Институт радиоэлектроники и информационных технологий Кафедра «Прикладная математика»

Размер: px
Начинать показ со страницы:

Download "Институт радиоэлектроники и информационных технологий Кафедра «Прикладная математика»"

Транскрипт

1 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р. Е. АЛЕКСЕЕВА» (НГТУ) Институт радиоэлектроники и информационных технологий Кафедра «Прикладная математика» Методические рекомендации по выполнению практических работ по дисциплине «Обыкновенные дифференциальные уравнения» Направление подготовки Ядерные физика и технологии Уровень высшего образования бакалавриат Форма обучения очная Нижний Новгород 2015

2 Разработчик методических рекомендаций по выполнению практических работ по дисциплине «Обыкновенные дифференциальные уравнения» доцент, к.ф.-м.н.. (должность, ученая, степень, звание) Чернова Е.А. (подпись) (Ф. И. О.) Методические рекомендации приняты на заседании кафедры «Прикладная математика» 2015 г. Протокол заседания Заведующий кафедрой 20 г. (Ф. И. О.) Куркин А.А. (подпись) Методические рекомендации по выполнению практических работ по дисциплине «Обыкновенные дифференциальные уравнения» согласованы с председателем методической комиссии по профилю подготовки, специальности (или председателем предметной комиссии) должность ученое звание, степень, фамилия, инициалы дата, подпись Методические рекомендации по выполнению практиеских работ по дисциплине «Обыкновенные дифференциальные уравнения» утверждены Ученым советом ИЯЭиТФ протокол от 20 г. 2

3 1. ЦЕЛИ И ЗАДАЧИ ПРАКТИЧЕСКИХ ЗАНЯТИЙ Практические занятия по дисциплине «Обыкновенные дифференциальные уравнения» проводятся с целью: 1. Формирования умений: -систематизировать полученные на лекционных занятиях знания и практические умения в области математического анализа; получить практические навыки работы с математическими объектами; осуществлять поиск, анализировать и обобщать необходимую информацию. 2. Формирование общепрофессиональных компетенций: Таблица 1 Название компетенций Общепрофессиональные компетенции ОПК-1- способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования. ОК-10 - владеть основными методами, способами и средствами получения, хранения, переработки информации, иметь навыки работы с компьютером как средством управления информацией. Основные показатели оценки результата Формирование способности использования базовых знаний высшей математики для решения прикладных задач, возникающих в научных исследованиях и в производственной деятельности. математическое моделирование процессов и объектов исследования, изучение и анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования. ПК-1 - способность использовать научно-техническую информацию, отечественный и зарубежный опыт по тематике исследования, современные компьютер- Формирование способности использования базовых знаний высшей математики для решения прикладных задач, 3

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 ные технологии и информационные ресурсы в своей предметной области. возникающих в научных исследованиях и в производственной деятельности. Задачи практических занятий: осмысление лекционного материала (основных понятий и определений математического анализа); решение учебных задач, формирующих навыки работы с математическими объектами. - общение с преподавателем, позволяющее уточнить правильность интерпретаций лекционного материала. 2. ПРАВИЛА ВЫПОЛНЕНИЯ ПРАКТИЧЕСКИХ РАБОТ. практические работы выполняются на практических занятиях по дисциплине, которые проводятся в соответствии с учебным расписанием в отведѐнной для этой цели аудитории; тема текущего практического занятия оглашается преподавателем на предыдущем занятии; студент обязан явиться на практическое занятие ознакомившимся с лекционным материалом по теме практического занятия, а также усвоенными базовыми понятиями по данной теме; в процессе практического занятия преподаватель ведѐт устный опрос студентов на знание лекционного материала, а также базовых понятий и определений по теме практического занятия. 3. ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНТИЙ. Трудоемкость (час.) Тема практических занятий Основные понятия теории дифференциальных уравнений. Диф.уравнения 1-го порядка: диф.уравнения с 12 разделяющимися переменными, однородные, приводящиеся к однородным, линейные, уравнения Бернулли, уравнения в полных дифференциалах, уравнения,не разрешенные относительно производной. Дифференциальные уравнения высших порядков: 12 непосредственное интегрирование, уравнения, допускающие понижения порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. 4

