОРА Вектором называется направленный прямолинейный отрезок Длину отрезка в установленном масштабе называют модулем вектора Векторы считаются

Подробнее

Лекция 2.7. Производные и дифференциалы высших порядков

Лекция 2.7. Производные и дифференциалы высших порядков 1 Лекция 7 Производные и дифференциалы высших порядков Аннотация: Вводится понятие дифференцируемой функции, дается геометрическая интерпретация первого дифференциала и доказывается его инвариантность

Подробнее

1 1 c) n n. 1 1 b) n. lim. lim. lim. lim. 1. Найти общий член последовательности 0,,,,. 2. Найти. a) 28 7 b) 7 c) 7 d) Найти. 4.

1 1 c) n n. 1 1 b) n. lim. lim. lim. lim. 1. Найти общий член последовательности 0,,,,. 2. Найти. a) 28 7 b) 7 c) 7 d) Найти. 4. Найти общий член последовательности,,,, ) Найти b) lim ( ) c) 9 7 7 ) 8 7 b) 7 c) 7 d) 7 Найти ( )!! lim ( )! ) b) c) Найти 6 si lim si d) ) b) c) d) d) ( ) Найти lim [ (l( ) l )] ) b) c) e d) l 6 Найти

Подробнее

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =.

ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) найти, решив систему дифференциальных уравнений: = =. ТЕОРИЯ ПОЛЯ Криволинейный интеграл по координатам (второго рода) Определение векторного поля Определение векторной линии Задача о работе силового поля Полем называется множество, элементы которого удовлетворяют

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНАЯ МЕТАЛЛУРГИЧЕСКАЯ АКАДЕМИЯ УКРАИНЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к решению задач по дисциплине Высшая математика и варианты контрольных заданий практические

Подробнее

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им. В.С. Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ МИНИСТЕРСТВО НАУКИ и ОБРАЗОВАНИЯ РФ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ОТКРЫТЫЙ УНИВЕРСИТЕТ им ВС Черномырдина КОЛОМЕНСКИЙ ИНСТИТУТ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ и ФИЗИКИ ЕФ КАЛИНИЧЕНКО ЛЕКЦИИ ПО ВЫЧИСЛЕНИЮ ОПРЕДЕЛЕННЫХ

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

Глава 6 КООРДИНАТЫ И ВЕКТОРЫ

Глава 6 КООРДИНАТЫ И ВЕКТОРЫ Глава 6 КООРДИНАТЫ И ВЕКТОРЫ 6.1. КООРДИНАТЫ И ВЕКТОРЫ НА ПРЯМОЙ 6.1.1. Координатная ось. Координата точки на оси. Длина отрезка с заданными координатами концов. Координата точки, делящей отрезок в заданном

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости

Подробнее

10. Определенный интеграл

10. Определенный интеграл 1. Определенный интеграл 1.1. Пусть f ограниченная функция, заданная на отрезке [, b] R. Разбиением отрезка [, b] называют такой набор точек τ = {x, x 1,..., x n 1, x n } [, b], что = x < x 1 < < x n 1

Подробнее

Найти х из уравнений:

Найти х из уравнений: Методические указания для обучающихся по освоению дисциплины (модуля) Планы практических занятий Матрицы и определители, системы линейных уравнений Матрицы Операции над матрицами Обратная матрица Элементарные

Подробнее

Тема: Криволинейный интеграл II рода

Тема: Криволинейный интеграл II рода Математический анализ Раздел: Интегрирование ФНП Тема: Криволинейный интеграл II рода Лектор Пахомова Е.Г. 2013 г. 10 10. Криволинейный Криволинейный интеграл интеграл II II рода рода по по координатам

Подробнее

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1. Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.

