ЛАБОРАТОРНЫЕ РАБОТЫ ПО ДИСЦИПЛИНЕ «ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ» 4 курс, осенний семестр

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ЛАБОРАТОРНЫЕ РАБОТЫ ПО ДИСЦИПЛИНЕ «ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ» 4 курс, осенний семестр"

Транскрипт

1 ЛАБОРАТОРНЫЕ РАБОТЫ ПО ДИСЦИПЛИНЕ «ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ» 4 курс, осенний семестр Лабораторная работа 1 Заданы пять функций, описываемых следующей формулой x Acos m x f, и отличающихся значением амплитуды ( A ) и волнового числа 2 ( m ), L - длина волны, выраженная в шагах сетки ( L N x ). L Задана сетка точек со следующими параметрами количество узлов 70, шаг сетки 100 км. Рассчитать значения функций в узлах сетки, самостоятельно задав амплитуду (А) и длину волны (N). Рассчитать функцию, являющуюся суперпозицией пяти функций, рассчитанных ранее. Отчётный материал программа на языке Фортран и график шести функций, пример которого приведён на рисунке 1. Лабораторная работа 2. Рисунок 1 Волны различной длины и амплитуды. В предыдущей работе рассчитана функция следующего вида x A cos m x A cos m x A cos m x A cos m x A m x f cos 5. (1) f Продифференцировать эту функцию и найти производную. x Записать сеточный налог функции (1). От сеточного аналога функции (1) найти производную, используя четыре конечно-разностных аналога 1. Центральные разности, 2. Направленные разности вперёд,

2 3. Направленные разности назад, 4. Центральные разности четвёртого порядка точности. Отчётный материал: Точная производная от функции (1), сеточный аналог функции (1), конечно-разностные аналоги производной, программа на языке Фортран, график, аналогичный, приведённому на рисунке 2, анализ точности, использованных конечноразностных аналогов, на основе графика. Рисунок 2 Значения производной функции (1), рассчитанные разными методами Лабораторная работа 3. Дать прогноз на 24 часа функции, которая меняется во времени согласно линейному одномерному уравнению адвекции. Скорость переноса 20 м/с. Уравнение аппроксимировать схемой Эйлера (производная по времени аппроксимирована направленными разностями вперёд, схема явная), производную по пространству центральными разностями. Сетка содержит 50 узлов, шаг сетки 100 км. Шаг интегрирования по времени 10 минут. s 1 f 50 cos m q x Начальные условия задать согласно формуле 100 f Граничные условия : 0. t q. Отчётный материал: Аппроксимация уравнения адвекции схемой Эйлера, программа на языке Фортран, график, аналогичный, приведённому на рисунке 3, анализ свойств схемы Эйлера на основе графика.

3 Рисунок 3 Результаты прогноза по схеме Эйлера Лабораторная работа 4. Провести анализ влияния метода аппроксимации производной по пространству на устойчивость решения линейного одномерного уравнения адвекции. Использовать характеристики сетки и уравнения, начальные и граничные условия из лабораторной работы 3. Исследовать следующие конечно-разностные аналоги производной по пространству: Центральные разности; Направленные разности вперёд; Направленные разности назад; Центральные разности четвёртого порядка точности. Отчётный материал: Аппроксимация уравнения адвекции схемой Эйлера и определённым конечно-разностным аналогом производной по пространству, программа на языке Фортран, графики, аналогичные, приведённым на рисунках 4 и 5, анализ влияния конечно-разностной аппроксимации производной по пространству на устойчивость решения на основе графика.

4 Рисунок 4 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству центральными разностями Рисунок 5 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству направленными разностями назад Лабораторная работа 5 Проанализировать свойства конечно-разностных схем применительно к процессам разных масштабов (волн разной длины относительно шага сетки). Провести анализ на основе решения линейного одномерного уравнения адвекции. Использовать характеристики сетки и уравнения, начальные и граничные условия из лабораторной работы 3.

5 Исследование провести, используя следующие конечно-разностные аналоги производной по пространству: Центральные разности; Направленные разности назад. Отчётный материал: Аппроксимация уравнения адвекции схемой Эйлера и определённым конечно-разностным аналогом производной по пространству, программа на языке Фортран, графики, аналогичные, приведённым на рисунках 6-9, анализ устойчивости решения в зависимости от относительной длины моделируемой волны. Рисунок 6 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству центральными разностями L 4 x

6 Рисунок 7 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству центральными разностями L 35 x Рисунок 8 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству направленными разностями назад L 4 x

7 Рисунок 9 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству направленными разностями назад, L 35 x Лабораторная работа 6 Проанализировать влияние величины шага по времени на устойчивость конечноразностной схемы. Провести анализ на основе решения линейного одномерного уравнения адвекции. Использовать характеристики сетки и уравнения, начальные и граничные условия из лабораторной работы 3. Исследование провести, используя следующие конечно-разностные аналоги производной по пространству: Центральные разности; Направленные разности назад. Отчётный материал: Аппроксимация уравнения адвекции схемой Эйлера и определённым конечно-разностным аналогом производной по пространству, программа на языке Фортран, графики, аналогичные, приведённым на рисунках 10 15, анализ устойчивости решения в зависимости от величины шага по времени.

8 Рисунок 10 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству центральными разностями, t 600 секунд Рисунок 12 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству центральными разностями, t 1200 секунд

9 Рисунок 13 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству направленными разностями назад, t 600 секунд Рисунок 14 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству направленными разностями назад, t 1200 секунд

10 Рисунок 15 Результаты прогноза с использованием схемы Эйлера и аппроксимацией производной по пространству направленными разностями назад и разными шагами по времени Лабораторная работа 7 Дать прогноз на 24 часа функции, изменяющейся по времени в соответствии с линейным уравнением адвекции в сферических координатах. Уравнение аппроксимировать схемой чехарды производные по времени и пространству аппроксимированы центральными разностями, схема явная. Область решения одномерная вдоль широтного круга 60 0 с.ш., шаг сетки Начальные условия из лабораторной работы 3. Отчётный материал: Аппроксимация уравнения адвекции схемой чехарды, программа на языке Фортран, график, аналогичный, приведённому на рисунке 16, анализ результатов.