5 Метод Лагранжа. Системы дифференциальных уравнений. Метод сведения к одному дифференциальному уравнению, ме- 4 тод интегрируемых комбинаций. Нормальные системы и их физический смысл. Элементы теории устойчивости 6 4. Порядок выполнения практических работ. Практические работы выполняются на практических занятиях по дисциплине, которые проводятся в соответствии с учебным расписанием в отведѐнной для этой цели аудитории. Студент обязан явиться на практическое занятие ознакомившись с лекционным материалом по теме практического занятия, а также усвоенными базовыми понятиями. Тема предстоящего практического занятия объявляется преподавателем на предыдущем занятии. При подготовке к предстоящему практическому занятию студенту рекомендуется проработать следующие вопросы: По разделу «Обыкновенные дифференциальные уравнения» 1. Основные понятия: определение ДУ, порядок ДУ, решение ДУ, интегральная кривая. ДУ 1-го порядка. 2. Задача Коши. Теорема существования и единственности решения задачи Коши. Общее и частное решения ДУ 1-го порядка. Интеграл ДУ. Геометрическая интерпретация. Изоклины. 3. ДУ с разделяющимися переменными и сводящиеся к ним. Однородные ДУ. 4. Теорема о структуре решения линейного ДУ 1-го порядка. 5. Метод вариации произвольной постоянной для линейных ДУ 1-го порядка. 6. Уравнения Бернулли. 7. Интегрирование полных дифференциалов. 8. ДУ 2-го порядка. Задача Коши. Теорема существования и единственности решения задачи Коши. Общее и частное решения ДУ 1-го порядка. ДУ, допускающие понижения порядка. 9. Линейные ДУ 2-го порядка. Свойства решений. Свойство определителя Вронского для линейно независимых решений линейного однородного ДУ. 5

6 10. Теорема о структуре общего решения линейного однородного ДУ 2-го порядка. Теорема о структуре общего решения линейного неоднородного ДУ 2-го порядка. Метод вариации произвольных постоянных для линейных ДУ 2-го порядка 11. Линейные однородные ДУ 2-го порядка с постоянными коэффициентами. Характеристическое уравнение. Структура общего решения в зависимости от корней характеристического уравнения. 12. Линейные неоднородные ДУ 2-го порядка с постоянными коэффициентами и специальной правой частью. Принцип суперпозиции. 13. ДУ высших порядков. Задача Коши. Теорема существования и единственности решения задачи Коши. Общее решение. Линейные однородные ДУ высших порядков. Линейная зависимость функций. Свойство определителя Вронского для линейно независимых решений. Структура общего решения. 14. Линейные однородные ДУ высших порядков с постоянными коэффициентами. Характеристическое уравнение. Линейные неоднородные ДУ: Структура общего решения. Метод вариации произвольных постоянных для линейных ДУ высших порядков. 15. Системы ДУ. Задача Коши. Теорема существования и единственности решения задачи Коши. Общее решение. Метод исключения. Контрольная работа 1. (пример) Решить уравнения ОБРАЗЦЫ КОНТРОЛЬНЫХ РАБОТ 3 1. ln x x 4 x 3. x x 2, 1 0 Контрольная работа 2 (пример) 1. Найти общее решение дифференциального уравнения x 1 ln x 2 2. Найти частное решение заданной задачи Коши 6

7 e, 0 1, Найти общее решение дифференциального уравнения sin3x xe 4. Найти общее решение дифференциального уравнения методом вариации произвольных постоянных 2x 3x e 3 2 x 1 e 5. Решить систему дифференциальных уравнений dx 3x, dt d 2x dx Контрольная работа 2.(пример) 1. Найти решение задачи Коши 3 1 0, 1 1, Найти структуру общего решения неоднородного уравнения 2 3x x 2 3 x e xe sin 3x. 3. Решить уравнение x e cos3x. 4. Решить уравнение методом вариации произвольных постоянных 2 cos x tgx. sin x 5. Решить систему уравнений d 3 z, dx dz z. dx 7

8 Билет зачета (пример) 1. Укажите тип уравнения и решите одно из них. а) e x 1 e 1 0. б) ( x 2 2x) dx xd 0. в) 3 3 2x 2x. 2 2x x tgx г) ln cos dx d. x 2. Указать структуру общего решения уравнения, не находя не находя коэффициентов его частных решений. 2x 2x 4 8 xe e (cos2x xsin 2x). 3. Решить уравнения. а) 4 2tgx. б) 2 cosx 5. КРИТЕРИИ ОЦЕНКИ ОТВЕТОВ НА ВОПРОСЫ ПРИ ПРОВЕДЕНИИ ПРАКТИЧЕСКИХ ЗАНЯТИЙ Программой дисциплины предусмотрены следующие виды контроля: текущий контроль в форме «опрос у доски» при решении задач на практических занятиях; промежуточный контроль в виде контрольных работ, выполняемых на контрольных неделях и тестов; рубежный контроль в виде зачета. По результатам ответов студента на вопросы при проведении практических занятий и зачѐта преподаватель учитывает: правильность и полноту ответов на поставленный вопрос; уровень освоения студентом учебного материала; умение студента использовать теоретические знания при решении учебных задач на практических занятиях и сдаче зачѐта; сформированность аналитического мышления. Таблица 3 - Шкала оценивания для зачета 8