Подробнее

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется МАТЕМАТИЧЕСКИЙ АНАЛИЗ 9 ФУНКЦИЯ -ОЙ ПЕРЕМЕННОЙ. ОСНОВНЫЕ ПОНЯТИЯ И ГРАФИКИ. ОПР Величина называется переменной, если в рамках данной задачи она принимает различные числовые значения. ОПР Величина С называется

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ:

ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ. ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: ТЕМА 1 ПРОИЗВОДНАЯ ФУНКЦИИ ДИФФЕРЕНЦИАЛ ФУНКЦИИ ПРОГРАММНЫЕ ВОПРОСЫ: 11 Функциональная связь Предел функции 1 Производная функции 1 Механический физический и геометрический смысл производной 14 Основные

Подробнее

Основы векторной алгебры

Основы векторной алгебры ) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

dx = F (+ ) F (a) (8.37)

dx = F (+ ) F (a) (8.37) 8.9. Несобственные интегралы До данного момента рассматривались определенные интегралы для случая конечного промежутка интегрирования (отрезка) [, ] и интегрируемой функции на нем. Расширим область применения

Подробнее

ОПЕРЕДЕЛИТЕЛИ D D. j j МАТРИЦЫ. , если C. Случаи решения системы уравнений: 1. Система имеет единственное решение, если RgA Rg A m n

ОПЕРЕДЕЛИТЕЛИ D D. j j МАТРИЦЫ. , если C. Случаи решения системы уравнений: 1. Система имеет единственное решение, если RgA Rg A m n ОПЕРЕДЕЛИТЕЛИ Правило: Определитель -го порядка вычисляется как разность произведений элементов главной и побочной диагонали. Алгебраическое дополнение элемента il Определитель: det A ij A ij i j : A ij

Подробнее

1 Задачи механики. 2 Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и

1 Задачи механики. 2 Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и 1 Задачи механики. Материальная точка и абсолютно твердое тело. 3 Способы описания движения материальной точки. 4 Тангенциальное, нормальное и полное ускорения. Структура механики Механика Механика Кинематика

Подробнее

Математический анализ Часть 2. Интегральное исчисление функций одной переменной. Обыкновенные дифференциальные уравнения учебное пособие. Н.Д.

Математический анализ Часть 2. Интегральное исчисление функций одной переменной. Обыкновенные дифференциальные уравнения учебное пособие. Н.Д. Математический анализ Часть. Интегральное исчисление функций одной переменной. Обыкновенные дифференциальные уравнения учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика»

Подробнее

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной РАЗДЕЛ 5 Интегральное исчисление функций одной переменной Материалы подготовлены преподавателями математики кафедры общеобразовательных дисциплин для системы электронного дистанционного обучения Содержание

Подробнее

9. Определенный интеграл Вычисление определенных интегралов.

9. Определенный интеграл Вычисление определенных интегралов. 9. Определенный интеграл 9.1. Вычисление определенных интегралов. ТЕОРИЯ Определенный интеграл от заданной на отрезке функции можно задать несколькими способами. Важно, что набор средств, доступных для

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

Производная функции. 1. Производные некоторых функций: C Свойства производных: 4. Общий смысл производной.

Производная функции. 1. Производные некоторых функций: C Свойства производных: 4. Общий смысл производной. Производная функции. 1. Производные некоторых функций: C 0 2. 3. Свойства производных: 4. Общий смысл производной. Геометрический смысл производной есть тангенс угла наклона касательной, проведенной к

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

«Интегральное исчисление функции одной переменной. Функции двух переменных. Дифференциальные уравнения. Ряды»

«Интегральное исчисление функции одной переменной. Функции двух переменных. Дифференциальные уравнения. Ряды» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Новосибирский технологический институт филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования

Подробнее

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые

(или df(x)=f (x) dx).. Очевидно, что первообразными будут также любые Лекция 3. Неопределённый интеграл. Первообразная и неопределенный интеграл В дифференциальном исчислении решается задача: по данной функции f() найти ее производную (или дифференциал). Интегральное исчисление

Подробнее

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами.