11 Рисунок 16 Результаты прогноза с использованием схемы чехарды Лабораторная работа 8 Проанализировать влияние нелинейности уравнения на устойчивость решения. Для этого согласно условиям лабораторной работы 7 решить линейное и нелинейное уравнение адвекции в сферических координатах. Провести анализ, полученных результатов. Отчётный материал: Запись линейного и нелинейного уравнения адвекции в сферических координатах и аппроксимация уравнений схемой чехарды, программа на языке Фортран, график, аналогичный, приведённому на рисунке 17, анализ результатов.

12 Рисунок 16 Результаты прогноза по линейному и нелинейному уравнению адвекции Лабораторная работа 9 Проанализировать возникновение вычислительной моды в зависимости от точности постановки вычислительных начальных условий. Исследование проводить на основе уравнения колебаний d A A. d t 1, t 50 секунд Сравнить результаты решения уравнения при его аппроксимации следующими схемами: 1. Схемой Эйлера; 2. Схемой «чехарды». При использовании трёхуровенной схемы вычислительное начальное условие рассчитывать по 1. Схеме Эйлера; 2. Схеме Хойна. Провести анализ, полученных результатов. Отчётный материал: запись уравнения колебаний по выбранным схемам, программа на языке Фортран, график, аналогичный, приведённому на рисунке 17, анализ результатов.

13 а) б) в) Рисунок 17 Решение уравнения колебаний с использованием схемы Эйлера (а), схемы «чехарды»+хойна (б), схемы «чехарды»+эйлера. Лабораторная работа 10 Дать прогноз на 24 часа функции, изменяющейся по времени в соответствии с линейным уравнением адвекции в сферических координатах. Уравнение аппроксимировать схемой

14 Эйлера производная по времени аппроксимирована направленными разностями вперёд, производная по пространству центральными разностями, схема явная. Решить уравнение матричным методом. Область решения одномерная вдоль широтного круга 60 0 с.ш., шаг сетки Начальные условия из лабораторной работы 3. Отчётный материал: Аппроксимация уравнения адвекции схемой Эйлера, матрица перехода от одного шага по времени у другому, программа на языке Фортран, график, аналогичный, приведённому на рисунке 18. Рисунок 18 Изменение функции от шага к шагу при решении линейного уравнения адвекции в сферической системе координат Лабораторная работа 11 Дано поле геопотенциала поверхности 500 гпа. Геопотенциал задан на сетке точек размером 40 узлов вдоль оси ОХ и 40 узлов вдоль оси ОУ, шаг сетки в обоих направлениях 100 км. Рассчитать составляющие геострофического ветра, дивергенцию геострофического ветра, завихренность по полю ветра и по полю геопотенциала. Параметр Кориолиса считать неизменным во всей области решения и равным значению на широте 60 0 с.ш. Отчётный материал: Аппроксимация выражений для расчёта необходимых величин, программа на языке Фортран, график, аналогичный, приведённому на рисунке 19.

15 Рисунок 19 Исходное поле геопотенциала и поле геострофического ветра.

2. Разностные схемы Разностные схемы

2. Разностные схемы Разностные схемы 2. Разностные схемы 1 2. Разностные схемы В качестве численных алгоритмов решения уравнений в частных производных наиболее часто используют метод сеток (разностные схемы). Его математический смысл чрезвычайно

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы.

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Рассмотрим несколько вариантов разностной аппроксимации линейного уравнения колебаний:

Подробнее

5. Теор. задача. Доказать, что среди явных многошаговых методов ( k=0

5. Теор. задача. Доказать, что среди явных многошаговых методов ( k=0 Прием заданий производится как правило в часы семинарских занятий ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА 3 курс 6 семестр 6 Жесткие ОДУ Участки решения характеризующиеся быстрым его изменением Понятие методов Гира

Подробнее

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы Численное решение смешанной краевой задачи явным методом сеток Методическая разработка по курсу Численные методы. Постановка задачи Г.К. Измайлов Решить методом сеток смешанную краевую задачу для дифференциального

Подробнее

МЕТОДЫ ВЫЧИСЛЕНИЙ. Лекторы: проф. Б. И. Квасов, проф. Г. С. Хакимзянов. 5 6 семестры

МЕТОДЫ ВЫЧИСЛЕНИЙ. Лекторы: проф. Б. И. Квасов, проф. Г. С. Хакимзянов. 5 6 семестры МЕТОДЫ ВЫЧИСЛЕНИЙ Лекторы: проф. Б. И. Квасов, проф. Г. С. Хакимзянов 5 6 семестры 1. Математические модели и вычислительный эксперимент. Классификация уравнений математической физики. Примеры корректных

Подробнее

5. Метод Эйлера: явные разностные схемы

5. Метод Эйлера: явные разностные схемы 5. Метод Эйлера: явные разностные схемы 5. Метод Эйлера: явные разностные схемы Вернемся к модели взаимодействия световых пучков (см. 2) и рассмотрим наиболее универсальный метод решения краевых задач

Подробнее

20. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений

20. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений Варианты заданий 0. Метод установления решения задачи Дирихле для уравнения Пуассона. Схема переменных направлений 0.1. Постановка задачи Рассматривается задача Дирихле для эллиптического уравнения Lu