9 . Наименование этапа оценивания Технология оценивания Описание шкалы оценивания на этапе промежуточной аттестации 1.Отсутствие усвоения 2.Не полное 3.Хорошее 4.Отличное Этапы контроля Усвоение материала дисциплины Знаниевая компонента отсутствие усвоения неполное хорошее отличное зачет Деятельностная (задачи, задания) отсутствие решения решение с ошибками Правильное решение без ошибок с отдельными замечаниями правильное решение без ошибок 1. Рекомендуемая литература. При подготовке к предстоящему практическому занятию студенту рекомендуется проработать следующую литературу: 1.Конспект лекций по дисциплине 2.Дифференциальное и интегральное исчисления : Учеб.пособие: В 2-х т. Т.1 / Н. С. Пискунов. - Изд.стер. - М. : Интеграл-Пресс, с. : ил. 3. Дифференциальное и интегральное исчисления : Учеб.пособие: В 2-х т. Т.2 / Н. С. Пискунов. - Изд.стер. - М. : Интеграл-Пресс, с. : ил. - Предм.указ.:с ISBN (т.2); : м.указ.:с ISBN (т.1); : ШипачевВ.С.Курс высшей математики:учебник/в.с.шипачев.м.:- Оникс, с. 5.Конспект лекций по высшей математике : В 2-х ч. Ч.1 / Д. Т. Письменный е изд. - М. : Айрис-пресс, с. : ил. - (Высшее образование). - Справ.материалы:с ISBN ISBN : Конспект лекций по высшей математике : В 2-х ч. Ч.2 / Д. Т. Письменный. - 7-е изд. - М. : Айрис-пресс, с. : ил. - (Высшее образование). - Прил.:с ISBN (Ч.2); : Руководство к решению задач по математическому анализу : Учеб.пособие / Г. И. Запорожец. - 7-е изд.,стер. - СПб. : Лань, с. : ил. - (Учебники для вузов. Специальная литература). - ISBN Кузнецов Л.Д. Сборник задач по высшей математике, Типовые расчеты: Учебное пособие/ Изд. М.:Лань, с.-(Учебники для вузов. Специальная литература). ISBN X 9

Институт радиоэлектроники и информационных технологий Кафедра «Прикладная математика»

Институт радиоэлектроники и информационных технологий Кафедра «Прикладная математика» Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение профессионального высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Дифференциальные уравнения (наименование дисциплины) Направление подготовки физика

Дифференциальные уравнения (наименование дисциплины) Направление подготовки физика Аннотация рабочей программы дисциплины Дифференциальные уравнения (наименование дисциплины) Направление подготовки 03.03.02 физика Профиль подготовки «Фундаментальная физика», «Физика атомного ядра и частиц»

Подробнее

Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения. Направление подготовки "Прикладная информатика"

Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения. Направление подготовки Прикладная информатика Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Утверждаю: Руководитель ООП: 20 г. Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения

Подробнее

Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения

Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Утверждаю: Руководитель ООП: 20 г. Рабочая программа дисциплины (с аннотацией) Дифференциальные уравнения

Подробнее

1. Цели и задачи дисциплины Основные задачи дисциплины: Место дисциплины в структуре ООП Требования к результатам освоения дисциплины

1. Цели и задачи дисциплины Основные задачи дисциплины: Место дисциплины в структуре ООП Требования к результатам освоения дисциплины 2 1. Цели и задачи дисциплины Теория дифференциальных уравнений является одним из самых больших разделов современной математики. Дифференциальные уравнения помогают решать различные задачи не только в

Подробнее

Программа дисциплины

Программа дисциплины МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное учреждение высшего профессионального образования "Казанский (Приволжский) федеральный университет" Институт

Подробнее

Институт транспортных систем

Институт транспортных систем Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.

Подробнее

1. Цели и задачи дисциплины Цели: Задачи: Место дисциплины в структуре ООП 3. Требования к результатам освоения дисциплины

1. Цели и задачи дисциплины Цели: Задачи: Место дисциплины в структуре ООП 3. Требования к результатам освоения дисциплины 1. Цели и задачи дисциплины Цели: целью математического образования являются: - воспитание достаточно высокой математической культуры для восприятия инфокоммуникационных технологий; - привитие навыков

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ О.А. ЕВСЕЕВА, О.А.МАЛЫГИНА, Е.В. ПРОНИНА, И.Н.РУДЕНСКАЯ, Л.И. ТАЛАНОВА РЕДАКТОР: Н.С. ЧЕКАЛКИН ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВПО «ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» ФИЗИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ УТВЕРЖДАЮ 06 сентября 2011г. Рабочая программа дисциплины

Подробнее

Дифференциальные и разностные уравнения

Дифференциальные и разностные уравнения Государственный университет - Высшая школа экономики Нижегородский филиал Факультет бизнес информатики и прикладной математики Программа дисциплины Дифференциальные и разностные уравнения для направлений

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Факультет математики и информатики Кафедра математического анализа и дифференциальных уравнений И.И. Вайнштейн, Н.Н. Лазарева, Е.В.

Подробнее

Тематика и расписание 3-х тестов по дифференциальным уравнениям. (ориентировочные сроки 05 марта, 10 апреля, 15 мая)

Тематика и расписание 3-х тестов по дифференциальным уравнениям. (ориентировочные сроки 05 марта, 10 апреля, 15 мая) Тематика и расписание 3-х тестов по дифференциальным м (ориентировочные сроки 05 марта, 10 апреля, 15 мая) Тест по интегральным м и вариационному исчислению предполагается один - в конце семестра (ориентировочно,

Подробнее

Дифференциальные и разностные уравнения

Дифференциальные и разностные уравнения Министерство образования и науки Российской Федерации Волгоградский государственный технический университет Кафедра Прикладная математика Дифференциальные и разностные уравнения Методические указания к

Подробнее

Расписание курсовых контрольных работ (компьютерных тестов) 4-го семестра 2017 г.

Расписание курсовых контрольных работ (компьютерных тестов) 4-го семестра 2017 г. Расписание курсовых контрольных работ (компьютерных тестов) 4-го семестра 2017 г. По дифференциальным м предполагается 3 теста. Ориентировочные сроки 01-10 марта, 10-20 апреля, 15-20 мая). По интегральным

Подробнее

Дифференциальные уравнения рабочая программа дисциплины

Дифференциальные уравнения рабочая программа дисциплины МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный университет" (ФГБОУ ВПО «АлтГУ») УТВЕРЖДАЮ Декан Поляков

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государственный педагогический университет» (ФГБОУ

Подробнее

Теоретические вопросы

Теоретические вопросы V ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Теоретические вопросы 1 Основные понятия теории дифференциальных уравнений Задача Коши для дифференциального уравнения первого порядка Формулировка теоремы существования и

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

Дифференциальные уравнения и уравнения с частными производными Методические рекомендации для студентов IV курса математического факультета

Дифференциальные уравнения и уравнения с частными производными Методические рекомендации для студентов IV курса математического факультета Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Уральский государственный педагогический университет» Математический факультет Кафедра

Подробнее

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Специальность Фундаментальная и прикладная химия

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Специальность Фундаментальная и прикладная химия МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФГБОУ ВПО «Кемеровский государственный университет» Химический факультет РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Специальность 000165 Фундаментальная

Подробнее

РАБОЧАЯ ПРОГРАММА. учебной общепрофессиональной дисциплины ЕН 01 МАТЕМАТИКА

РАБОЧАЯ ПРОГРАММА. учебной общепрофессиональной дисциплины ЕН 01 МАТЕМАТИКА Министерство образования Иркутской области Государственное бюджетное профессиональное образовательное учреждение Иркутской области «Ангарский политехнический техникум» РАБОЧАЯ ПРОГРАММА учебной общепрофессиональной

Подробнее

Рабочая программа дисциплины (с аннотацией) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Рабочая программа дисциплины (с аннотацией) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Рабочая программа дисциплины (с аннотацией) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Направление подготовки 02.03.03

Подробнее

Дифференциальные и разностные уравнения

Дифференциальные и разностные уравнения Правительство Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет - Высшая школа экономики"

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Стр. 1 из 17 26.10.2012 11:39 Аттестационное тестирование в сфере профессионального образования Специальность: 010300.62 Математика. Компьютерные науки Дисциплина: Дифференциальные уравнения Время выполнения

Подробнее

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА»

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» Задача 1. Найти общее решение дифференциального уравнения с разделяющимися переменными: 1. d d d d 1 1 0.. d d d. d d d 5. 6d 6d d d 6. d d 0 7. 8. (

Подробнее

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ

( n) const) P однородная функция любого ненулевого порядка 5). Q. P однородная функция 1 порядка. = - общее решение ЛОДУ. y = y + y подставить в ЛОДУ Уфимский государственный нефтяной технический университет. Вариант 500. Дифференциальное уравнение P (, ) d Q(, ) d 0 порядка, если: будет однородным уравнением первого Ответы: ). P и Q однородные функции

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ Министерство образования Республики Беларусь Учебно-методическое объединение вузов Республики Беларусь по естественнонаучному образованию УТВЕРЖ, Первый Республ (гра образования Регистрационный ТД- (г.

Подробнее

Рабочая программа дисциплины. Профиль (специализация, магистерская программа) Информационные системы и технологии в телекоммуникациях

Рабочая программа дисциплины. Профиль (специализация, магистерская программа) Информационные системы и технологии в телекоммуникациях Министерство образования и науки Российской Федерации Федеральное агентство по образованию Автономная некоммерческая организация высшего образования «Российский Новый университет» Таганрогский филиал УТВЕРЖДАЮ

Подробнее

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС 1 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ Федеральное государственное образовательное учреждение высшего профессионального образования Южный федеральный университет факультет математики, механики и компьютерных

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Областное государственное автономное образовательное учреждение среднего профессионального образования Губкинский горно-политехнический колледж

Областное государственное автономное образовательное учреждение среднего профессионального образования Губкинский горно-политехнический колледж Областное государственное автономное образовательное учреждение среднего профессионального образования Губкинский горно-политехнический колледж РАБОЧАЯ ПРОГРАММА учебной дисциплины Математика для специальностей

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФГБОУ ВО «ИГУ» Кафедра

Подробнее

Учебно-методический комплекс по дисциплине «Математика»

Учебно-методический комплекс по дисциплине «Математика» МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ государственное бюджетное образовательное учреждение высшего профессионального образования «СЕВЕРНЫЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» Министерства

Подробнее

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б3.Б.7 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б3.Б.7 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ: ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Мурманский государственный гуманитарный университет» (ФГБОУ ВПО

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

РАБОЧАЯ ПРОГРАММА учебной дисциплины Математика

РАБОЧАЯ ПРОГРАММА учебной дисциплины Математика Департамент внутренней и кадровой политики Белгородской области Областное государственное автономное образовательное учреждение среднего профессионального образования ГУБКИНСКИЙ ГОРОНО-ПОЛИТЕХНИЧЕСКИЙ

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Рабочая программа для специальности «Информатика» 16 Зачет 6

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Рабочая программа для специальности «Информатика» 16 Зачет 6 ЧАСТНОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «МИНСКИЙ ИНСТИТУТ УПРАВЛЕНИЯ» УТВЕРЖДАЮ Ректор Минского института управления Н.В.Суша 2010 г. Регистрационный УД- /р. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Рабочая программа для специальности

Подробнее

Дисциплина «Математический анализ в агроинженерии»

Дисциплина «Математический анализ в агроинженерии» Дисциплина «Математический анализ в агроинженерии» 1. Цель и задачи дисциплины Место дисциплины в структуре основной профессиональной образовательной программы Дисциплина «Математический анализ в агроинженерии»

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Нижегородский государственный

Подробнее

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС КУРСА ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Направление: Педагогическое образование. Квалификация (степень): Бакалавр

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС КУРСА ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Направление: Педагогическое образование. Квалификация (степень): Бакалавр МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧ- РЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗВАНИЯ «ПЕРМСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ПРОФСОЮЗОВ ВЫСШЕГО ОБРАЗОВАНИЯ «АКАДЕМИЯ ТРУДА И СОЦИАЛЬНЫХ ОТНОШЕНИЙ» БАШКИРСКИЙ ИНСТИТУТ СОЦИАЛЬНЫХ ТЕХНОЛОГИЙ (филиал)

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ПРОФСОЮЗОВ ВЫСШЕГО ОБРАЗОВАНИЯ «АКАДЕМИЯ ТРУДА И СОЦИАЛЬНЫХ ОТНОШЕНИЙ» БАШКИРСКИЙ ИНСТИТУТ СОЦИАЛЬНЫХ ТЕХНОЛОГИЙ (филиал) ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ПРОФСОЮЗОВ ВЫСШЕГО ОБРАЗОВАНИЯ «АКАДЕМИЯ ТРУДА И СОЦИАЛЬНЫХ ОТНОШЕНИЙ» БАШКИРСКИЙ ИНСТИТУТ СОЦИАЛЬНЫХ ТЕХНОЛОГИЙ (филиал) Кафедра ЭКОНОМИКИ, ИНФОРМАТИКИ И АУДИТА АННОТАЦИЯ К

Подробнее

Дифференциальные уравнения высших порядков. Лекции 2-3

Дифференциальные уравнения высших порядков. Лекции 2-3 Дифференциальные уравнения высших порядков Лекции 2-3 Дифференциальным уравнением порядка n называется уравнение вида F( x, y, y,..., y() n ) 0, () в котором обязательно наличие n-ой производной. Будем

Подробнее

УТВЕРЖДАЮ. Дифференциальные уравнения в прикладных задачах (наименование дисциплины) Форма обучения: очная

УТВЕРЖДАЮ. Дифференциальные уравнения в прикладных задачах (наименование дисциплины) Форма обучения: очная Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования МЕЖДУНАРОДНЫЙ УНИВЕРСИТЕТ ПРИРОДЫ, ОБЩЕСТВА И ЧЕЛОВЕКА «ДУБНА» УТВЕРЖДАЮ

Подробнее

Экзаменационный билет 2 Кафедра высшей математики

Экзаменационный билет 2 Кафедра высшей математики Экзаменационный билет Факультет: ПО и ВП, гр.04, 07 и 7.Однородные дифференциальные уравнения первого порядка.. Признак Лейбница. 3 Вычислить интеграл: dx 0 x 6x + Экзаменационный билет Факультет: : ЭМФ.

Подробнее

Областное государственное автономное образовательное учреждение среднего профессионального образования Губкинский горно-политехнический колледж

Областное государственное автономное образовательное учреждение среднего профессионального образования Губкинский горно-политехнический колледж Областное государственное автономное образовательное учреждение среднего профессионального образования Губкинский горно-политехнический колледж РАБОЧАЯ ПРОГРАММА учебной дисциплины Математика для специальностей

Подробнее

ВЫСШАЯ МАТЕМАТИКА. В трех частях

ВЫСШАЯ МАТЕМАТИКА. В трех частях Министерство образования и науки Украины Государственное высшее учебное заведение «Приазовский государственный технический университет» А. М. Холькин ВЫСШАЯ МАТЕМАТИКА В трех частях Часть ІІІ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Министерство общего и профессионального образования РФ

Министерство общего и профессионального образования РФ Министерство общего и профессионального образования РФ Восточно-Сибирский государственный технологический университет Министерство общего и профессионального образования РФ Назарова Л.И. Дифференциальные

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования Республики Беларусь Учебно-методическое объединение по естественнонаучному образованию УТВЕРЖДАЮ Первый Заместитель Министра образования Республики Беларусь Регистрационный В.А,Б6гуш

Подробнее

АННОТАЦИЯ к рабочей программе учебной дисциплины ЕН.01 Математика по специальности 21.02.17 Подземная разработка месторождений полезных ископаемых базовой подготовки Квалификация: техник Форма обучения:

Подробнее

Уравнения первого порядка

Уравнения первого порядка Глава 1. Введение Лекция 1 1. Понятие дифференциального уравнения. Основные определения. 2. Общее решение дифференциального уравнения, общий интеграл. 3. Постановка основных задач для обыкновенных дифференциальных

Подробнее

Рассмотрен и рекомендован для использования в учебном процессе на заседании кафедры МиПИ. Протокол 2 от г.

Рассмотрен и рекомендован для использования в учебном процессе на заседании кафедры МиПИ. Протокол 2 от г. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ СФЕРЫ ОБСЛУЖИВАНИЯ И ПРЕДПРИНИМАТЕЛЬСТВА (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО

Подробнее

ПРОГРАММА ЭКЗАМЕНА по курсу "ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ" 2 семестр группы АК1,2,4-11 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

ПРОГРАММА ЭКЗАМЕНА по курсу ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 2 семестр группы АК1,2,4-11 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ ПРОГРАММА ЭКЗАМЕНА по курсу "ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ" 2 семестр группы АК,2,4- ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ Неопределенный интеграл. Первообразная функции. Таблица первообразных.

Подробнее

Лекция 1. Дифференциальные уравнения первого порядка

Лекция 1. Дифференциальные уравнения первого порядка Лекция 1 Дифференциальные уравнения первого порядка 1 Понятие дифференциального уравнения и его решения Обыкновенным дифференциальным уравнением 1-го порядка называется выражение вида F( x, y, y ) 0, где

Подробнее

ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Специальность "Математика" Квалификация - математик ОПД.Ф.

ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Специальность Математика Квалификация - математик ОПД.Ф. 3 ГОСУДАРСТВЕННЫЙ ОБРАЗОВАТЕЛЬНЫЙ СТАНДАРТ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Специальность 010101 "Математика" Квалификация - математик ОПД.Ф.07 Дифференциальные уравнения. Понятие дифференциального

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ СЫКТЫВКАРСКИЙ ЛЕСНОЙ ИНСТИТУТ Кафедра высшей математики МАТЕМАТИЧЕСКИЙ АНАЛИЗ САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ Методические указания для подготовки дипломированных специалистов по направлению 654700 «Информационные

Подробнее

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий

Линейные дифференциальные уравнения 1-го порядка. Уравнение Бернулли. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли

Тема: Однородные уравнения. Линейные уравнения. Уравнения Бернулли Математический анализ Раздел: Дифференциальные уравнения Тема: Однородные уравнения Линейные уравнения Уравнения Бернулли Лектор Рожкова СВ 07 год 8 Однородные уравнения Функция M, называется однородной

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ. ДУ линейные однородные (ДУЛО)

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ. ДУ линейные однородные (ДУЛО) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ ДУ допускающие понижение ДУ линейные однородные (ДУЛО) ДУ линейные неоднородные (ДУЛН) ДУ линейные однородные

Подробнее

Институт транспортных систем. Методические рекомендации по выполнению практических работ по дисциплине «Математика» Направление подготовки

Институт транспортных систем. Методические рекомендации по выполнению практических работ по дисциплине «Математика» Направление подготовки Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.

Подробнее

РАЗДЕЛ 1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 1.1. Требования к студентам Дисциплина «Основы математического анализа» ориентирована на уровень знаний, полученных

РАЗДЕЛ 1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 1.1. Требования к студентам Дисциплина «Основы математического анализа» ориентирована на уровень знаний, полученных РАЗДЕЛ. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА.. Требования к студентам Дисциплина «Основы математического анализа» ориентирована на уровень знаний, полученных студентами при изучении школьного курса математики. Студент

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» БОРИСОГЛЕБСКИЙ ФИЛИАЛ (БФ ФГБОУ ВО «ВГУ») УТВЕРЖДАЮ Заведующий

Подробнее

1. Цель и задачи освоения дисциплины Целью освоения учебной дисциплины «Математика» является формирование системных знаний, позволяющих применять для

1. Цель и задачи освоения дисциплины Целью освоения учебной дисциплины «Математика» является формирование системных знаний, позволяющих применять для 1. Цель и задачи освоения дисциплины Целью освоения учебной дисциплины «Математика» является формирование системных знаний, позволяющих применять для изучения свойств и функций сложных систем, в том числе