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами. ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ 1 Основные понятия. Линейные операции над векторами. Отрезок, имеющий определенную длину и определенное направление, называется вектором. Вектор служит для геометрического

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

Математический анализ Конспект лекций

Математический анализ Конспект лекций Министерство образования и науки РФ ФГБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Математический анализ Конспект лекций для направления

Подробнее

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра «Высшая математика 3»

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра «Высшая математика 3» Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика» ПРОГРАММНЫЕ ВОПРОСЫ И КОНТРОЛЬНЫЕ ЗАДАНИЯ по курсу «Математика. -й семестр» для

Подробнее

Математический анализ Часть 2. Интегральное исчисление функций одной переменной. Обыкновенные дифференциальные уравнения учебное пособие. Н.Д.

Математический анализ Часть 2. Интегральное исчисление функций одной переменной. Обыкновенные дифференциальные уравнения учебное пособие. Н.Д. Математический анализ Часть. Интегральное исчисление функций одной переменной. Обыкновенные дифференциальные уравнения учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика»

Подробнее

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные

Подробнее

Комплект. контрольно-оценочных средств учебной дисциплины ЕН.01. Элементы высшей математики

Комплект. контрольно-оценочных средств учебной дисциплины ЕН.01. Элементы высшей математики ГБОУ СПО Прокопьевский политехнический техникум Комплект контрольно-оценочных средств учебной дисциплины ЕН Элементы высшей математики основной образовательной программы (ОПОП) по направлению подготовки

Подробнее

и с боковой поверхностью, имеющей образующую, парал- лельную оси OZ т.е. ( )

и с боковой поверхностью, имеющей образующую, парал- лельную оси OZ т.е. ( ) 8 и с боковой поверхностью, имеющей образующую, парал- поверхностью z = f(, лельную оси OZ т.е. f(, s= v ц ( D) 4 Вычисление интеграла по фигуре от скалярной функции в декартовой системе координат Вычисление

Подробнее

АЛГЕБРА И НАЧАЛА АНАЛИЗА

АЛГЕБРА И НАЧАЛА АНАЛИЗА СОДЕРЖАНИЕ АЛГЕБРА И НАЧАЛА АНАЛИЗА ФУНКЦИИ...10 Основные свойства функций...11 Четность и нечетность...11 Периодичность...12 Нули функции...12 Монотонность (возрастание, убывание)...13 Экстремумы (максимумы

Подробнее

a......, a,... называют членами...

a......, a,... называют членами... РЯДЫ Числовые ряды Основные понятия числового Пусть дана последовательность вещественных или комплексных чисел Числовым рядом называется сумма всех членов числовой последовательности: Числа,,,, называют

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ ИНТЕГРАЛЬНЫЕ ИСЧИСЛЕНИЯ

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ ИНТЕГРАЛЬНЫЕ ИСЧИСЛЕНИЯ Министерство образования Республики Беларусь Учреждение образования «Полоцкий государственный университет» ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ ИНТЕГРАЛЬНЫЕ ИСЧИСЛЕНИЯ УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС для студентов

Подробнее

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3 Лекции 56 Глава 6 Производная функции 6 Понятие производной Пусть функция определена и непрерывна на некотором промежутке X Взяв значение X придадим аргументу приращение так что и новое значение не выходит

Подробнее

Глава 7. Определенный интеграл

Глава 7. Определенный интеграл 68 Глава 7 Определенный интеграл 7 Определение и свойства К понятию определенного интеграла приводят разнообразные задачи вычисления площадей, объемов, работы, объема производства, денежных потоков и тп

Подробнее

x) dl ACDB. = B A , (5.1) dl tdl. (5.2)

x) dl ACDB. = B A , (5.1) dl tdl. (5.2) 5 ИНТЕГРИРОВАНИЕ В ТЕНЗОРНОМ ПОЛЕ В некоторых приложениях тензорного анализа иногда возникает необходимость в вычислении интегралов тензорных полей по линии, поверхности или по объему В этой главе рассмотрим

