МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»"

Транскрипт

1 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов и конструкций» Задача Расчёт на прочность бруса при косом изгибе ФИО студента: Группа: Преподаватель: Дата сдачи: Оценка:

2 Дано: двухопорная балка двутаврового сечения (двутавр 0) длиной l = м, нагружена в вертикальной и горизонтальной плоскостях симметрии балки: P = кн, q = кн/м, 0 = 0 кнм. Необходимо:. Определить внутренние усилия в поперечных сечениях балки, построить эпюры их распределения по длине балки, определить потенциально опасные поперечные сечения.. Вычислить действующие напряжения в угловых точках опасного поперечного сечения и построить эпюры их распределения по контуру сечения. Графически определить положение нейтральной оси косого изгиба в опасном сечении.. Определить положение нейтральной оси косого изгиба в опасном сечении аналитически. Замечание. При вычислении поперечных сил Q и Q используем правило, согласно которому поперечная сила в сечении численно равна алгебраической сумме проекций на ось или всех внешних сил, приложенных либо к левой, либо к правой части балки, мысленно разделённой сечением. Замечание. При вычислении изгибающих моментов и используем правило, согласно которому изгибающий момент в сечении численно равен алгебраической сумме моментов, создаваемых, соответственно, вертикальными или горизонтальными внешними силами, приложенными либо к левой, либо к правой части балки, мысленно разделённой сечением.

3 Решение:. Принимаем следующие правила знаков (см. рис. ): a) для поперечных сил: Q > 0 или Q > 0; Q < 0 или Q < 0; б) для изгибающих моментов: > 0 или > 0; Рис. < 0 или < 0;. Определение поперечных сил и изгибающих моментов в поперечных сечениях балки (см. рис. ). (а) вычисляем реакций в опорах: вертикальные R, R B, горизонтальные R, R B. Вертикальные реакции R, вертикальной плоскости. Изначально направим их вверх: R B определяем из уравнений равновесия в l ql = 0, RB l+ ql = 0 R кн B = = =. l Знак означает, что R направлена противоположно первоначальному B направлению вверх. Её действительное направление вниз. Изменённое направление реакции показано на рис.. ql ql B = 0, R l = 0 R кн = =. l Знак означает, что R также направлена противоположно первоначальному А направлению вверх. Её действительное направление вниз. Изменённое направление реакции показано на рис.. Уравнение равновесия сил в вертикальной плоскости используем для проверки правильности вычисления реакции: F = 0, R + R ql = + 0= 0. B

4 Горизонтальные реакции R, R B определяем из уравнений равновесия в горизонтальной плоскости (см. рис. ). Изначально направим их противоположно направлению внешней силы l Pl P 0 0 = 0, R B l + 0 = 0 R 5кН B = = =. l Знак означает, что R B направлена противоположно первоначальному направлению, т.е. на нас. Изменённое направление реакции показано на рис.. l Pl P B = 0, R l+ + 0 = 0 R 5kN = = =+. l Уравнение равновесия сил в горизонтальной плоскости используем для проверки правильности вычисления реакции: F = 0, R + R B + P= + + = (б) записываем уравнения внутренних усилий: Учисток -: 0< x< l (см. рис. ) ( ) = = = 0 кн, ( ) Q x R qx B ( ) = = 5кН, ( x) RB x 0 Q x R B Участок -: 0< x< l (см. рис. ) ( ) = + = = 0кН, ( ) Q x R qx Q x R ( ) = = 5 кн, ( ) qx x = RB x+ = 0 = 5кНм, = + = 0 =+ 5 кнм. qx x = R x+ = 0 = 5кНм, x =+ R x = 0 =+ 5 кнм. (в) строим эпюры внутренних усилий, чтобы определить сечения с максимальными изгибающими моментами и, т.е. определить потенциально max опасные сечения косого изгиба. Эпюры показаны на рис.. Заметим ещё раз, что эпюры изгибающих моментов построены на растянутых волокнах. В нашем случае опасная комбинация двух изгибов имеет место в срединном сечении С, где действуют max max = 5 кнм и = 5 кнм. Потенциально опасным также является сечение B из-за действия в нём = 0 кнм.. Вычисление действующих напряжений в угловых точках первого потенциально опасного сечения С, построение эпюры распределения напряжений и графическое определение положения нейтральной линии. Данное поперечное сечение показано на рис.. Выписываем из сортамента геометрические характеристики двутавра 0: 4 = 840 см (максимальный главный момент инерции), = 84 см, 4 = 5 см (минимальный главный момент инерции), =, см, = 0 см, b = см, s = 0,5 см (стенка), t = 0,84 см (полка). Чтобы построить диаграмму распределения напряжений, вычислим действующие напряжения в угловых точках сечения, B, C, D (см. рис. ). 4