Подробнее

П Р О Г Р А М М А ( С О Д Е Р Ж А Н И Е ) ( В О П Р О С Ы ) Э К З А М Е Н А

П Р О Г Р А М М А ( С О Д Е Р Ж А Н И Е ) ( В О П Р О С Ы ) Э К З А М Е Н А П Р О Г Р А М М А ( С О Д Е Р Ж А Н И Е ) ( В О П Р О С Ы ) Э К З А М Е Н А П О В Ы С Ш Е Й М А Т Е М А Т И К Е З А 4 С Е М Е С Т Р Д Л Я С Т У Д Е Н Т О В Г Ф 2 1-4, 7-8. Май 2011 г. Лектор Лисеев И.А.

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный

Подробнее

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика»

1 Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Дифференциальные уравнения» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева ЕГ Определение: Уравнение

Подробнее

Тематика контрольных (самостоятельных) работ

Тематика контрольных (самостоятельных) работ Фонды Фонды оценочных средств по дисциплине Б.2.1 «Математический анализ» для проведения текущего контроля успеваемости и промежуточной аттестации студентов по направлению 080100.62 «Экономика» Тематика

Подробнее

Билет 6 1. Дифференциалы высших порядков функции нескольких переменных. Формула Тейлора. 2. Интегрирующий множитель, его нахождение в частных случаях.

Билет 6 1. Дифференциалы высших порядков функции нескольких переменных. Формула Тейлора. 2. Интегрирующий множитель, его нахождение в частных случаях. Математика 2 Билет 1 Лектор Конев В.В. 1. Дифференцирование сложной функции нескольких переменных. 2. Дифференциальные уравнения 1-го порядка, основные понятия (определение, решение уравнения, общее и

Подробнее

ОГЛАВЛЕНИЕ ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ... 3 ПРАКТИЧЕСКИЙ РАЗДЕЛ План практических занятий... 4 РАЗДЕЛ КОНТРОЛЯ ЗНАНИЙ... 17

ОГЛАВЛЕНИЕ ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ... 3 ПРАКТИЧЕСКИЙ РАЗДЕЛ План практических занятий... 4 РАЗДЕЛ КОНТРОЛЯ ЗНАНИЙ... 17 ОГЛАВЛЕНИЕ ТЕОРЕТИЧЕСКИЙ РАЗДЕЛ... 3 ПРАКТИЧЕСКИЙ РАЗДЕЛ... 4 План практических занятий... 4 РАЗДЕЛ КОНТРОЛЯ ЗНАНИЙ... 17 Текущий контроль знаний... 17 Аттестация... 17 ВСПОМОГАТЕЛЬНЫЙ РАЗДЕЛ... 21 Типовая

Подробнее

1. Общая информация о дисциплине 1.1. Название дисциплины: Математика I

1. Общая информация о дисциплине 1.1. Название дисциплины: Математика I 1. Общая информация о дисциплине 1.1. Название дисциплины: Математика I 1.2.1. Трудоёмкость дисциплины по учебному плану очной формы обучения: 144 часа (4 ЗЕ) из них: лекций 24 час. лабораторных занятий

Подробнее

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ СФЕРЫ ОБСЛУЖИВАНИЯ И ПРЕДПРИНИМАТЕЛЬСТВА (ФИЛИАЛ) ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Л.Э.Эльсгольц ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ ОГЛАВЛЕНИЕ От редакторов серии 8 ЧАСТЬ I 8 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Введение 9 Глава 1. Дифференциальные уравнения первого порядка 15

Подробнее

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ В МАГИСТРАТУРУ

ПРОГРАММА ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ В МАГИСТРАТУРУ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Подробнее

5. Методические указания по подготовке к практическим занятиям при изучении дисциплины «Математический анализ» для профиля

5. Методические указания по подготовке к практическим занятиям при изучении дисциплины «Математический анализ» для профиля 5. Методические указания по подготовке к практическим занятиям при изучении дисциплины «Математический анализ» для профиля 080100.62 - «Статистика» Основная цель практических занятий способствовать усвоению

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» В. М. Сафро,

Подробнее

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА. по дисциплине «Дифференциальные уравнения и уравнения с частными производными»

РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА. по дисциплине «Дифференциальные уравнения и уравнения с частными производными» Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Уральский государственный педагогический университет» Факультет математический Кафедра

Подробнее

Руководство по высшей математике для проведения практических занятий и самостоятельной работы студентов. 2 семестр.