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x)

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x) Приложение Определение производной Пусть и значения аргумента, а f ) и f ) - ( ( соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Подробнее

1 0. Первообразная и неопределенный интеграл Определение Функцию F(x) называют первообразной для функции f(x) на промежутке X,

1 0. Первообразная и неопределенный интеграл Определение Функцию F(x) называют первообразной для функции f(x) на промежутке X, Глава 4. Интеграл 1. Неопределенный интеграл 1 0. Первообразная и неопределенный интеграл Определение Функцию F(x) называют первообразной для функции f(x) на промежутке X, если x X: F'(x) = f(x). Пример

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. Составитель:В.П.Белкин. Лекция 1. Определенный интеграл

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ. Составитель:В.П.Белкин. Лекция 1. Определенный интеграл ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ Составитель:ВПБелкин Лекция Определенный интеграл Вычисление и свойства определенного интеграла Определенным интегралом функции f ( ) по отрезку [, ] называется число, обозначаемое

Подробнее

Линейная алгебра Лекция 8. Векторы (продолжение)

Линейная алгебра Лекция 8. Векторы (продолжение) Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

Практическое занятие 1 Криволинейные интегралы 1-го и 2-го рода. Обозначим max l

Практическое занятие 1 Криволинейные интегралы 1-го и 2-го рода. Обозначим max l Практическое занятие Криволинейные интегралы -го и -го рода Определение свойства вычисление и приложения криволинейного интеграла -го рода Определение свойства вычисление и приложения криволинейного интеграла

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Интегральное исчисление

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Интегральное исчисление ФЕДЕРАЛЬНОЕ АГЕНСТВО СВЯЗИ Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОМУНИКЦИЙ И ИНФОРМАТИКИ» Кафедра

Подробнее

Математический анализ

Математический анализ Математический анализ Определённый интеграл Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики Томского политехнического университета. Национальный

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ЛЕКЦИЯ 7. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. 1. Понятие производной функции

ЛЕКЦИЯ 7. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ. 1. Понятие производной функции ЛЕКЦИЯ 7 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ 1 Понятие производной функции Рассмотрим функцию у=f(), определенную на интервале (а;в) Возьмем любое значение х (а;в) и зададим аргументу

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

1.Последовательности комплексных чисел. Предел.

1.Последовательности комплексных чисел. Предел. ЛЕКЦИЯ N33. Функции комплексного переменного. Пределы. Непрерывность. Элементарные функции. Дифференцирование ФКП. Свойства производных. 1.Последовательности комплексных чисел. Предел.... 1.Ограниченные

Подробнее

. Если промежуток времени ti

. Если промежуток времени ti Определенный интеграл Задачи, приводящие к понятию определенного интеграла ) Пусть тело движется с переменной скоростью v( t ) Найти путь, пройденный телом за промежуток времени [ ; ] Разобьем отрезок

Подробнее

Т.А. Капитонова МАТЕМАТИКА Саратовский государственный университет имени Н. Г. Чернышевского

Т.А. Капитонова МАТЕМАТИКА Саратовский государственный университет имени Н. Г. Чернышевского ТА Капитонова МАТЕМАТИКА Саратовский государственный университет имени Н Г Чернышевского Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера.

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера. Билет.. Определение матрицы (с примерами квадратной и прямоугольной матриц).. Геометрический смысл многочлена Тейлора первого порядка (формулировка, пример, рисунок). ( x) ctg(x). 4. Метод хорд графического

Подробнее

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом

называется определителем второго порядка, соответствующим данной матрице, и обозначается символом ОПРЕДЕЛИТЕЛИ Пусть дана матрица Число называется определителем второго порядка, соответствующим данной матрице, и обозначается символом = = - Определитель второго порядка содержит две строки и два столбца,

Подробнее

Линейная алгебра Лекция 7. Векторы

Линейная алгебра Лекция 7. Векторы Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление

Подробнее

Математический анализ-2

Математический анализ-2 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. Ломоносова Бакинский филиал ХИМИЧЕСКИЙ ФАКУЛЬТЕТ Э. М. Галеев Математический анализ-2 Баку - 215 Учебное пособие Галеев Э.М. Математический анализ-2. Учебное

Подробнее

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

Подробнее

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Работа переменной силы. Масса и заряд материальной кривой. Статические моменты и центр тяжести материальной кривой и плоской

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

Лекция 10. ВЕКТОРНЫЕ ФУНКЦИИ

Лекция 10. ВЕКТОРНЫЕ ФУНКЦИИ Лекция 1 ВЕКТОРНЫЕ ФУНКЦИИ 1 Понятие векторной функции Годограф Предел и непрерывность векторной функции Производная и дифференциал векторной функции 4 Геометрический и физический смысл производной векторфункции

Подробнее

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новгородский государственный университет имени

Подробнее

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В

Подробнее

Лекция 3. Алгебра векторов. Скалярное произведение

Лекция 3. Алгебра векторов. Скалярное произведение Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB

Подробнее

Часть 1. Теория и примеры решения задач. Материальная точка. Тело отсчета. Декартова система координат

Часть 1. Теория и примеры решения задач. Материальная точка. Тело отсчета. Декартова система координат Занятие 1. Введение в кинематику. Равномерное прямолинейное движение Часть 1. Теория и примеры решения задач Материальная точка. Тело отсчета. Декартова система координат Кинематика это часть механики,

Подробнее

Методы вычисления определённых интегралов

Методы вычисления определённых интегралов Занятие 7 Методы вычисления определённых интегралов Понятие определенного интеграла f(x) функции y = f(x), определенной на отрезке [ ; b ], является одним из центральных в математическом анализе. Конструкция

Подробнее

Введение ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ. Основные понятия

Введение ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ. Основные понятия Введение ЭЛЕМЕНТЫ ТЕОРИИ МНОЖЕСТВ Основные понятия В математике первичными понятиями являются понятия множества, элемента и принадлежности элемента множеству Множество это совокупность элементов, объединенных

Подробнее

4 Определенный интеграл Римана. Определение,

4 Определенный интеграл Римана. Определение, 4 Определенный интеграл Римана. Определение, обобщенная теорема о среднем значении, интеграл с переменным верхним пределом, формула замены переменной, интегрирование по частям, некоторые неравенства. 4.1

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

.3 Вычисление длины кривой. Длина дуги плоской кривой в прямоугольной системе координат. Пусть функция y = f( x)

.3 Вычисление длины кривой. Длина дуги плоской кривой в прямоугольной системе координат. Пусть функция y = f( x) 6 3 Вычисление длины кривой Длина дуги плоской кривой в прямоугольной системе координат Пусть функция = f определена и непрерывна на отрезке [ ; ] и кривая l график этой функции Требуется найти длину дуги

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

I. ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. есть первообразная для f x

I. ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ. есть первообразная для f x или или I ПЕРВООБРАЗНАЯ И НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ Определение Функция F называется первообразной для f F f если () df f d () 5 f 5 так как 5 5 Пример F есть первообразная для 5 d Пример F si есть первообразная

Подробнее

I. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

I. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ Предисловие Глава I. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ 1. Матрицы 1.1. Основные понятия 1.2. Действия наді матрицами 2. Определители 2.1. Основные понятия 2.2. Свойства определителей 3. Невырожденные матрицы 3.1.

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 Дифференциальное исчисление функций одной

Подробнее

Задания для аудиторной и самостоятельной работы

Задания для аудиторной и самостоятельной работы Задания для аудиторной и самостоятельной работы Решите системы линейных уравнений методом Крамера (если это возможно) и методом Гаусса ( ):,,,, 4,, 4 5 7 5 5 4 4 6 6 4 5,, 6 4 4 4,, 8, 9,, 4 4 5 Контрольный

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее