Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я."

Транскрипт

1 Тычина К.А. XIV Б е з м о м е н т н а я т е о р и я о б о л о ч е к в р а щ е н и я.

2 Вспоминаем: Оболочка это тело, один из размеров которого много меньше двух других. Этот наименьший размер называется толщиной оболочки h - толщина Свои размеры и форму оболочка может менять, как под действием внутренних изгибающих моментов (см. раздел XVII «Изгиб пластин» будет написан позже), так (сжимающих) усилий. расчётов Для упрощения геометрии при решении задач рассматривают только поверхность оболочки срединную (рис. и под действием внутренних растягивающих h/2 h/2 h Рис. XIV.1. XIV.1). Подобный подход стал возможен в результате применения гипотез: срединная поверхность 1) Гипотеза о ненадавливании слоёв: слои оболочки при её h деформировании друг на друга не давят; 2) Гипотеза прямых нормалей: точки, лежащие на нормали к недеформированной срединной поверхности, после нагружения остаются лежать на единой прямой, нормальной к уже деформированной срединной поверхности. =>

3 Первая гипотеза позволяет пренебречь поперечными нормальными напряжениями, вторая пренебречь напряжениями касательными (именно они искривляют нормали.) В результате, в расчётах можно рассматривать только нормальные напряжения, действующие вдоль срединной поверхности. Оболочка вращения: оболочка, срединная поверхность которой получена вращением образующей вокруг некоторой оси (рис. XIV.2). образующая ν Рис. XIV.2. K r ρ ρ В любой точке срединной поверхности оболочки вращения можно выделить два направления: меридиональное (вдоль образующей) и окружное (перпендикулярное меридиональному) ν меридиональное направление в точке К окружное направление в точке К Рис. XIV.3. K

4 a R r и, соответственно, два радиуса кривизны (рис. XIV.2.): ρ радиус кривизны меридионального направления в рассматриваемой точке (то есть, радиус кривизны образующей в этой точке); ρ радиус кривизны окружного направления в рассматриваемой точке. Пример XIII. 1 : Сфера Цилиндр Тор Конус ρ R β ρ β Область краевого эффекта ρ α r Рис. XIV.4. Сфера : R ; Цилиндр : ; R Конус : r. cos r Тор : a ; r cos 0 : a r 90 : 180 : 270: a r

5 Будем изучать оболочки вращения плавных (то есть, без изломов) очертаний, нагруженных давлением жидкости, газа или сыпучих веществ. Закрепления рассматриваемых оболочек таковы, что реакции связей направлены по касательной к срединной поверхности (рис. XIV.5а.). p Область краевого эффекта p Область краевого эффекта a) б) Рис. XIV.5. Внутренние изгибающие моменты в таких оболочках не образуются, только усилия растяжения (сжатия) и рассчитываются подобные конструкции по наиболее простым формулам формулам безмоментной теории тонкостенных оболочек. П р и м е ч а н и е: В районе моментного закрепления оболочки вращения (рис. XIV.5б.) или изменений её геометрии (рис. XIV.4.) в оболочке может возникать моментное состояние, которое, однако, быстро (в смысле размера) затухает. Это явление носит название краевого эффекта. В таком случае по безмоментной теории рассчитывается только та часть оболочки, которая удалена от области краевого эффекта. Часть оболочки, попавшая в эту область, рассчитывается по значительно более сложным формулам моментных теорий.

6 Толщина оболочки может быть постоянной, либо плавно изменяющейся по её длине: h1 h2 h Внешняя нагрузка также может изменяться по длине оболочки, но обязательно плавно: p

7 У р а в н е н и я р а в н о в е с и я б е з м о м е н т н о й т е о р и и Рассечём оболочку мысленно поперёк оси вращения коническим сечением, перпендикулярным меридиану: r=ρ sin S h p σ r ρ p A δ =2 π r h σ T A =π r 2 Рис. XIV.6. оболочки: Запишем уравнение равновесия отсечённой части в проекции на ось F 0 S T (XIV.1) Z Полезно помнить о том, что равнодействующая S сил постоянного давления зависит не от формы оболочки, а только от площади её проекции на плоскость, перпендикулярную оси : S p A Теперь выделим из оболочки небольшой прямоугольный элемент со сторонами, параллельными меридиональному и окружному направлениям (рис. XIV.3.) и запишем уравнение его равновесия в проекции на нормаль ν к срединной поверхности в его центре:

8 Б σ d 2 σ ρ d ν dl K d 2 σ ρ d ds h A σ +dσ Вид A Вид Б σ σ ν dl d 2 p d 2 σ +dσ σ sin d 2 ( σ +dσ ) sin d 2 d 2 σ sin d 2 ν ds d 2 σ p с двух сторон Рис. XIV.7. d d F 0 p dl ds 2 sin dl h sin ds h 2 2 напряжение сила d d sin ds h 2 площадь Для малых углов: ds d d ds sin dl d d dl sin

9 значит p dl ds 2 ds 2 dl dl h 2 ds dl h 2 ds h dl d d S 2 h 0 Произведение трёх бесконечно малых величин p h h 0 уравнение Лапласа (XIV.2) p h Последовательно используя уравнения равновесия (XIV.1) и (XIV.2), можно определить сначала меридиональное σ, потом окружное σ напряжения в любой статически определимой оболочке вращения (по окружности σ и σ не меняются, изменяются только по координате ). Эквивалентное напряжение в оболочке проще вычислять по формуле теории Мора: экв 1 T 3 При внутреннем давлении σ 3 =0 и σ экв будет равно бóльшему из двух напряжений: ax, экв П р и м е ч а н и е: Толщина оболочки обозначается, как h, так и δ.

10

11

12

13

14

15

16

17

18

В сопротивлении материалов различают изгиб плоский, косой и сложный.

В сопротивлении материалов различают изгиб плоский, косой и сложный. Лекция 10 Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения

Подробнее

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов УДК 59. РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР 7 И. С. Ахмедьянов Самарский государственный аэрокосмический университет Рассматривается применение

Подробнее

Тычина К.А. И з г и б.

Тычина К.А. И з г и б. www.tchina.pro Тычина К.А. V И з г и б. Изгибом называется такой вид нагружения стержня, при котором в его поперечных сечениях остаётся не равным нулю только внутренний изгибающий момент. Прямым изгибом

Подробнее

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА

5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Прямой и поперечный изгиб. 5. КЛАССИФИКАЦИЯ ВИДОВ ИЗГИБА Изгиб стержня вид нагружения, при котором в поперечных сечениях возникают изгибающие моменты и (или) (N = 0, T = 0).. Чистый изгиб. Поперечный изгиб

Подробнее

3.3.1 Расчет толщины стенок цилиндрической обечайки сосуда

3.3.1 Расчет толщины стенок цилиндрической обечайки сосуда 3.3. Расчет толщины стенок цилиндрической обечайки сосуда Сосуды, нагруженные давлением обычно представляют собой тонкостенные оболочки, срединная поверхность которых (т. е. поверхность, делящая пополам

Подробнее

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A

Следующим шагом является отыскание x наиболее напряженного сечения. Для этого A Лекция 05 Изгиб Проверка прочности балок Опыт показывает, что при нагружении призматического стержня с прямой осью силами и парами сил, расположенными в плоскости симметрии, наблюдаются деформации изгиба

Подробнее

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки Теория напряженного состояния Понятие о тензоре напряжений, главные напряжения Линейное, плоское и объемное напряженное состояние Определение напряжений при линейном и плоском напряженном состоянии Решения

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

Л.М. Савельев. Теория пластин и оболочек Конспект лекций

Л.М. Савельев. Теория пластин и оболочек Конспект лекций ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ АКАДЕМИКА С.П. КОРОЛЕВА (НАЦИОНАЛЬНЫЙ

Подробнее

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная

плоскости, а поперечные сечения поворачиваются. Их центры тяжести получают поступательные перемещения y(x). Искривленная В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 16 Деформации при плоском изгибе. Основы расчета на жесткость при плоском изгибе. Дифференциальное уравнение упругой линии Ранее были рассмотрены

Подробнее

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение)

Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) В.Ф. ДЕМЕНКО. МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 Лекция 6 Построение эпюр внутренних силовых факторов для основных видов деформации бруса (продолжение) 1 Правила знаков при построении эпюр поперечных

Подробнее

Тычина К.А. В в е д е н и е.

Тычина К.А. В в е д е н и е. www.tchina.pro Тычина К.А. I В в е д е н и е. «Теоретическая механика» разработала уравнения равновесия тел, считая их абсолютно твёрдыми и неразрушимыми. Курс «Сопротивление материалов», следующий шаг

Подробнее

РАСЧЕТ НА ПРОЧНОСТЬ ТОНКОСТЕННЫХ ОБОЛОЧЕК ВРАЩЕНИЯ И ТОЛСТОСТЕННЫХ ЦИЛИНДРОВ

РАСЧЕТ НА ПРОЧНОСТЬ ТОНКОСТЕННЫХ ОБОЛОЧЕК ВРАЩЕНИЯ И ТОЛСТОСТЕННЫХ ЦИЛИНДРОВ РАСЧЕТ НА ПРОЧНОСТЬ ТОНКОСТЕННЫХ ОБОЛОЧЕК ВРАЩЕНИЯ И ТОЛСТОСТЕННЫХ ЦИЛИНДРОВ O n n 1 dϕ n O1 dϕ R 1 C R t n D t D q Издательство ТГТУ Министерство образования Российской Федерации Тамбовский государственный

Подробнее

Внутренние усилия и напряжения

Внутренние усилия и напряжения 1. Внутренние усилия и напряжения Интегральная связь между крутящим моментом Mz и касательными напряжениями имеет вид 2. Если известно нормальное и касательное напряжения в точке сечения, то полное напряжение

Подробнее

Тычина К.А. III. К р у ч е н и е

Тычина К.А. III. К р у ч е н и е Тычина К.А. tychina@mail.ru К р у ч е н и е Крутящим называют момент, вектор которого направлен вдоль оси стержня. Кручением называется такое нагружение стержня, при котором в его поперечных сечениях возникает

Подробнее

Рабочая программа дисциплины (с аннотацией) Математические модели процесса потери устойчивости динамических систем

Рабочая программа дисциплины (с аннотацией) Математические модели процесса потери устойчивости динамических систем Министерство образования и науки Российской Федерации ФГБОУ ВО «Тверской государственный университет» Утверждаю: Руководитель ООП: 20 г. Рабочая программа дисциплины (с аннотацией) Математические модели

Подробнее

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях

РГР 1. Растяжение сжатие. 1.1 Определение усилий в стержнях и расчет их на прочность Определение усилий в стержнях Содержание РГР. Растяжение сжатие.... Определение усилий в стержнях и расчет их на прочность..... Определение усилий в стержнях..... Определение диаметра стержней.... Расчет ступенчатого бруса на прочность

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

1. ОБЩИЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

1. ОБЩИЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ 1. ОБЩИЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ 1.1. Понятие о земном эллипсоиде и сфере ТЕЗИСЫ ЛЕКЦИЙ Физическая поверхность Земли имеет сложную форму, которая не может быть описана замкнутыми формулами. В силу этого

Подробнее

Задачи к экзамену Задача 1. Задача 2.

Задачи к экзамену Задача 1. Задача 2. Вопросы к экзамену 1. Модель упругого тела, основные гипотезы и допущения. Механика твердого тела, основные разделы. 2. Внешние и внутренние силы, напряжения и деформации. Принцип независимого действия

Подробнее

СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ ТРЁХШАРНИРНЫЕ АРКИ И РАСПОРНЫЕ СИСТЕМЫ

СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ ТРЁХШАРНИРНЫЕ АРКИ И РАСПОРНЫЕ СИСТЕМЫ СТАТИЧЕСКИ ОПРЕДЕЛИМЫЕ ТРЁХШАРНИРНЫЕ АРКИ И РАСПОРНЫЕ СИСТЕМЫ Общие понятия и определения. Арка - система криволинейных стержней. К статически определимым системам относятся трехшарнирные арки, имеющие

Подробнее

Внецентренное действие продольных сил

Внецентренное действие продольных сил Внецентренное действие продольных сил C C Центральное сжатие (растяжение) Внецентренное сжатие (растяжение) Внецентренное сжатие (растяжение) это случай нагружения, когда линия действия сжимающей (растягивающей

Подробнее

1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ 3 СОДЕРЖАНИЕ 1. УЧЕБНЫЙ ПЛАН ДИСЦИПЛИНЫ...4 2. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ...4 2.1. Цель преподавания дисциплины...4 2.2. Задачи изучения дисциплины...4 2.3. Перечень базовых дисциплин...5 2.4. Перечень дисциплин,

Подробнее

1 Применение нелинейной деформационной модели к расчету пластин и оболочек 1.1 Общие положения

1 Применение нелинейной деформационной модели к расчету пластин и оболочек 1.1 Общие положения 1 Применение нелинейной деформационной модели к расчету пластин и оболочек 1.1 Общие положения Рассмотрим возможность применения нелинейной деформационной модели к расчету напряженно-деформированного состояния

Подробнее

Дифференциальные характеристики кривых линий

Дифференциальные характеристики кривых линий Лекция 6. Кривые линии Кривая линия (или просто кривая) - это геометрическое место точек, координаты которых являются функциями одной переменной. Если уравнение кривой в декартовой системе координат алгебраическое,

Подробнее

РАСЧЕТ КРУГЛЫХ ПЛАСТИН

РАСЧЕТ КРУГЛЫХ ПЛАСТИН РАСЧЕТ КРУГЛЫХ ПЛАСТИН F tcd y x z Q Омск 0 РАСЧЕТ КРУГЛЫХ ПЛАСТИН Методические указания к выполнению курсовой работы для студентов специальности ДВС Составитель: А.И. Громовик Омск Издательство СибАДИ

Подробнее

Тычина К.А. III. К р у ч е н и е

Тычина К.А. III. К р у ч е н и е Тычина К.А. tychina@mail.ru III К р у ч е н и е Крутящим называют момент, вектор которого направлен вдоль оси стержня. Кручением называется такое нагружение стержня, при котором в его поперечных сечениях

Подробнее

,. Тогда. , где ( ) Q - часть плоскости x + y + z =1, расположенная

,. Тогда. , где ( ) Q - часть плоскости x + y + z =1, расположенная 3 область (D ) В нашем случае n - вектор нормали к плоскости XOY те n k { } = ϕ, ϕ, Тогда = =,,, а n { } cos γ =, + + ( ϕ) ( ϕ) ( ϕ) ( ϕ) dq = + + dd Замечание Если поверхность ( Q) правильная в направлении

Подробнее

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ Профессор, д.т.н. Богус Ш.Н., студент КубГАУ Лысов Д.С., Пономарев Р.В. Кубанский государственный аграрный университет Краснодар, Россия При увеличении пропускной способности

Подробнее

ОБЩИЕ СВЕДЕНИЯ... 5 ЦИЛИНДРИЧЕСКАЯ ЖЕСТКОСТЬ.

ОБЩИЕ СВЕДЕНИЯ... 5 ЦИЛИНДРИЧЕСКАЯ ЖЕСТКОСТЬ. СОДЕРЖАНИЕ ОБЩИЕ СВЕДЕНИЯ... 5 ЦИЛИНДРИЧЕСКАЯ ЖЕСТКОСТЬ. ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ИЗГИБА ПЛАСТИНКИ... 7 ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ИЗОГНУТОЙ ПОВЕРХНОСТИ ПОПЕРЕЧНО НАГРУЖЕННОЙ ПЛАСТИНКИ... 9 СИММЕТРИЧНЫЙ

Подробнее

1. ФУНДАМЕНТАЛЬНЫЕ ОСНОВЫ КУРСА «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» 1.1. Основные определения сопротивления материалов

1. ФУНДАМЕНТАЛЬНЫЕ ОСНОВЫ КУРСА «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» 1.1. Основные определения сопротивления материалов Введение. Общие понятия и принципы дисциплины «Сопротивление материалов». Реальный объект и расчетная схема. Внешние силовые факторы (классификация). Определение внутренних усилий методом мысленных сечений.

Подробнее

Томский государственный архитектурно-строительный университет М.О. Моисеенко, О.Н. Попов, Е.В. Евтюшкин, Д.Н. Песцов

Томский государственный архитектурно-строительный университет М.О. Моисеенко, О.Н. Попов, Е.В. Евтюшкин, Д.Н. Песцов Учет взаимосвязи учебного материала предметов теоретической и строительной механики в условиях формирования национальной доктрины инженерного образования Томский государственный архитектурно-строительный

Подробнее

1. Рассматривается оболочка вращения, срединная поверхность которой представляет собой катеноид поверхность, образуемую вращением цепной линии.

1. Рассматривается оболочка вращения, срединная поверхность которой представляет собой катеноид поверхность, образуемую вращением цепной линии. УДК 59.7 НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ КАТЕНОИДНОЙ ОБОЛОЧКИ ВРАЩЕНИЯ ИЗ ОРТОТРОПНОГО МАТЕРИАЛА М.С. Ганеева З.В. Скворцова ganeeva@kfti.knc.ru ara.skvortsova@mail.ru Для катеноидной оболочки из

Подробнее

РАСЧЕТ ТРЕХШАРНИРНЫХ АРОК

РАСЧЕТ ТРЕХШАРНИРНЫХ АРОК МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ В. К. Манжосов

Подробнее

ИССЛЕДОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ СВАРНОЙ СТЕРЖНЕВОЙ ФЕРМЫ

ИССЛЕДОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ СВАРНОЙ СТЕРЖНЕВОЙ ФЕРМЫ ИССЛЕДОВАНИЕ НАПРЯЖЕННОГО СОСТОЯНИЯ СВАРНОЙ СТЕРЖНЕВОЙ ФЕРМЫ Цель работы. Определить экспериментальным и расчетным путем усилия в стержнях сварной стержневой системы и по результатам сопоставления полученных

Подробнее

площадке компоненты (σn и τn соответственно). Пусть S- площадь наклонной площадки, тогда равенство сил в направлении нормали запишется в виде:

площадке компоненты (σn и τn соответственно). Пусть S- площадь наклонной площадки, тогда равенство сил в направлении нормали запишется в виде: Круги Мора Рассмотрим некоторый элемент (см. рис. в системе координат главных осей. Так как оси (ось перпендикулярна плоскости рис.- главные, то касательные напряжения на площадках, перпендикулярных к

Подробнее

после интегрирования получаем: = 2 pa, то есть формулу Лапласа. Растягивающие напряжение σ , если считать трубу тонкостенной (h<<a), = p.

после интегрирования получаем: = 2 pa, то есть формулу Лапласа. Растягивающие напряжение σ , если считать трубу тонкостенной (h<<a), = p. УСЛОВИЯ ПЛАСТИЧНОСТИ Рассмотрим круглую трубку длины l, радиуса а, и толщиной h Приложим к ней следующие нагрузки: растягивающую силу Р, крутящий момент М и внутреннее давление р Мысленно вырежем малый

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Министерство образования и науки Украины Донбасская государственная машиностроительная академия СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МЕТОДИЧЕСКИЕ УКАЗАНИЯ по подготовке к практическим занятиям (для студентов всех

Подробнее

Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ»

Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» 1. Цель и задачи освоения дисциплины Для студентов направления подготовки 08.03.01. «Строительство» сопротивление материалов является одной

Подробнее

Проектирование аэрокосмических летательных аппаратов. Национальный аэрокосмический университет им. Н.Е. Жуковского ХАИ, Украина

Проектирование аэрокосмических летательных аппаратов. Национальный аэрокосмический университет им. Н.Е. Жуковского ХАИ, Украина 34 Проектирование аэрокосмических летательных аппаратов УДК 629.735 В.С. СИМОНОВ Национальный аэрокосмический университет им. Н.Е. Жуковского ХАИ, Украина ПРОЕКТИРОВАНИЕ ФЮЗЕЛЯЖА САМОЛЕТА С ЗАМКНУТЫМ ПО

Подробнее

ОП. 02.«Техническая механика»

ОП. 02.«Техническая механика» КОМИТЕТ ОБРАЗОВАНИЯ И НАУКИ КУРСКОЙ ОБЛАСТИ ОБЛАСТНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «РЫЛЬСКИЙ АГРАРНЫЙ ТЕХНИКУМ» РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП. 0.«Техническая

Подробнее

Не путать прогиб y с координатой y точек сечения балки! Наибольший прогиб балки называется стрелой прогиба (f=y max );

Не путать прогиб y с координатой y точек сечения балки! Наибольший прогиб балки называется стрелой прогиба (f=y max ); Лекция Деформация балок при изгибе Дифференциальное уравнение изогнутой оси балки Метод начальных параметров Универсальное уравнение упругой линии ДЕФОРМАЦИЯ БАЛОК ПРИ ПЛОСКОМ ИЗГИБЕ Основные понятия и

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ САМАРСКИЙ ГОСУДАРСТВЕННЫЙ

Подробнее

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА М-8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ Цель работы: определение модуля сдвига и момента инерции диска методом крутильных колебаний. Приборы и принадлежности:

Подробнее

Лекция 4. Плоская произвольная система сил

Лекция 4. Плоская произвольная система сил Оглавление Произвольная плоская система сил... 2 Главный вектор... 2 Главный момент... 2 Основная теорема статики о приведении системы сил к данному центру:... 2 Случаи приведения плоской системы сил к

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Подробнее

1. Предмет сопротивления материалов. Реальный объект и расчетная схема.

1. Предмет сопротивления материалов. Реальный объект и расчетная схема. 1. Предмет сопротивления материалов. Реальный объект и расчетная схема. Методами со противления материалов выполняются расчеты, на основании кото рых определяются необходимые размеры деталей машин и конструкций

Подробнее

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН. по предмету «Прикладная механика»

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН. по предмету «Прикладная механика» МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО СПЕЦИАЛЬНОГО ОБРАЗОВАНИЯ РЕСПУБЛИКИ УЗБЕКИСТАН ТАШКЕНТСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Кафедра: «Машины и оборудование пищевой промышленности основы механики» РЕФЕРАТ

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения

Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения Лекция 6 (продолжение). Примеры решения на плоский изгиб и задачи для самостоятельного решения Определение напряжений и проверка прочности балок при плоском поперечном изгибе Если Вы научились строить

Подробнее

Курс лекций на тему: "Сложное сопротивление" В.В Зернов

Курс лекций на тему: Сложное сопротивление В.В Зернов Курс лекций на тему: "Сложное сопротивление" В.В Зернов Лекция на тему: Косой изгиб. При плоском поперечном изгибе балки плоскость действия сил (силовая плоскость) и плоскость прогиба совпадали с одной

Подробнее

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г)

N, кн ,4 а. б Рис. П1.1. Схема нагружения стержня (а), эпюра внутренних усилий (б), эпюра напряжений (в), эпюра перемещения сечений (г) ПРИЛОЖЕНИЕ 1 ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ Задача 1 Ступенчатый брус из стали Ст нагружен, как показано на рис. П.1.1, а. Из условия прочности подобрать размеры поперечного сечения. Построить эпюру перемещения

Подробнее

Рис.6.26 (2) Рис. 6.27

Рис.6.26 (2) Рис. 6.27 Лекция 9. Плоский изгиб (продолжение) 1. Напряжение при чистом изгибе. 2. Касательные напряжения при поперечном изгибе. Главные напряжения при изгибе. 3. Рациональные формы поперечных сечений при изгибе.

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ

ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 24. Т. 45, N- 5 67 УДК 539.3 ИЗГИБ СТЕРЖНЕЙ ПОД ДЕЙСТВИЕМ СЛЕДЯЩЕЙ НАГРУЗКИ Ю. В. Захаров, К. Г. Охоткин, А. Д. Скоробогатов Институт физики им. Л. В. Киренского

Подробнее

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 01 1 ЛЕКЦИЯ 18 Сложное сопротивление наиболее общий случай нагружения бруса. Расчеты на прочность произвольно нагруженных пространственных ломаных брусьев

Подробнее

М Е Т О Д И Ч Е С К И Е У К А З А Н И Я С О П Р О Т И В Л Е Н И Ю М А Т Е Р И А Л О В

М Е Т О Д И Ч Е С К И Е У К А З А Н И Я С О П Р О Т И В Л Е Н И Ю М А Т Е Р И А Л О В МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОУВПО ТЮМЕНСКАЯ ГОСУДАРСТВЕННАЯ АРХИТЕТУРНО-СТРОИТЕЛЬНАЯ АКАДЕМИЯ КАФЕДРА СТРОИТЕЛЬНОЙ МЕХАНИКИ М Е Т О Д И Ч

Подробнее

Контрольные задания по сопротивление материалов. для студентов заочной формы обучения

Контрольные задания по сопротивление материалов. для студентов заочной формы обучения Контрольные задания по сопротивление материалов для студентов заочной формы обучения Составитель: С.Г.Сидорин Сопротивление материалов. Контрольные работы студентов заочников: Метод. указания /С.Г.Сидорин,

Подробнее

Дисциплина «Сопротивление материалов»

Дисциплина «Сопротивление материалов» Дисциплина «Сопротивление материалов» 1. Цель и задачи дисциплины Место дисциплины в структуре основной профессиональной образовательной программы Дисциплина «Сопротивление материалов» относится к вариативной

Подробнее

+ = ψ, то никакого разрыва напряжений

+ = ψ, то никакого разрыва напряжений Линии разрыва напряжений Итак, линия разрыва напряжений это некоторая линия (поверхность в теле, на которой напряжения терпят разрыв Выделим мысленно в теле слой толщины δ, включающий в себя линию разрыва

Подробнее

Глава 4 Механика твердого тела 14. Момент инерции. При изучении вращения твердого тела пользуются понятием момента инерции.

Глава 4 Механика твердого тела 14. Момент инерции. При изучении вращения твердого тела пользуются понятием момента инерции. При изучении вращения твердого тела пользуются понятием момента инерции Глава 4 Механика твердого тела 4 Момент инерции Моментом инерции системы (тела) относительно оси вращения называется физическая величина,

Подробнее

1 Вопросы программы вступительного экзамена в аспирантуру ДИНАМИЧЕСКАЯ НАГРУЗКА Напряжения в поперечных и наклонных сечениях прямого стержня.

1 Вопросы программы вступительного экзамена в аспирантуру ДИНАМИЧЕСКАЯ НАГРУЗКА Напряжения в поперечных и наклонных сечениях прямого стержня. 1 Вопросы программы вступительного экзамена в аспирантуру ДИНАМИЧЕСКАЯ НАГРУЗКА Напряжения в поперечных и наклонных сечениях прямого стержня. Одноосное (линейное) напряженное состояние, максимальные касательные

Подробнее

Решение: Исходные данные: = 2 = 2 = 2

Решение: Исходные данные: = 2 = 2 = 2 Задача 1 Для данного бруса требуется: - вычертить расчетную схему в определенном масштабе, указать все размеры и величины нагрузок; - построить эпюру продольных сил; - построить эпюру напряжений; - для

Подробнее

Виды нагружения стержня

Виды нагружения стержня Виды нагружения стержня 1. Схема нагружения стержня внешними силами представлена на рисунке. Длины участков одинаковы и равны l. Третий участок стержня испытывает деформации 1) чистый изгиб и кручение;

Подробнее

Контур с током в магнитном поле

Контур с током в магнитном поле Лабораторная работа 1 Контур с током в магнитном поле Цель работы: измерение момента M сил Ампера, действующих на рамку с током в магнитном поле, экспериментальная проверка формулы M = [ pmb], где p m

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего профессионального образования НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ

Подробнее

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ

1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1. СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫЕ СИСТЕМЫ 1.1. Статически неопределимые стержневые системы Статически неопределимыми системами называются системы, для которых, пользуясь только условиями статики, нельзя определить

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВКЕ ПО ДИСЦИПЛИНЕ «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ ,

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВКЕ ПО ДИСЦИПЛИНЕ «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ , МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ПРАКТИЧЕСКОЙ ПОДГОТОВКЕ ПО ДИСЦИПЛИНЕ «ТЕОРЕТИЧЕСКАЯ МЕХАНИКА» ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ СПЕЦ. 1-700402, 1-700403 ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ «СТАТИКА» 1. Основные понятия и аксиомы

Подробнее

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ КОНТРОЛЬНЫХ РАБОТ ПО СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ

СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Государственный комитет Российской Федерации по высшему образованию Казанский государственный технологический университет СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Методические указания к самостоятельной работе студентов

Подробнее

КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ "СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ"

КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ КОНСПЕКТ ЛЕКЦИЙ ПО КУРСУ "СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ" ВВЕДЕНИЕ Сопротивление материалов - есть наука о расчете элементов конструкций на прочность, жесткость и устойчивость. Основными задачами сопротивления

Подробнее

ОП. 02 «Техническая механика»

ОП. 02 «Техническая механика» КОМИТЕТ ОБРАЗОВАНИЯ И НАУКИ КУРСКОЙ ОБЛАСТИ ОБЛАСТНОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «РЫЛЬСКИЙ АГРАРНЫЙ ТЕХНИКУМ» РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОП. 0 «Техническая механика»

Подробнее

5. Расчет остова консольного типа

5. Расчет остова консольного типа 5. Расчет остова консольного типа Для обеспечения пространственной жесткости остовы поворотных кранов обычно выполняют из двух параллельных ферм, соединенных между собой, где это возможно, планками. Чаще

Подробнее

Определение модуля Юнга по прогибу стержня.

Определение модуля Юнга по прогибу стержня. Санкт-Петербургский государственный университет Физический факультет Первая физическая лаборатория Лабораторная работа 6 Определение модуля Юнга по прогибу стержня. Санкт-Петербург 007 г. Методическое

Подробнее

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 5 193 УДК 539.3 ОБ УРАВНЕНИЯХ КОНЕЧНОГО ИЗГИБА ТОНКОСТЕННЫХ КРИВОЛИНЕЙНЫХ ТРУБ С. В. Левяков Сибирский научно-исследовательский институт авиации

Подробнее

СПОСОБЫ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ, ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ

СПОСОБЫ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ, ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ Министерство путей сообщения РФ Департамент кадров и учебных заведений Самарская государственная академия путей сообщения Кафедра «Инженерная графика» СПОСОБЫ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ, ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ

Подробнее

Прикладная механика. Учебное пособие. Санкт-Петербург

Прикладная механика. Учебное пособие. Санкт-Петербург Прикладная механика Учебное пособие Санкт-Петербург 2015 Министерство образования и науки Российской Федерации УНИВЕРСИТЕТ ИТМО А.С. Алышев, А.Г. Кривошеев, К.С. Малых, В.Г. Мельников, Г.И. Мельников ПРИКЛАДНАЯ

Подробнее

Смирнов В.И., Видюшенков С.А. ИЗГИБ ПЛАСТИНОК

Смирнов В.И., Видюшенков С.А. ИЗГИБ ПЛАСТИНОК ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ

Подробнее

УДК Е. В. Носова, В. А. Пискунов, В. В. Носов РАСЧЕТ НА ПРОЧНОСТЬ ЗАПОРНОГО КОЛПАКА БЫСТРОДЕЙ- СТВУЮЩЕГО ПНЕВМАТИЧЕСКОГО КЛАПАНА

УДК Е. В. Носова, В. А. Пискунов, В. В. Носов РАСЧЕТ НА ПРОЧНОСТЬ ЗАПОРНОГО КОЛПАКА БЫСТРОДЕЙ- СТВУЮЩЕГО ПНЕВМАТИЧЕСКОГО КЛАПАНА Е В Носова, В А Пискунов, В В Носов УДК 62-3332 Е В Носова, В А Пискунов, В В Носов РАСЧЕТ НА ПРОЧНОСТЬ ЗАПОРНОГО КОЛПАКА БЫСТРОДЕЙ- СТВУЮЩЕГО ПНЕВМАТИЧЕСКОГО КЛАПАНА Екатерина Викторовна Носова, студент,

Подробнее

ОСНОВЫ СТРОИТЕЛЬНОЙ МЕХАНИКИ ПЛАСТИН

ОСНОВЫ СТРОИТЕЛЬНОЙ МЕХАНИКИ ПЛАСТИН ВН ЗАВЬЯЛОВ, ЕА МАРТЫНОВ, ВМ РОМАНОВСКИЙ ОСНОВЫ СТРОИТЕЛЬНОЙ МЕХАНИКИ ПЛАСТИН Учебное пособие Омск Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего

Подробнее

Г.А. Тюмченкова РАСТЯЖЕНИЕ И СЖАТИЕ ПРЯМОГО БРУСА

Г.А. Тюмченкова РАСТЯЖЕНИЕ И СЖАТИЕ ПРЯМОГО БРУСА Министерство образования и науки Самарской области Государственное бюджетное профессиональное образовательное учреждение Самарской области «САМАРСКИЙ ЭНЕРГЕТИЧЕСКИЙ КОЛЛЕДЖ» (ГБПОУ «СЭК») Г.А. Тюмченкова

Подробнее

Лекц ия 3 Графический показ электрических полей. Теорема Гаусса и ее применение

Лекц ия 3 Графический показ электрических полей. Теорема Гаусса и ее применение Лекц ия Графический показ электрических полей. Теорема Гаусса и ее применение Вопросы. Графический показ электрических полей. Поток вектора напряженности электрического поля. Теорема Гаусса и ее применение..1.

Подробнее

Оглавление. 10c. Лекция 9. Определение перемещений при изгибе. Лекция 10. Продольный изгиб прямого стержня. 11с. 99с. Всего

Оглавление. 10c. Лекция 9. Определение перемещений при изгибе. Лекция 10. Продольный изгиб прямого стержня. 11с. 99с. Всего Оглавление Лекция. Введение. Задачи курса. Понятие о расчетной схеме. Лекция. Внутренние силовые факторы. Метод сечений. Напряжения, перемещения и деформации. Лекция. Растяжение. Построение эпюр продольных

Подробнее

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными Растяжение (сжатие) элементов конструкций. Определение внутренних усилий, напряжений, деформаций (продольных и поперечных). Коэффициент поперечных деформаций (коэффициент Пуассона). Гипотеза Бернулли и

Подробнее

РАСЧЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМОЙ СТЕРЖНЕВОЙ СИСТЕМЫ

РАСЧЕТ СТАТИЧЕСКИ ОПРЕДЕЛИМОЙ СТЕРЖНЕВОЙ СИСТЕМЫ Министерство образования Российской Федерации азанский государственный технологический университет РАСЧЕТ СТАТИЧЕСИ ОПРЕДЕЛИМОЙ СТЕРЖНЕВОЙ СИСТЕМЫ Методические указания азань 004 Составители: доц..а.абдулхаков,

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ АСТРАХАНСКОЙ ОБЛАСТИ Государственное автономное образовательное учреждение Астраханской области высшего профессионального образования «АСТРАХАНСКИЙ ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ

Подробнее

Рис Таким образом, ЗРС геометрически неизменяема. 8

Рис Таким образом, ЗРС геометрически неизменяема. 8 1. Расчет статически определимых элементарных расчетных схем на прочность 1.1. Однопролетная балка Для заданной расчетной схемы балки требуется: 1.1.1. Провести полный кинематический анализ заданной расчетной

Подробнее

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня.

Кручение простой вид сопротивления (нагружения), при котором на стержень действуют моменты в плоскостях, перпендикулярных к продольной оси стержня. Кручение стержней с круглым поперечным сечением. Внутренние усилия при кручении, напряжения и деформации. Напряженное состояние и разрушение при кручении. Расчет на прочность и жесткость вала круглого

Подробнее

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики

МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра строительной механики Утверждаю Зав. кафедрой профессор И.В. Демьянушко «0» января 007г. А.М. ВАХРОМЕЕВ РАСЧЕТ

Подробнее

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ

ПОСТРОЕНИЕ ЭПЮР ВНУТРЕННИХ СИЛОВЫХ ФАКТОРОВ В БАЛКАХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ И СТРОИТЕЛЬНОЙ МЕХАНИКИ

Подробнее

Приложения поверхностного интеграла 1-го типа

Приложения поверхностного интеграла 1-го типа Глава 6 Приложения поверхностного интеграла 1-го типа 6.1 Необходимые сведения На прошлых занятиях мы уже освоили методы вычисления поверхностных интегралов 1-го типа, оперируя при этом преимущественно

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Московский государственный технический университет имени НЭ Баумана»

Подробнее

Задачи и упражнения для самостоятельной работы

Задачи и упражнения для самостоятельной работы Площадь поверхности 1. Составьте уравнение касательной плоскости к поверхности в точке М 0 (x 0, y 0, z 0 ): а) x = a cos v sin u, y = b sin v sin u, z = c cos u, М 0 (a/, b/, с/ ); б) x = r, y= r sin

Подробнее

РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ

РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ Омск 011 РАСЧЕТ ПРОСТРАНСТВЕННОГО ЛОМАНОГО БРУСА ПЕРЕМЕННОГО СЕЧЕНИЯ Методические указания к выполнению курсовой работы для студентов специальности

Подробнее

6.1 Работа силы на перемещении

6.1 Работа силы на перемещении 6. ПРИНЦИП ВОЗМОЖНЫХ ПЕРЕМЕЩЕНИЙ. ТЕОРЕМА ВЗАИМНОСТИ РАБОТ ФОРМУЛА МАКСВЕЛЛА-МОРА 6.1 Работа силы на перемещении Пусть к точке приложена сила F и точка получает перемещение u по направлению действия силы

Подробнее

РАСЧЕТНЫЕ ЗАДАНИЯ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ

РАСЧЕТНЫЕ ЗАДАНИЯ ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «УЛЬЯНОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

1. Теоретическая механика 1.1. Статика

1. Теоретическая механика 1.1. Статика Программа вступительного испытания по специальной дисциплине сформирована на основе федеральных государственных образовательных стандартов высшего образования по программам специалитета и магистратуры

Подробнее

РАБОЧАЯ ТЕТРАДЬ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ для самостоятельной работы студентов профилей ВМ, МТС, ИС, УИТС

РАБОЧАЯ ТЕТРАДЬ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ для самостоятельной работы студентов профилей ВМ, МТС, ИС, УИТС Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

Составитель: преподаватель спецдисциплин Вечерко Т.А. Красноярск

Составитель: преподаватель спецдисциплин Вечерко Т.А. Красноярск МИНИСТЕРСТВО ОБРАЗОВАНИЯ КРАСНОЯРСКОГО КРАЯ краевое государственное бюджетное профессиональное образовательное учреждение «Красноярский технологический техникум пищевой промышленности» Методические указания

Подробнее

Свойства ортогонального проецирования кривой

Свойства ортогонального проецирования кривой 6. КРИВЫЕ ЛИНИИ И ПОВЕРХНОСТИ. 6.1. КОМПЛЕКСНЫЙ ЧЕРТЕЖ КРИВОЙ ЛИНИИ Кривая линия представляет собой геометрическое место последовательных положений непрерывно перемещающейся в пространстве точки. Если

Подробнее