5 Рис. 5

6 σ σ σ B C 5 5 = = =6 МПа, , 5 5 = = =676 МПа, , 5 5 = + = + =+ 6 МПа, , 5 5 σd = + =+ + =+ 676 МПа , Эпюра распределения напряжений в опасном сечении построена в масштабе на рис. 4. Положение Рис. нейтральной линии определено точками пересечения графика распределения напряжений с поперечным сечением (точки E, F). Угол наклона α 0 примерно равен 85. Рис. 4 Рис Аналитическое определение положения нейтральной оси в первом потенциально опасном сечении С. Уравнение нейтральной оси получаем, приравнивая нулю напряжение в произвольной точке K с координатами и (см. рис. 5). Заметим, что точка K выбрана в первом квадранте. 6

7 σ K = 0, + = или =+, или =+ k, где угол наклона нейтральной линии k = tgα0: tg α0 = = = 48,0, где α =+ 88 o. Положительный угол наклона нейтральной линии в выбранной системе координат O показан на рис Определение напряжений во втором потенциально опасном сечении В на правой опоре в условиях плоского изгиба в горизонтальной плоскости. В сечении действует = 0 кнм и = 0. Вычисляем действующие напряжения в угловых точках: 0 σmax =+ =+ =+ 865Pa. CD, 6. Нейтральная линия плоского изгиба совпадает с вертикальной центральной осью сечения (см. рис. 6). Рис. 6 По результатам выполненных расчётов следует, что опасное сечение балки в действительности находится на правой опоре, а σ max = 865 МПа. 7

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им НЕ Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им НЕ Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса

ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 2013 1 ЛЕКЦИЯ 5 Построение эпюр внутренних силовых факторов для основных видов деформации бруса 1 Эпюры и основные правила их построения Определение Эпюрами

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

Решение: Исходные данные: = 2 = 2 = 2

Решение: Исходные данные: = 2 = 2 = 2 Задача 1 Для данного бруса требуется: - вычертить расчетную схему в определенном масштабе, указать все размеры и величины нагрузок; - построить эпюру продольных сил; - построить эпюру напряжений; - для

Подробнее

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г)

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г) ПРИЛОЖЕНИЕ 1 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Задача 1 Ступенчатый брус из стали Ст нагружен, как показано на рис. П.1.1, а. Из условия прочности подобрать размеры поперечного сечения. Построить эпюру перемещения

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВ- КЕ ПО ДИСЦИПЛИНЕ «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402 Общие методические указания Сопротивление материалов одна из сложных

Подробнее

Указания к выполнению контрольной работы 3

Указания к выполнению контрольной работы 3 Указания к выполнению контрольной работы Пример решения задачи 7 Для стального стержня (рис..) круглого поперечного сечения, находящегося под действием осевых сил F и F и F, требуется: ) построить в масштабе

Подробнее

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие

условия прочности для опасного сечения - сечения, в котором нормальные напряжения достигают максимального абсолютного значения: - на сжатие Задача 1 Для бруса прямоугольного сечения (рис. 1) определить несущую способность и вычислить перемещение свободного конца бруса. Дано: (шифр 312312) схема 2; l=0,5м; b=15см; h=14см; R p =80МПа; R c =120МПа;

Подробнее

прочности. В этом случае два последних пункта плана объединяются в один.

прочности. В этом случае два последних пункта плана объединяются в один. 76 Изгиб Раздел 5 прочности. В этом случае два последних пункта плана объединяются в один. 5.1. Изгиб балки Если рассмотреть равновесие выделенной двумя сечениями части балки, то реакции отброшенных частей,

Подробнее

Часть 1 Сопротивление материалов

Часть 1 Сопротивление материалов Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению

Подробнее

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение)

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) В.Ф. ДЕМЕНКО. МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) 1 Правила знаков при построении эпюр поперечных

Подробнее

Предельная нагрузка для стержневой системы

Предельная нагрузка для стержневой системы Л е к ц и я 18 НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ Ранее, в первом семестре, в основном, использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ. ПОСОБИЕ по проведению практических занятий ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 14 Деформация плоский изгиб балки с прямолинейной продольной осью. Расчет на прочность Напомним, что деформация «плоский изгиб» реализуется в

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения

Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения Определение напряжений и проверка прочности балок при плоском поперечном изгибе Если Вы научились строить

Подробнее

Домашняя работа Задание 8 Определение допускаемой силы при изгибе Работа 8

Домашняя работа Задание 8 Определение допускаемой силы при изгибе Работа 8 Определение допускаемой силы при изгибе Работа 8 Требуется по заданной схеме нагружения балки, размерам и допускаемым напряжением определить допускаемую величину нагрузки (рис.8). Материал балки чугун

Подробнее

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях Содержание РГР. Растяжение сжатие.... Определение усилий в стержнях и расчет их на прочность..... Определение усилий в стержнях..... Определение диаметра стержней.... Расчет ступенчатого бруса на прочность

Подробнее

СЛОЖНОЕ СОПРОТИВЛЕНИЕ

СЛОЖНОЕ СОПРОТИВЛЕНИЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ

Подробнее

Для данной балки из условия прочности подобрать номер двутавра. Решение

Для данной балки из условия прочности подобрать номер двутавра. Решение Задача 1 Для данной балки из условия прочности подобрать номер двутавра. Решение Дано: M = 8 кн м P = 4 кн q = 18 кн м L = 8 м a L = 0.5 b L = 0.4 c L = 0.3 [σ] = 160 МПа 1.Находим реакции опор балки:

Подробнее

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Государственный комитет Российской Федерации по высшему образованию Казанский государственный технологический университет СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к самостоятельной работе студентов

Подробнее

Задание по расчетно-графической работе 4 Определение напряжений в балках при изгибе. Расчет на прочность. Задача 1

Задание по расчетно-графической работе 4 Определение напряжений в балках при изгибе. Расчет на прочность. Задача 1 Задание по расчетно-графической работе 4 Определение напряжений в балках при изгибе. Расчет на прочность. Задача 1 Произвести расчет прокатной двутавровой балки на прочность по методу предельных состояний,

Подробнее

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1.

Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 24а ГОСТ ) и швеллера 24 (ГОСТ ), требуется: 1. Задача 1 Для заданного поперечного сечения, состоящего из равнополочного двутавра ( 4а ГОСТ 8509-86) и швеллера 4 (ГОСТ 840-89), требуется: 1. Вычертить сечение в масштабе 1: и указать на нем все оси и

Подробнее

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней

ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней ЗАДАНИЕ ПО РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЕ 4 Тема 7. Сложное сопротивление стержней Задача 1 Для внецентренно сжатого короткого стержня с заданным поперечным сечением по схеме (рис.7.1) с геометрическими размерами

Подробнее

1. Определим недостающие геометрические параметры, необходимые для дальнейшего расчета.

1. Определим недостающие геометрические параметры, необходимые для дальнейшего расчета. b Методические рекомендации к практической подготовке по дисциплине "Сопротивление материалов" для студентов-заочников специальности -70 0 0 "Водоснабжение, водоотведение и охрана водных ресурсов" Отмена

Подробнее

Контрольные задания по сопротивление материалов. для студентов заочной формы обучения

Контрольные задания по сопротивление материалов. для студентов заочной формы обучения Контрольные задания по сопротивление материалов для студентов заочной формы обучения Составитель: С.Г.Сидорин Сопротивление материалов. Контрольные работы студентов заочников: Метод. указания /С.Г.Сидорин,

Подробнее

Задание 1 Построение эпюр при растяжении-сжатии

Задание 1 Построение эпюр при растяжении-сжатии Задание 1 Построение эпюр при растяжении-сжатии Стальной двухступенчатый брус, длины ступеней которого указаны на рисунке 1, нагружен силами F 1, F 2, F 3. Построить эпюры продольных сил и нормальных напряжений

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1.1. Статически неопределимые стержневые системы Статически неопределимыми системами называются системы, для которых, пользуясь только условиями статики, нельзя определить

Подробнее

ПРИМЕРЫ построения эпюр внутренних силовых факторов. Шарнирно закреплённые балки Балка, закреплённая с помощью шарниров, должна иметь не менее двух точек опоры. Поэтому в случае шарнирно закреплённых (шарнирно

Подробнее

Таблица 10. Методическое руководство Задание 10 Косой изгиб Работа 10. F kn. h/b. Исходные данные по предпоследней цифре матрикула

Таблица 10. Методическое руководство Задание 10 Косой изгиб Работа 10. F kn. h/b. Исходные данные по предпоследней цифре матрикула Косой изгиб Работа Деревянная балка (рис.) прямогольного поперечного сечения нагржена вертикальной силой в точке А и горизонтальной силой в точке В (обе точки расположены на оси балки). На опорах балки

Подробнее

Методические указания

Методические указания Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

ПРИМЕРЫ построения эпюр внутренних силовых факторов 1. Консольные балки Термин консо ль произошёл от французского слова console, которое, в свою очередь, имеет латинское происхождение: в латинском языке

Подробнее

5.4. Рама Рама 45

5.4. Рама Рама 45 .4. Рама 4 V V H M x M M(x 1) Q(x 1) N(x 1) 1. 12.667 17.8 6. 12.000 49..201-27.41 2 41.7 42.64 9.000 2.867.7 11.1-6.008-46.848 4.426 82.74 0.4 9.777 7.67 4.182-4.8-72.66 4 12.8 28.167 16.70 2.778 20.000-28.889-1.6-21.04

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ. Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» Кафедра прочности Домашнее задание по дисциплине «Механика материалов

Подробнее

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН. по предмету «Прикладная механика»

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН. по предмету «Прикладная механика» МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Кафедра: «Машины и оборудование пищевой промышленности основы механики» РЕФЕРАТ

Подробнее

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА И ПРОДОВОЛЬСТВИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра сопротивления материалов и деталей машин

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления.

Сложное сопротивление вид нагружения, представляющий собой комбинацию (сочетание) нескольких простых типов сопротивления. Лекция 14 Сложное сопротивление. Косой изгиб. Определение внутренних усилий, напряжений, положения нейтральной оси при чистом косом изгибе. Деформации при косом изгибе. 14. СЛОЖНОЕ СОПРОТИВЛЕНИЕ. КОСОЙ

Подробнее

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

Подробнее

3.9. Эпюры поперечных сил и изгибающих моментов

3.9. Эпюры поперечных сил и изгибающих моментов Лекция. ВНУТРЕННИЕ СИЛОВЫЕ ФАКТОРЫ В БРУСЕ. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ УСИЛИЙ.9. Эпюры поперечных сил и изгибающих моментов Эпюрой поперечных сил (изгибающих моменто назовем график изменения поперечных

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

Расчет прочности тонкостенного стержня открытого профиля

Расчет прочности тонкостенного стержня открытого профиля НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.Алексеева Кафедра «Аэро-гидродинамика, прочность машин и сопротивление материалов» Расчет прочности тонкостенного стержня открытого профиля

Подробнее

Простые виды сопротивления прямых брусьев

Простые виды сопротивления прямых брусьев Приложение Министерство сельского хозяйства Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования Саратовский государственный аграрный университет имени

Подробнее

Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения

Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения Лекция 7 (продолжение). Примеры решения на сложное сопротивление и задачи для самостоятельного решения Расчет стержней при внецентренном сжатии-растяжении Пример 1. Чугунный короткий стержень сжимается

Подробнее

290300, , , , ,

290300, , , , , МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Анализ внутренних силовых факторов МЕТОДИЧЕСКИЕ УКАЗАНИЯ УХТА 2002 УДК 539.3/6 А-72 Андронов И. Н. Анализ

Подробнее

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ПЛОСКОМ ИЗГИБЕ

ОПРЕДЕЛЕНИЕ ПЕРЕМЕЩЕНИЙ ПРИ ПЛОСКОМ ИЗГИБЕ МИНИСТЕРСТО ОБРАЗОАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТО ПО ОБРАЗОАНИЮ КУБАНСКИЙ ГОСУДАРСТЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИЕРСИТЕТ КАФЕДРА СОПРОТИЛЕНИЯ МАТЕРИАЛО И СТРОИТЕЛЬНОЙ МЕХАНИКИ ОПРЕДЕЛЕНИЕ

Подробнее

Тема 7 Расчет прочности и жесткости простой балки

Тема 7 Расчет прочности и жесткости простой балки Тема 7 Расчет прочности и жесткости простой балки Лекция Перемещения при изгибе. Учет симметрии при определении перемещений... Решение дифференциальных уравнений оси изогнутой балки способом выравнивания

Подробнее

Рис.6.26 (2) Рис. 6.27

Рис.6.26 (2) Рис. 6.27 Лекция 9. Плоский изгиб (продолжение) 1. Напряжение при чистом изгибе. 2. Касательные напряжения при поперечном изгибе. Главные напряжения при изгибе. 3. Рациональные формы поперечных сечений при изгибе.

Подробнее

ЗАДАЧА 1. I-швеллер 36, II-уголок 90 х 90 х 8.

ЗАДАЧА 1. I-швеллер 36, II-уголок 90 х 90 х 8. ЗДЧ.. Определить положение центра тяжести сечения.. Найти осевые (экваториальные и центробежные моменты инерции относительно случайных осей, проходящих через центр тяжести ( c и c.. Определить направление

Подробнее

Лабораторные работы по сопротивлению материалов по теме СЛОЖНЫЕ ДЕФОРМАЦИИ

Лабораторные работы по сопротивлению материалов по теме СЛОЖНЫЕ ДЕФОРМАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики Утверждаю Зав. кафедрой профессор И.В. Демьянушко «0» января 007г. А.М. ВАХРОМЕЕВ РАСЧЕТ

Подробнее

Примеры решения задач по «Механике» Пример решения задачи 1

Примеры решения задач по «Механике» Пример решения задачи 1 Примеры решения задач по «еханике» Пример решения задачи Дано: схема конструкции (рис) kh g kh / m khm a m Определить реакции связей и опор Решение: Рассмотрим систему уравновешивающихся сил приложенных

Подробнее

ЗАДАНИЕ НА КОНТРОЛЬНУЮ РАБОТУ. «Расчет статически определимых многопролетной балки, плоской фермы, арки. Метод сил.»

ЗАДАНИЕ НА КОНТРОЛЬНУЮ РАБОТУ. «Расчет статически определимых многопролетной балки, плоской фермы, арки. Метод сил.» Министерство образования Республики Беларусь Учреждение образования «Гродненский государственный университет им. Я. Купалы» Факультет строительства и транспорта Кафедра «Строительное производство» ЗАДАНИЕ

Подробнее

2. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ Необходимость построения эпюр. Общие правила и порядок их построения.

2. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ Необходимость построения эпюр. Общие правила и порядок их построения. 41. ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ.1. Необходимость построения эпюр. Общие правила и порядок их построения. Первый вопрос, на который должен получить ответ конструктор, какие по величине и

Подробнее

Практические работы по технической механике для студентов 2 курса специальности

Практические работы по технической механике для студентов 2 курса специальности Практические работы по технической механике для студентов курса специальности 015 г. Практическая работа 1. Определение усилий в стержнях стержневой конструкции. Тема: Статика. Плоская система сходящихся

Подробнее

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A Лекция 05 Изгиб Проверка прочности балок Опыт показывает, что при нагружении призматического стержня с прямой осью силами и парами сил, расположенными в плоскости симметрии, наблюдаются деформации изгиба

Подробнее

РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ

РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

Подробнее

Внутренние усилия и их эпюры

Внутренние усилия и их эпюры 1. Внутренние усилия и их эпюры Консольная балка длиной нагружена силами F 1 и F. Сечение I I расположено бесконечно близко в заделке. Изгибающий момент в сечении I I равен нулю, если значение силы F 1

Подробнее

Тезисы курса сопротивления материалов Часть 2. wb(x) x L

Тезисы курса сопротивления материалов Часть 2. wb(x) x L Тезисы курса сопротивления материалов Часть Глава 7. Перемещения при изгибе При действии внешних сил балка изменяет кривизну. При этом каждое сечение получает два перемещения: линейное - прогиб и угловое

Подробнее

Основные соотношения, полученные для них, приведены в таблице 7.1. Таблица 7.1 Виды нагружения Напряжения Деформации. . Условие прочности:

Основные соотношения, полученные для них, приведены в таблице 7.1. Таблица 7.1 Виды нагружения Напряжения Деформации. . Условие прочности: Лекция 11 Сложное сопротивление 1 Расчет балки, подверженной косому или пространственному изгибу 2 Определение внутренних усилий при косом изгибе 3 Определение напряжений при косом изгибе 4 Определение

Подробнее

Механические испытания на изгиб Рис.6.3 Рис.6.4

Механические испытания на изгиб Рис.6.3 Рис.6.4 Лекция 8. Плоский изгиб 1. Плоский изгиб. 2. Построение эпюр поперечной силы и изгибающего момента. 3. Основные дифференциальные соотношения теории изгиба. 4. Примеры построения эпюр внутренних силовых

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

Расчетно-проектировочные работы по дисциплине «Сопротивление материалов»

Расчетно-проектировочные работы по дисциплине «Сопротивление материалов» Федеральное агентство по образованию Ухтинский государственный технический университет Расчетно-проектировочные работы по дисциплине «Сопротивление материалов» Часть I Методические указания, содержание

Подробнее

P 1 = = 0 0,1L1 0,3L1 0, 2L2 0,1L

P 1 = = 0 0,1L1 0,3L1 0, 2L2 0,1L Расчёт статически определимой многопролётной балки на неподвижную и подвижную нагрузки Исходные данные: расстояния между опорами L = 5, м L = 6, м L = 7,6м L4 = 4,5м сосредоточенные силы = 4кН = 6 распределённые

Подробнее

УДК 539.3/6 А 66 Прямой поперечный изгиб. Расчеты на прочность: Методические указания/ И.Н.Андронов, В.П.Власов, Р.А. Вербаховская. - Ухта: УГТУ, 003.

УДК 539.3/6 А 66 Прямой поперечный изгиб. Расчеты на прочность: Методические указания/ И.Н.Андронов, В.П.Власов, Р.А. Вербаховская. - Ухта: УГТУ, 003. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Прямой поперечный изгиб. Расчеты на прочность. МЕТОДИЧЕСКИЕ УКАЗАНИЯ УХТА 003 УДК 539.3/6 А 66 Прямой поперечный

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Хабаровский государственный технический университет» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

Подробнее

ДИНАМИЧЕСКОЕ ДЕЙСТВИЕ НАГРУЗОК. Тема XV

ДИНАМИЧЕСКОЕ ДЕЙСТВИЕ НАГРУЗОК. Тема XV Лекция 17 ДИНАМИЧЕСКОЕ ДЕЙСТВИЕ НАГРУЗОК Тема XV Рассматриваемые вопросы 15.1. Динамическое нагружение. 15.2. Учѐт сил инерции в расчѐте. 15.3. Расчѐты на ударную нагрузку. 15.4. Вычисление динамического