Подробнее

НЕГИДРОСТАТИЧЕСКАЯ МОДЕЛЬ ОБЩЕЙ ЦИРКУЛЯЦИИ АТМОСФЕРЫ ВЕНЕРЫ И РЕЗУЛЬТАТЫ ЕЕ ПРИМЕНЕНИЯ

НЕГИДРОСТАТИЧЕСКАЯ МОДЕЛЬ ОБЩЕЙ ЦИРКУЛЯЦИИ АТМОСФЕРЫ ВЕНЕРЫ И РЕЗУЛЬТАТЫ ЕЕ ПРИМЕНЕНИЯ НЕГИДРОСТАТИЧЕСКАЯ МОДЕЛЬ ОБЩЕЙ ЦИРКУЛЯЦИИ АТМОСФЕРЫ ВЕНЕРЫ И РЕЗУЛЬТАТЫ ЕЕ ПРИМЕНЕНИЯ К. Г. Орлов 1, И. В. Мингалев 1, А. В. Родин 2 1 Полярный геофизический институт Кольского научного центра РАН ( E-mail:

Подробнее

ГЛАВА: Метод конечных разностей. Лекция 5: Устойчивость разностных схем (10 слайдов, 6 рисунков)

ГЛАВА: Метод конечных разностей. Лекция 5: Устойчивость разностных схем (10 слайдов, 6 рисунков) ГЛАВА: Метод конечных разностей. Лекция 5: Устойчивость разностных схем (10 слайдов, 6 рисунков) Слайд 1: Классификация РС по типам устойчивости. По типам устойчивости выделяют следующие РС: абсолютно

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы.

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. 1 Разностная аппроксимация уравнения теплопроводности Рассмотрим различные варианты разностной

Подробнее

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в виде дифференциальных уравнений ДУ или системы дифференциальных

Подробнее

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач.

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных

Подробнее

Министерство образования и науки Российской Федерации Федеральное агентство по образованию. Государственное образовательное учреждение высшего

Министерство образования и науки Российской Федерации Федеральное агентство по образованию. Государственное образовательное учреждение высшего Министерство образования и науки Российской Федерации Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

Подробнее

3. Явный алгоритм Эйлера

3. Явный алгоритм Эйлера 3. Явный алгоритм Эйлера 1 3. Явный алгоритм Эйлера Мы надеемся, что сделанные предварительные замечания дали читателю хорошее представление о рассматриваемом круге проблем. Перейдем теперь к обсуждению

Подробнее

НЕЯВНАЯ СХЕМА РЕШЕНИЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ НА КВАДРАТНОЙ АДАПТИВНОЙ СЕТКЕ

НЕЯВНАЯ СХЕМА РЕШЕНИЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ НА КВАДРАТНОЙ АДАПТИВНОЙ СЕТКЕ НЕЯВНАЯ СХЕМА РЕШЕНИЯ НЕЛИНЕЙНОГО УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ НА КВАДРАТНОЙ АДАПТИВНОЙ СЕТКЕ Н.Г. КАРЛЫХАНОВ, А.В. УРАКОВА Российский федеральный ядерный центр Всероссийский НИИ технической физики им. акад.

Подробнее

Уравнения переноса. Схемы «бегущего» счета

Уравнения переноса. Схемы «бегущего» счета Уравнения переноса. Схемы «бегущего» счета Рассмотрим ряд наиболее часто используемых разностных схем, аппроксимирующих начально-краевые задачи для линейного уравнения переноса: u t + c(x, t) u x = f(x,

Подробнее

Пирумов У. Г. Численные методы: Учеб. пособие для студ. втузов. 2-е изд., перераб. и доп. М.: Дрофа, с.: ил.

Пирумов У. Г. Численные методы: Учеб. пособие для студ. втузов. 2-е изд., перераб. и доп. М.: Дрофа, с.: ил. Рецензенты: проф., д. ф.-м. н. В. Б. Миносцев (зав. каф. общей и прикладной математики Московского государственного индустриального университета); проф., д. ф.-м. н., действ, чл. РАЕН Ю. И. Яламов Пирумов

Подробнее

А.А. Дегтярев ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Тесты для самоконтроля знаний студентов

А.А. Дегтярев ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Тесты для самоконтроля знаний студентов МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА

Подробнее

Приложение А. Комплект оценочных средств (контролирующих материалов) по дисциплине

Приложение А. Комплект оценочных средств (контролирующих материалов) по дисциплине Приложение А. Комплект оценочных средств (контролирующих материалов) по дисциплине Приложение А-1. Тесты текущего контроля СТО БТИ АлтГТУ 15.62.2.0008-2014 Вопросы к модулям (разделам) курса «Вычислительная

Подробнее

Разностные схемы для уравнения колебаний в многомерном случае

Разностные схемы для уравнения колебаний в многомерном случае Разностные схемы для уравнения колебаний в многомерном случае Для многомерных уравнений колебаний можно составить аналог схемы «крест» и неявной схемы. При этом явная схема «крест» так же, как и в одномерном

Подробнее

9. Устойчивость . (66)

9. Устойчивость . (66) 9. Устойчивость 1 9. Устойчивость В прошлом разделе мы разобрали основные критерии разностных схем для ОДУ, но пока не касались, пожалуй, основного их свойства устойчивости. В качестве примера при рассмотрении

Подробнее

Рабочая программа дисциплины (с аннотацией) «Численные методы решения задач математической физики»

Рабочая программа дисциплины (с аннотацией) «Численные методы решения задач математической физики» Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Утверждаю: Руководитель ООП: 0 г. Рабочая программа дисциплины (с аннотацией) «Численные методы решения

Подробнее

3. Устойчивость разностных схем

3. Устойчивость разностных схем 3. Устойчивость разностных схем 1 3. Устойчивость разностных схем Проведем расчеты по явной разностной схеме (6) сначала для линейного уравнения диффузии. Выберем (рис.5) определенные значения шага по

Подробнее

ГЛАВА: Метод конечных разностей. Лекция 3: Разностные схемы аппроксимаций ДУ в ЧП (6 слайдов)