Руководство по высшей математике для проведения практических занятий и самостоятельной работы студентов. 2 семестр. Руководство по высшей математике для проведения практических занятий и самостоятельной работы студентов. 2 семестр. В.С.Куликов, И.А.Джваршейшвили, М.А.Климова Оглавление I Неопределенный интеграл 9 1

Подробнее

1.5. Виды контроля: текущий - выполнение самостоятельных работ промежуточный выполнение контрольных работ, коллоквиумы итоговый зачет

1.5. Виды контроля: текущий - выполнение самостоятельных работ промежуточный выполнение контрольных работ, коллоквиумы итоговый зачет . Пояснительная записка.. Требования к студентам Студент должен обладать следующими исходными компетенциями: базовыми положениями математических и естественных наук владеть навыками самостоятельной ы самостоятельно

Подробнее

«Системный анализ и управление»

«Системный анализ и управление» МИНОБРНАУКИ РОССИИ федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р. Е. АЛЕКСЕЕВА» (НГТУ) Институт Транспортных

Подробнее

Консультационный тренинговый центр «Резольвента»

Консультационный тренинговый центр «Резольвента» ООО «Резольвента», wwwresolventaru, resolventa@listru, (495) 509-8-10 Консультационный тренинговый центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое

Подробнее

1 ОБЩИЕ ПОЛОЖЕНИЯ ПО ПРОВЕДЕНИЮ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ПРИЕМУ В МАГИСТРАТУРУ НА НАПРАВЛЕНИЕ «Прикладная математика»

1 ОБЩИЕ ПОЛОЖЕНИЯ ПО ПРОВЕДЕНИЮ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ПРИЕМУ В МАГИСТРАТУРУ НА НАПРАВЛЕНИЕ «Прикладная математика» 3 1 ОБЩИЕ ПОЛОЖЕНИЯ ПО ПРОВЕДЕНИЮ ВСТУПИТЕЛЬНЫХ ИСПЫТАНИЙ ПО ПРИЕМУ В МАГИСТРАТУРУ НА НАПРАВЛЕНИЕ 01.04.04 «Прикладная математика» 1.1 Настоящая Программа, составленная в соответствии с федеральным государственным

Подробнее

А.Н.Тихонов, А.Б.Васильева, А.Г.Свешников ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Один из выпусков «Курса высшей математики и математической физики» под редакцией

А.Н.Тихонов, А.Б.Васильева, А.Г.Свешников ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Один из выпусков «Курса высшей математики и математической физики» под редакцией А.Н.Тихонов, А.Б.Васильева, А.Г.Свешников ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Один из выпусков «Курса высшей математики и математической физики» под редакцией А.Н.Тихонова, В.А.Ильина, А.Г.Свешникова. Учебник создан

Подробнее

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ЕН.01. МАТЕМАТИКА

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ЕН.01. МАТЕМАТИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЕГАЗОВЫЙ УНИВЕРСИТЕТ»

Подробнее

Методические материалы для промежуточной аттестации Вопросы для подготовки к экзамену по дисциплине «Математический анализ» 1. Понятие функции.

Методические материалы для промежуточной аттестации Вопросы для подготовки к экзамену по дисциплине «Математический анализ» 1. Понятие функции. Методические материалы для промежуточной аттестации Вопросы для подготовки к экзамену по дисциплине «Математический анализ» 1. Понятие функции. Способы задания функций. Область определения. Четные и нечетные,

Подробнее

Учебно-программная документация

Учебно-программная документация 1 Автономное образовательное учреждение среднего профессионального образования Удмуртской Республики «Ижевский промышленно-экономический колледж» Учебно-программная документация ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

ЕН. 01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ

ЕН. 01 ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тюменский государственный нефтегазовый университет»

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Дифференциальные уравнения Методические указания

Подробнее

А. Н. Филиппов, Т. С. Филиппова,

А. Н. Филиппов, Т. С. Филиппова, Министерство образования и науки Российской Федерации РГУ нефти и газа имени И.М.Губкина Кафедра «Высшая математика» А. Н. Филиппов, Т. С. Филиппова, Методические указания к выполнению типового расчета

Подробнее

ГБОУ СПО Прокопьевский политехнический техникум

ГБОУ СПО Прокопьевский политехнический техникум ГБОУ СПО Прокопьевский политехнический техникум ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ» Рекомендуется для специальности 30111 Компьютерные сети Наименование квалификации базовой подготовки

Подробнее

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения КЫРГЫЗСКО-РОССИЙСКИЙ СЛАВЯНСКИЙ УНИВЕРСИТЕТ ЕСТЕСТВЕННО-ТЕХНИЧЕСКИЙ ФАКУЛЬТЕТ Кафедра математики ЛГЛелевкина ТАШемякина Обыкновенные дифференциальные уравнения Учебное пособие по математическому анализу

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

II. Аннотация 1. Цели и задачи дисциплины Преподавание дисциплины «Математический анализ» имеет следующие цели и задачи: - ознакомить студентов с

II. Аннотация 1. Цели и задачи дисциплины Преподавание дисциплины «Математический анализ» имеет следующие цели и задачи: - ознакомить студентов с II. Аннотация 1. Цели и задачи дисциплины Преподавание дисциплины «Математический анализ» имеет следующие цели и задачи: - ознакомить студентов с теоретическими и практическими основами математического

Подробнее

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОСТОВСКОЙ ОБЛАСТИ «РОСТОВСКИЙ-НА-ДОНУ

Подробнее