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНО-ГРАФИЧЕСКИМ РАБОТАМ ПО ДИСЦИПЛИНЕ СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ (для студентов

Подробнее

Прямой поперечный изгиб Расчёты на прочность

Прямой поперечный изгиб Расчёты на прочность МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) Прямой поперечный изгиб

Подробнее

А.В. Ильяшенко, А.Я. Астахова ВНУТРЕННИЕ УСИЛИЯ И НАПРЯЖЕНИЯ ПРИ ПРЯМОМ ИЗГИБЕ СТЕРЖНЕЙ В ТЕСТАХ

А.В. Ильяшенко, А.Я. Астахова ВНУТРЕННИЕ УСИЛИЯ И НАПРЯЖЕНИЯ ПРИ ПРЯМОМ ИЗГИБЕ СТЕРЖНЕЙ В ТЕСТАХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

Подробнее

СБОРНИК ЗАДАЧ ПО ТЕХНИЧЕСКОЙ МЕХАНИКЕ

СБОРНИК ЗАДАЧ ПО ТЕХНИЧЕСКОЙ МЕХАНИКЕ ÑÐÅÄÍÅÅ ÏÐÎÔÅÑÑÈÎÍÀËÜÍÎÅ ÎÁÐÀÇÎÂÀÍÈÅ В. И. СЕТКОВ СБОРНИК ЗАДАЧ ПО ТЕХНИЧЕСКОЙ МЕХАНИКЕ Рекомендовано Федеральным государственным учреждением «Федеральный институт развития образования» в качестве учебного

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования и науки Украины Донбасская государственная машиностроительная академия СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по подготовке к практическим занятиям (для студентов всех

Подробнее

Задача 1. Решение. Рис. 1 Ступенчатый брус

Задача 1. Решение. Рис. 1 Ступенчатый брус Задача 1 Ступенчатый брус (рис. 1) нагружен силами P 1, P 2 и P 3, направленными вдоль его оси. Заданы длины участков a, b и c и площади их поперечных сечений F 1 и F 2. Модуль упругости материала Е 2

Подробнее

Департамент образования и науки Тюменской области Государственное автономное профессиональное образовательное учреждение

Департамент образования и науки Тюменской области Государственное автономное профессиональное образовательное учреждение Департамент образования и науки Тюменской области Государственное автономное профессиональное образовательное учреждение Тюменской области «Агротехнологический колледж» (ГАПОУ ТО «Агротехнологический колледж»)

Подробнее

В.К. Сидорчук, Н.Н.Фотиева, А.К. Петренко ИЗГИБ ПРЯМОГО БРУСА. учебное пособие

В.К. Сидорчук, Н.Н.Фотиева, А.К. Петренко ИЗГИБ ПРЯМОГО БРУСА. учебное пособие В.К. Сидорчук, Н.Н.Фотиева, А.К. Петренко ИЗГИБ ПРЯМОГО БРУСА учебное пособие Новомосковск 00 1 Министерство образования Российской Федерации Российский химико-технологический университет им. Д.И. Менделеева

Подробнее

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

Подробнее

8. ИЗГИБ ПРЯМЫХ БРУСЬЕВ Основные понятия и определения. Брус с прямой осью, как мы уже знаем, называется стержнем.

8. ИЗГИБ ПРЯМЫХ БРУСЬЕВ Основные понятия и определения. Брус с прямой осью, как мы уже знаем, называется стержнем. 15 8. ИЗГИБ ПРЯМЫХ БРУСЬЕВ 8.1. Основные понятия и определения Брус с прямой осью, как мы уже знаем, называется стержнем. Изгиб это такой вид нагружения (деформации) бруса, при котором в его поперечных

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт» М. Н. Гребенников, А. Г. Дибир, Н. И. Пекельный РАСЧЕТ МНОГОПРОЛЕТНЫХ

Подробнее

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ УСИЛИЙ

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ УСИЛИЙ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Московский государственный университет путей сообщения» Кафедра строительной механики Б.П. ДЕРЖАВИН,