ГЛАВА: Метод конечных разностей. Лекция 3: Разностные схемы аппроксимаций ДУ в ЧП (6 слайдов) ГЛАВА: Метод конечных разностей. Лекция 3: Разностные схемы аппроксимаций ДУ в ЧП (6 слайдов) Слайд 1: Построение разностных схем. В исходном дифференциальном уравнении f (x, y,, x, y, xx,...) = 0 применительно

Подробнее

8. Критерии алгоритмов решения ОДУ

8. Критерии алгоритмов решения ОДУ 8. Критерии алгоритмов решения ОДУ 1 8. Критерии алгоритмов решения ОДУ Теперь, когда мы уже чуть больше знаем об алгоритмах решения задач Коши для ОДУ, продолжим разговор об их классификации. Остановимся

Подробнее

Прием заданий производится, как правило, в часы семинарских занятий

Прием заданий производится, как правило, в часы семинарских занятий 1. ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА 3 курс 5-6 семестр 1. Постановка задачи Коши для дифференциального уравнения. 2. Утверждение о погрешности аппроксимации метода Рунге - Кутты k-го порядка. 3. Теор. задача.

Подробнее

Численное решение задачи Коши для одного дифференциального уравнения

Численное решение задачи Коши для одного дифференциального уравнения Лабораторная работа 7 ( часа) Численное решение задачи Коши для одного дифференциального уравнения Цель работы: получение практических навыков построения алгоритмов численного решения обыкновенных дифференциальных

Подробнее

Решение дифференциальных уравнений в частных производных

Решение дифференциальных уравнений в частных производных Нижегородский государственный университет им. Н.И.Лобачевского Факультет Вычислительной математики и кибернетики Параллельные численные методы Решение дифференциальных уравнений в частных производных При

Подробнее

5. ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ

5. ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ 5. ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ В настоящем разделе рассматривается метод конечных разностей который является одним из наиболее распространенных численных методов

Подробнее

Численное решение задач с уравнениями параболического типа

Численное решение задач с уравнениями параболического типа Численное решение задач с уравнениями параболического типа. Постановка задачи в общем виде.. Разностные схемы для одномерного линейного параболического уравнения. 3. Схема для уравнения теплопроводности

Подробнее

Раздел 1. Цели и задачи учебной дисциплины.

Раздел 1. Цели и задачи учебной дисциплины. Раздел 1. Цели и задачи учебной дисциплины. 1.1. Цель преподавания дисциплины. Преподавание курса Численные методы имеет целью приобретение студентами навыков решения различных математических задач, анализа

Подробнее

Иерархия уравнений мелкой воды: вывод, исследование, вычислительные алгоритмы

Иерархия уравнений мелкой воды: вывод, исследование, вычислительные алгоритмы Иерархия уравнений мелкой воды: вывод, исследование, вычислительные алгоритмы З.И. Федотова, Г.С. Хакимзянов Институт вычислительных технологий СО РАН, Новосибирск, Россия e-mail: zf@ict.nsc.ru, khak@ict.nsc.ru

Подробнее

А.Н.Тихонов, А.Б.Васильева, А.Г.Свешников ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Один из выпусков «Курса высшей математики и математической физики» под редакцией

А.Н.Тихонов, А.Б.Васильева, А.Г.Свешников ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Один из выпусков «Курса высшей математики и математической физики» под редакцией А.Н.Тихонов, А.Б.Васильева, А.Г.Свешников ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Один из выпусков «Курса высшей математики и математической физики» под редакцией А.Н.Тихонова, В.А.Ильина, А.Г.Свешникова. Учебник создан

Подробнее

ВВЕДЕНИЕ , (1) Простейшая прямая задача состоит в нахождении функции, удовлетворяющей уравнению (1) и условиям

ВВЕДЕНИЕ , (1) Простейшая прямая задача состоит в нахождении функции, удовлетворяющей уравнению (1) и условиям РЕФЕРАТ Выпускная квалификационная работа по теме «Численная идентификация правой части параболического уравнения» содержит 45 страниц текста 4 приложения 6 использованных источников 4 таблицы ОБРАТНАЯ

Подробнее

О. А. Махинова СВОЙСТВА КОНЕЧНО-РАЗНОСТНОГО АНАЛОГА ОДНОМЕРНОГО ОПЕРАТОРА ЛАПЛАСА НА ГРАФЕ

О. А. Махинова СВОЙСТВА КОНЕЧНО-РАЗНОСТНОГО АНАЛОГА ОДНОМЕРНОГО ОПЕРАТОРА ЛАПЛАСА НА ГРАФЕ ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА Сер. 10. 01. Вып. 1 УДК 517.95 О. А. Махинова СВОЙСТВА КОНЕЧНО-РАЗНОСТНОГО АНАЛОГА ОДНОМЕРНОГО ОПЕРАТОРА ЛАПЛАСА НА ГРАФЕ 1. Введение. В последнее время в естествознании

Подробнее

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ Московский энергетический институт (технический университет) Институт автоматики и вычислительной техники Кафедра математического моделирования МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ Семейства разностных схем с приближенными

Подробнее

Ответы на вопросы к экзамену 2015 по курсу «Основы сеточных методов» Designed by Ivan Selivanov and Assembled by Roma ScainLain for AK3.R5S.

Ответы на вопросы к экзамену 2015 по курсу «Основы сеточных методов» Designed by Ivan Selivanov and Assembled by Roma ScainLain for AK3.R5S. Ответы на вопросы к экзамену 2015 по курсу «Основы сеточных методов» Designed by Ivan Selivanov and Assembled by Roma ScainLain for AK3.R5S.RU Оглавление 1. Основные понятия теории разностных схем: разностная

Подробнее

Теоретическая часть. Классификация уравнений в частных производных 2-го порядка

Теоретическая часть. Классификация уравнений в частных производных 2-го порядка Освоение дисциплины «Уравнения математической физики» необходимо начинать последовательно раздел за разделом. Освоение раздела начинать с теоретической справки, затем перейти к разбору приведенного решения

Подробнее

9. Вопросы устойчивости и численной реализации решения задачи Коши для линейных дифференциальных уравнений и систем

9. Вопросы устойчивости и численной реализации решения задачи Коши для линейных дифференциальных уравнений и систем Варианты задания 9. Вопросы устойчивости и численной реализации решения задачи Коши для линейных дифференциальных уравнений и систем 9.1. Задача Коши для обыкновенного дифференциального уравнения 1-го

Подробнее

6. 1-е дифференциальное приближение

6. 1-е дифференциальное приближение 6. 1-е дифференциальное приближение 1 6. 1-е дифференциальное приближение Вернемся к уравнению переноса (34) с нулевым источником: u t c u x =0 (40) и разностной схеме (35) (см. рис. 18). Запишем ее в

Подробнее

4. Численные методы решения обыкновенных дифференциальных уравнений

4. Численные методы решения обыкновенных дифференциальных уравнений . Численные методы решения обыкновенных дифференциальных уравнений.. Решение задачи Коши... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши для одного дифференциального

Подробнее

Дифференциально-разностный метод исследования процессов диффузии материалов.

Дифференциально-разностный метод исследования процессов диффузии материалов. УДК 6780153083 Дифференциально-разностный метод исследования процессов диффузии материалов Мартышенко ВА (Военная академия радиационной, химической и бактериологической защиты и инженерных войск) Процессы

Подробнее

1 Метод переменных направлений для уравнения теплопроводности

1 Метод переменных направлений для уравнения теплопроводности Экономичные разностные схемы для многомерных задач математической физики. Схема переменных направлений для начально-краевой задачи для уравнения теплопроводности в прямоугольнике. Как уже было показано

Подробнее

Билеты по курсу «Введение в численные методы» (2 ой поток) (2013)

Билеты по курсу «Введение в численные методы» (2 ой поток) (2013) Билеты по курсу «Введение в численные методы» (2 ой поток) (2013) Билет 1. Прямые методы решения СЛАУ. Метод Гаусса. Билет 2. Трехдиагональные системы линейных алгебраических уравнений. Метод прогонки.

Подробнее

Численные методы и моделирование на ЭВМ

Численные методы и моделирование на ЭВМ Министерство образования и науки, молодежи и спорта Донбасская государственная машиностроительная академия Составитель Костиков А.А. Численные методы и моделирование на ЭВМ Методические указания к выполнению

Подробнее

Метод расчета времени установления квазиоднородности дисперсных материалов

Метод расчета времени установления квазиоднородности дисперсных материалов УДК 536. Метод расчета времени установления квазиоднородности дисперсных материалов К.Н. Лещинский В работе предлагается численная схема расчета теплообмена дисперсного материала на основе решения нестационарной

Подробнее

Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость.

Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость. Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных и нелинейных дифференциальных уравнений

Подробнее

МЕТОД МОНТЕ-КАРЛО ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ ФОККЕРА ПЛАНКА КОЛМОГОРОВА *

МЕТОД МОНТЕ-КАРЛО ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ ФОККЕРА ПЛАНКА КОЛМОГОРОВА * СБОРНИК НАУЧНЫХ ТРУДОВ НГТУ 007 3(49) 41 46 УДК 51916 МЕТОД МОНТЕ-КАРЛО ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ ФОККЕРА ПЛАНКА КОЛМОГОРОВА * КС КИРЯКИН Рассмотрен метод Монте-Карло для решения уравнения Фоккера Планка Колмогорова

Подробнее

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса.

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Для численного решения нелинейных задач в различных ситуациях используют как линейные, так и нелинейные схемы. Устойчивость соответствующих

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Mat-Net.Ru Общероссийский математический портал О. А. Махинова Свойства конечно-разностного аналога одномерного оператора Лапласа на графе Вестн. С.-Петербург. ун-та. Сер. 10. Прикл. матем. Информ. Проц.

Подробнее

Численные методы и математическое моделирование в физике (наименование дисциплины) Направление подготовки физика

Численные методы и математическое моделирование в физике (наименование дисциплины) Направление подготовки физика 1 Аннотация рабочей программы дисциплины Численные методы и математическое моделирование в физике (наименование дисциплины) Направление подготовки 03.03.02 физика Профиль подготовки «Фундаментальная физика»,

Подробнее

Разностные схемы для уравнений Навье-Стокса сжимаемого газа

Разностные схемы для уравнений Навье-Стокса сжимаемого газа Алгоритмы расщепления при решении многомерных задач В. М. Ковеня Институт вычислительных технологий СО РАН69Новосибирск Россия koeya@ct.sc.ru Бурное развитие ЭВМ в 6-х годах прошлого века способствовало

Подробнее

6 Методы приближения функций. Наилучшее приближение.

6 Методы приближения функций. Наилучшее приближение. 6 Методы приближения функций. Наилучшее приближение. Рассмотренные в прошлой главе методы приближения требуют строгой принадлежности узлов сеточной функции результирующему интерполянту. Если не требовать

Подробнее

4. Перечень разделов и (или) тем дисциплины и их дидактическое содержание

4. Перечень разделов и (или) тем дисциплины и их дидактическое содержание 1. Целью изучения дисциплины является: подготовка высокопрофессионального специалиста медицинского кибернетика, владеющего математическими знаниями, умениями и навыками применять математику как инструмент

Подробнее

(5.1) (5.2) (5.3) (5.4) t x u

(5.1) (5.2) (5.3) (5.4) t x u 5. Расщепление потоков Для того, чтобы лучше понять разностное представление членов, учитывающих конвективный перенос, рассмотрим упрощенную задачу: ) вязкие члены не учитываются ) течение является одномерным

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Вопросы, выносимые на опрос (для дискуссии) по Введению. Вопросы, выносимые на опрос (для дискуссии) по разделу 1

Вопросы, выносимые на опрос (для дискуссии) по Введению. Вопросы, выносимые на опрос (для дискуссии) по разделу 1 1. Оценочные средства текущего контроля. Вопросы, выносимые на опрос (для дискуссии) по Введению -Назовите виды погрешности. - Как рассчитывается абсолютная погрешность? - Как рассчитывается относительная

Подробнее

Некоммерческая организация «Ассоциация московских вузов»

Некоммерческая организация «Ассоциация московских вузов» Некоммерческая организация «Ассоциация московских вузов» Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (государственный технический университет)»

Подробнее

МЕТОДЫ ЧИСЛЕННОГО АНАЛИЗА. Учебная программа для специальности Информатика. информационных технологий и высшей математики

МЕТОДЫ ЧИСЛЕННОГО АНАЛИЗА. Учебная программа для специальности Информатика. информационных технологий и высшей математики ЧАСТНОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «МИНСКИЙ ИНСТИТУТ УПРАВЛЕНИЯ» УТВЕРЖДАЮ Ректор Минского института управления Н.В.Суша 2011 г. Регистрационный УД- /р. МЕТОДЫ ЧИСЛЕННОГО АНАЛИЗА Учебная программа для специальности

Подробнее

ОРТОГОНАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ ОСЕСИММЕТРИЧНЫХ ДИФФЕРЕНЦИАЛЬНО - РАЗНОСТНЫХ СХЕМ 1. В.А. Коробицын. Томский государственный университет.

ОРТОГОНАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ ОСЕСИММЕТРИЧНЫХ ДИФФЕРЕНЦИАЛЬНО - РАЗНОСТНЫХ СХЕМ 1. В.А. Коробицын. Томский государственный университет. УДК 59.63 ОРТОГОНАЛЬНЫЕ ПРЕОБРАЗОВАНИЯ ОСЕСИММЕТРИЧНЫХ ДИФФЕРЕНЦИАЛЬНО - РАЗНОСТНЫХ СХЕМ В.А. Коробицын Томский государственный университет. Методом базисных операторов построены согласованные осесимметричные

Подробнее

Направление Компьютерные и информационные науки. Профиль «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА»

Направление Компьютерные и информационные науки. Профиль «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА» Направление 02.06.01 Компьютерные и информационные науки Профиль 01.01.07 «ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА» 1. Определенный интеграл. Интегрируемость непрерывной функции. Первообразная непрерывной функции. 2.

Подробнее

О скорости звука в потоке вязкого газа с поперечным сдвигом

О скорости звука в потоке вязкого газа с поперечным сдвигом Электронный журнал «Техническая акустика» http://webceter.ru/~eeaa/ejta/ 004, 5 Псковский политехнический институт Россия, 80680, г. Псков, ул. Л. Толстого, 4, e-mail: kafgid@ppi.psc.ru О скорости звука

Подробнее

ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ ДЛЯ ЧИСЛЕННОГО РЕШЕНИЯ УРАВНЕНИЯ ПЕРЕНОСА С ПОМОЩЬЮ НЕЯВНОЙ РАЗНОСТНОЙ СХЕМЫ ПОКОМПОНЕНТНОГО РАСЩЕПЛЕНИЯ

ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ ДЛЯ ЧИСЛЕННОГО РЕШЕНИЯ УРАВНЕНИЯ ПЕРЕНОСА С ПОМОЩЬЮ НЕЯВНОЙ РАЗНОСТНОЙ СХЕМЫ ПОКОМПОНЕНТНОГО РАСЩЕПЛЕНИЯ ПАРАЛЛЕЛЬНЫЕ АЛГОРИТМЫ ДЛЯ ЧИСЛЕННОГО РЕШЕНИЯ УРАВНЕНИЯ ПЕРЕНОСА С ПОМОЩЬЮ НЕЯВНОЙ РАЗНОСТНОЙ СХЕМЫ ПОКОМПОНЕНТНОГО РАСЩЕПЛЕНИЯ А.В. Старченко, В.И. Лаева, Е.А. Мурзина Предлагается метод распараллеливания

Подробнее

Глава 8. Элементы квантовой механики

Глава 8. Элементы квантовой механики Глава 8 Элементы квантовой механики Задачи атомной физики решаются методами квантовой теории которая принципиально отличается от классической механики Решение задачи о движении тела макроскопических размеров

Подробнее

Решение обыкновенных дифференциальных уравнений.

Решение обыкновенных дифференциальных уравнений. Решение обыкновенных дифференциальных уравнений Инженеру часто приходится иметь дело с техническими системами и технологическими процессами, характеристики которых непрерывно меняются со временем t Эти

Подробнее

Дополнительная литература:

Дополнительная литература: ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ (в курсе «Дополнительные главы уравнений математической физики», направление «010600: Прикладные математика и физика», 4 курс, 8 семестр) Составитель: к.ф.-м.н.,

Подробнее

5. Примеры. Пример: Диффузия с нелинейным источником тепловые волны

5. Примеры. Пример: Диффузия с нелинейным источником тепловые волны 5. Примеры 1 5. Примеры Приведем теперь несколько примеров решения разных дифференциальных уравнений при помощи разностных схем. Начнем с нескольких вариантов нелинейного уравнения диффузии тепла, для

Подробнее

ПРОГРАММА дисциплины «Методы вычислений» (лекция-60 часов, семинар-60 часов) ВЫ-ВЫЫ семестр

ПРОГРАММА дисциплины «Методы вычислений» (лекция-60 часов, семинар-60 часов) ВЫ-ВЫЫ семестр 3 ПРОГРАММА дисциплины «Методы вычислений» (лекция-60 часов, семинар-60 часов) ВЫ-ВЫЫ семестр Предисловие В процессе изучения дисциплины Методы вычислений студенты должны: - закрепить на практике теоретические

Подробнее

Оглавление. От авторов... 3

Оглавление. От авторов... 3 Оглавление От авторов... 3 Вариационное исчисление. Необходимые условия 4 Гла ва XLI X Экстремумы функционалов... 5 1. Некоторые сведения и понятия из функционального анализа 5 1.1. Функциональные пространства...

Подробнее

Работа 1.3 Исследование зависимостей T(l) и A(t) математического маятника

Работа 1.3 Исследование зависимостей T(l) и A(t) математического маятника Работа 13 Исследование зависимостей T(l) и A(t) математического маятника Оборудование: штатив, маятник, линейка, электронный счетчик-секундомер Описание метода Графический метод является наиболее простым

Подробнее

Линия тренда. Прогноз в EXCEL Линия тренда

Линия тренда. Прогноз в EXCEL Линия тренда Линия тренда. Прогноз в EXCEL На практике при моделировании различных процессов в частности, экономических, физических, технических, социальных широко используются те или иные способы вычисления приближенных

Подробнее

Майер Р.В., г. Глазов Метод компьютерного моделирования при изучении физических явлений

Майер Р.В., г. Глазов Метод компьютерного моделирования при изучении физических явлений Майер РВ, г Глазов Метод компьютерного моделирования при изучении физических явлений Часто аналитические методы не позволяют исследовать эволюцию сложных систем, или их применение связано со сложными математическими

Подробнее

Математическое моделирование и алгоритмизация задач теплоэнергетики

Математическое моделирование и алгоритмизация задач теплоэнергетики ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Дисциплина: Математическое моделирование и алгоритмизация

Подробнее

Формалев В. Ф., Ревизников Д. Л. Численные методы. - М.: ФИЗМАТЛИТ, с. В учебнике представлены основные численные методы решения задач

Формалев В. Ф., Ревизников Д. Л. Численные методы. - М.: ФИЗМАТЛИТ, с. В учебнике представлены основные численные методы решения задач Формалев В. Ф., Ревизников Д. Л. Численные методы. - М.: ФИЗМАТЛИТ, 2004. - 400 с. В учебнике представлены основные численные методы решения задач алгебры и анализа, теории приближений и оптимизации, задач

Подробнее

Иванов М.Ф., доктор физико-математических наук, профессор.

Иванов М.Ф., доктор физико-математических наук, профессор. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (государственный университет)»

Подробнее

НЕЯВНАЯ ИТЕРАЦИОННАЯ СХЕМА НА ОСНОВЕ МЕТОДА НЬЮТОНА ДЛЯ ДВУМЕРНЫХ УРАВНЕНИЙ ЭЙЛЕРА

НЕЯВНАЯ ИТЕРАЦИОННАЯ СХЕМА НА ОСНОВЕ МЕТОДА НЬЮТОНА ДЛЯ ДВУМЕРНЫХ УРАВНЕНИЙ ЭЙЛЕРА МЕЖДУНАРОДНАЯ НАУЧНАЯ КОНФЕРЕНЦИЯ «Актуальные проблемы современной математики механики и информатики» «ТАРАПОВСКИЕ ЧТЕНИЯ -» НЕЯВНАЯ ИТЕРАЦИОННАЯ СХЕМА НА ОСНОВЕ МЕТОДА НЬЮТОНА ДЛЯ ДВУМЕРНЫХ УРАВНЕНИЙ

Подробнее

Составляющая УМК Наименование и автор Год издания. Зингерман К.М.

Составляющая УМК Наименование и автор Год издания. Зингерман К.М. Учебно-методический комплекс (УМК) по дисциплине ЧИСЛЕННЫЕ МЕТОДЫ Дисциплина Численные методы Специальность (направление) Прикладная математика и информатика Составляющая УМК Наименование и автор Год издания

Подробнее

19. Разностные схемы для уравнений эллиптического типа. Итерационные методы решений сеточных уравнений

19. Разностные схемы для уравнений эллиптического типа. Итерационные методы решений сеточных уравнений Варианты заданий 9. Разностные схемы для уравнений эллиптического типа. Итерационные методы решений сеточных уравнений 9.. Постановка задачи Рассматривается задача Дирихле для эллиптического уравнения:

Подробнее

7. Алгоритмы Рунге-Кутты

7. Алгоритмы Рунге-Кутты 7. Алгоритмы Рунге-Кутты 1 7. Алгоритмы Рунге-Кутты Наиболее эффективным и часто использующемся методом решения ОДУ остается метод Рунге-Кутты. Большинство расчетов задач Коши для ОДУ, которые не являются

Подробнее

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ . ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши

Подробнее

Самарский А.А., Гулин А.В. Численные методы математической физики. 2-е изд. -М.: Научный мир, с.

Самарский А.А., Гулин А.В. Численные методы математической физики. 2-е изд. -М.: Научный мир, с. Самарский А.А., Гулин А.В. Численные методы математической физики. 2-е изд. -М.: Научный мир, 2003.-316 с. Книга является учебным пособием по численным методам решения задач математической физики, предназначенным

Подробнее

Список вопросов к экзамену по численным методам (31 мая 2016г.)

Список вопросов к экзамену по численным методам (31 мая 2016г.) Список вопросов к экзамену по численным методам (31 мая 2016г.) 0.1 Численное интегрирование 1. Перечислить приёмы вычисления несобственных интегралов. Построить квадратурную формулу для вычисления интеграла

Подробнее

Способы учета граничных условий I рода при решении задач методом конечных элементов

Способы учета граничных условий I рода при решении задач методом конечных элементов УДК 519.624.1 Способы учета граничных условий I рода при решении задач методом конечных элементов Введение Корчагова В.Н., студент Россия, 105005, г. Москва, МГТУ им. Н.Э. Баумана кафедра «Прикладная математика»

Подробнее

ОСНОВЫ ВЫЧИСЛИТЕЛЬНОЙ ФИЗИКИ

ОСНОВЫ ВЫЧИСЛИТЕЛЬНОЙ ФИЗИКИ ОСНОВЫ ВЫЧИСЛИТЕЛЬНОЙ ФИЗИКИ доцент Александр Иванович Черных Программа курса лекций (7-й семестр, лекции 36 ч., семинары 36 ч., диф. зач.) 1. Решение уравнений f(x) = 0. Методы деления пополам, простых