Подробнее

Задания и методические указания к расчетно-проектировочным работам. Часть 2

Задания и методические указания к расчетно-проектировочным работам. Часть 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛОГОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ 1 Кафедра сопротивления материалов СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Задания и методические указания к расчетно-проектировочным

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации ФГАОУ ВПО «УрФУ имени первого Президента России Б.Н.Ельцина» Р. Г. Игнатов, Ф. Г. Лялина, А. А. Поляков Д. Е. Черногубов, В. В. Чупин СОПРОТИВЛЕНИЕ

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

УТВЕРЖДАЮ Зав. кафедрой ОНД А.К. Гавриленя протокол 9 от г.

УТВЕРЖДАЮ Зав. кафедрой ОНД А.К. Гавриленя протокол 9 от г. УТВЕРЖДАЮ Зав. кафедрой ОНД А.К. Гавриленя протокол 9 от 0.08. 06 г. Планы практических заданий для студентов курса семестр заочной формы получения образования специальности «Техническое обеспечение процессов

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Череповецкий государственный

Подробнее

Федеральное агентство по образованию. Томский государственный архитектурно-строительный университет РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ ПРИ ИЗГИБЕ

Федеральное агентство по образованию. Томский государственный архитектурно-строительный университет РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ ПРИ ИЗГИБЕ Федеральное агентство по образованию Томский государственный архитектурно-строительный университет РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ ПРИ ИЗГИБЕ Методические указания Составители Р.И. Самсонова, С.Р. Ижендеева

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА Часть I Методические указания и контрольные задания Пенза 00 УДК 5. (075) И85 Методические указания

Подробнее

РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ

РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ Омск 011 РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ Методические указания к выполнению курсовой работы для студентов специальности

Подробнее

В.О. Мамченко. РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ ПРЯМОМ ПЛОСКОМ ИЗГИБЕ Учебно-методическое пособие

В.О. Мамченко. РАСЧЕТ БАЛОК НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ ПРИ ПРЯМОМ ПЛОСКОМ ИЗГИБЕ Учебно-методическое пособие МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ- ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ ИНСТИТУТ ХОЛОДА И БИОТЕХНОЛОГИЙ В.О. Мамченко

Подробнее

ОСНОВЫ ТЕХНИЧЕСКОЙ МЕХАНИКИ

ОСНОВЫ ТЕХНИЧЕСКОЙ МЕХАНИКИ Министерство образования Российской Федерации Владимирский государственный университет Кафедра сопротивления материалов ОСНОВЫ ТЕХНИЧЕСКОЙ МЕХАНИКИ Методические указания и задания к расчетно-графическим

Подробнее

ПРОСТЫЕ СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ БАЛКИ ЧАСТЬ 1. РАСЧЕТ ПРОЧНОСТИ

ПРОСТЫЕ СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ БАЛКИ ЧАСТЬ 1. РАСЧЕТ ПРОЧНОСТИ 14 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ КАФЕДРА СТРОИТЕЛЬНОЙ МЕХАНИКИ ПРОСТЫЕ СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ БАЛКИ ЧАСТЬ 1 РАСЧЕТ ПРОЧНОСТИ

Подробнее

РАСЧЕТ БАЛКИ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ

РАСЧЕТ БАЛКИ НА ПРОЧНОСТЬ И ЖЕСТКОСТЬ МИНИСТЕРСТВО ОБРЗОВНИЯ И НУКИ РОССИЙСКОЙ ФЕДЕРЦИИ ФЕДЕРЛЬНОЕ ГЕНТСТВО ПО ОБРЗОВНИЮ ГОУ ВПО ТЮМЕНСКИЙ ГОСУДРСТВЕННЫЙ РХИТЕТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ КФЕДР СТРОИТЕЛЬНОЙ МЕХНИКИ РСЧЕТ БЛКИ Н ПРОЧНОСТЬ

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Н. Б. ЛЕВЧЕНКО СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ ЧАСТЬ Санкт-Петербург 001 Министерство образования Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет Кафедра сопротивления

Подробнее