Подробнее

Компьютерное. Модуль 1. Теория

Компьютерное. Модуль 1. Теория Компьютерное моделирование Модуль 1. Теория математических моделей Схема построения математических моделей 1 Исследование движения кривошипношатунного механизма 2 Столкновении пули с маятником 3 Возможные

Подробнее

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра «Высшая математика 3» ЛАБОРАТОРНЫЕ РАБОТЫ

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ. Кафедра «Высшая математика 3» ЛАБОРАТОРНЫЕ РАБОТЫ Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика 3» ЛАБОРАТОРНЫЕ РАБОТЫ по уравнениям математической физики для студентов строительных

Подробнее

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика 3» ЛАБОРАТОРНЫЕ РАБОТЫ

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика 3» ЛАБОРАТОРНЫЕ РАБОТЫ Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Высшая математика» ЛАБОРАТОРНЫЕ РАБОТЫ по уравнениям математической физики для студентов строительных

Подробнее

ГЛАВА: Метод конечных разностей. Лекция 2: Формулы аппроксимаций производных (7 слайдов, 2 рисунка)

ГЛАВА: Метод конечных разностей. Лекция 2: Формулы аппроксимаций производных (7 слайдов, 2 рисунка) ГЛАВА: Метод конечных разностей. Лекция 2: Формулы аппроксимаций производных (7 слайдов, 2 рисунка) Слайд 1: Основные понятия. Геометрическая интерпретация задачи Если независимых переменных всего две

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Решение дифференциальных уравнений в частных производных

Решение дифференциальных уравнений в частных производных Нижегородский государственный университет им. Н.И.Лобачевского Факультет Вычислительной математики и кибернетики Решение дифференциальных уравнений в частных производных При поддержке компании Inel Баркалов

Подробнее

ОБ УСТОЙЧИВОСТИ ПО НЕЙМАНУ СИММЕТРИЧНЫХ СХЕМ ВЫСОКОГО ПОРЯДКА ДЛЯ ЗАДАЧ КОНВЕКЦИИ ДИФФУЗИИ О. В. Шишкина

ОБ УСТОЙЧИВОСТИ ПО НЕЙМАНУ СИММЕТРИЧНЫХ СХЕМ ВЫСОКОГО ПОРЯДКА ДЛЯ ЗАДАЧ КОНВЕКЦИИ ДИФФУЗИИ О. В. Шишкина Сибирский математический журнал Ноябрь декабрь 007. Том 48 6 УДК 519.633 ОБ УСТОЙЧИВОСТИ ПО НЕЙМАНУ СИММЕТРИЧНЫХ СХЕМ ВЫСОКОГО ПОРЯДКА ДЛЯ ЗАДАЧ КОНВЕКЦИИ ДИФФУЗИИ О. В. Шишкина Аннотация. Найден ряд достаточных

Подробнее

1. Цели и задачи дисциплины. 2. Место дисциплины в структуре ООП 3. Требования к результатам освоения курса 3.1. ПК-4 ПК-8 ПК Знать: З.

1. Цели и задачи дисциплины. 2. Место дисциплины в структуре ООП 3. Требования к результатам освоения курса 3.1. ПК-4 ПК-8 ПК Знать: З. 1. Цели и задачи дисциплины. Цель дисциплины: изучение методов построения численных алгоритмов и исследование численных методов решения математических задач, моделирующих различные физические процессы.

Подробнее

6. Моделирование волновых явлений

6. Моделирование волновых явлений 6. Моделирование волновых явлений Волновое уравнение Волны представляют из себя особый вид коллективного движения материи характеризующийся изменением со временем пространственного чередования максимумов

Подробнее

численные методы решения скалярных уравнений и систем линейных уравнений, методы численного интегрирования и

численные методы решения скалярных уравнений и систем линейных уравнений, методы численного интегрирования и 1 1. Место дисциплины в структуре образовательной программы Дисциплина «Численные методы программирования» является дисциплиной по выбору вариативной части. Рабочая программа составлена в соответствии

Подробнее

I. Рабочая программа пересмотрена на заседании Ученого совета Протокол от 20 г. Ученый секретарь подписьи.о. Фамилия

I. Рабочая программа пересмотрена на заседании Ученого совета Протокол от 20 г. Ученый секретарь подписьи.о. Фамилия I. Рабочая программа пересмотрена на заседании Ученого совета Протокол от 20 г. Ученый секретарь подписьи.о. Фамилия II. Рабочая программа пересмотрена на заседании Ученого совета Протокол от 20 г. Ученый

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Казанский государственный университет Р.Ф. Марданов ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие Издательство Казанского государственного университета 2007 УДК 517.9

Подробнее

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Лекция 4 8 ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Рассматривается проблема решения систем обыкновенных дифференциальных уравнений первого порядка связывающих

Подробнее

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)!

4.Метод парциальных амплитуд. 1. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: (1.16) (1.17)! 4.Метод парциальных амплитуд.. Вернемся к исходной постановке задачи рассеяния. Имеем уравнение Шредингера: ( +! m ( +! ( + φ ( V ( φ ( (.6 и соответствующее ему граничное условие :!! e! φ ( { e + f (

Подробнее

Влияние магнитных полей на траекторию движения планет Солнечной системы

Влияние магнитных полей на траекторию движения планет Солнечной системы Краевой конкурс творческих работ учащихся «Прикладные и фундаментальные вопросы математики» Математическое моделирование Влияние магнитных полей на траекторию движения планет Солнечной системы Нестеров

Подробнее

Программа по курсу «Вычислительная математика»

Программа по курсу «Вычислительная математика» Программа по курсу «Вычислительная математика» 1. Организационно-методический раздел. 1.1. Использование ЭВМ в различных областях науки и техники и управления народным хозяйством вызывают необходимость

Подробнее