ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора."

Транскрипт

1 ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора Разложение некоторых элементарных функций в ряды Тейлора и Маклорена Применение степенных рядов Степенные ряды. Определение. Функциональные ряды вида ( ) a (), где a и заданные = комплескные числа, а комплексное переменное, называются степенными рядами. Числа a, =,,, называются коэффициентами степенного ряда (). Если выполнить замену переменной, - =ξ, то получим ряд aξ () = Исследование ряда () эквивалентно исследованию (), и можно обозначать ξ через. Теорема Абеля. Если степенной ряд = притом абсолютно, при любом, для которого <. a () сходится при =, то он сходится, и Доказательство. Пусть ряд a (4) сходится. Тогда его -ый член a стремится к = нулю при и поэтому последовательность {a } ограничена, то есть существует такая постоянная M>, что a M, =,,, Поэтому, для -го члена ряда () получается оценка a = a M. Если <, то ряд, являясь суммой геометрической прогрессии со = y знаменателем q= <, сходится. O O Поэтому, по признаку сравнения, сходится и ряд a, а это означает абсолютную = сходимость ряда () при <. Следствие. Если степенной ряд () расходится при =, то он расходится и при всяком, для которого >. Доказательство. Если > и ряд a расходится, то расходится и ряд (), так как = если бы он сходился, то в силу доказанного сходился бы и ряд (4). Определение. Пусть задан ряд a. Если R неотрицательное число или, = обладающее тем свойством, что при всех, для которых <R, ряд () сходится, а при всех

2 , для которых >R, ряд () расходится, то оно называется радиусом сходимости степенного ряда (). Множество точек, для которых <R, называется кругом сходимости ряда (). Теорема. У всякого степенного ряда () существует радиус сходимости R. В круге сходимости, то есть при любом, для которого <R, ряд сходится абсолютно. На любом круге r, где r фиксировано и r<r, ряд () сходится равномерно. Итак, областью сходимости всякого степенного ряда является всегда «круг» (в случае R= «круг» означает всю плоскость) исключая, может быть, некоторое множество его граничных точек. В граничных же точках круга, ряд может как сходиться, так и расходиться. Члены степенного ряда являются непрерывными функциями и на всяком круге, лежащем вместе со своей границей внутри круга сходимости, степенной ряд сходится равномерно, а поэтому его сумма непрерывна на всяком указанном круге. Отметим случай, когда степенной ряд сходится при =R, то есть в точках круга сходимости. Теорема. (Абеля, вторая) Если R радиус сходимости ряда = a и этот ряд сходится при =R, то он сходится равномерно на отрезке [, R]. Примечание. Исследовать сходимость степенного ряда можно, исследуя абсолютную сходимость ряда по признаку Даламбера и Коши. Пример. необходимо найти область сходимости ряда (ряд с действительными членами, ищем интервал сходимости). Решение. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда u D= lim = lim = lim = u Итак, по признаку Даламбера ряд сходится, если < и расходится при >. Радиус сходимости R=. Отдельно исследуя сходимость на концах интервала [-; ]. При =, получим обобщенный гармонический ряд..., который расходится, так как p= < ( ). = В точке =-, получим знакочередующийся ряд 4..., который сходится на основании признака Лейбница. Итак, область сходимости, интервал (-, ), которому добавлено =-, то есть - <. Пример. п= п! Решение: ( )! lim! = lim( ) =

3 Итак, рассматриваемый ряд не сходится абсолютно ни при каких, т. е. он расходится при любом, а сходится только при =. Пример.!. Решение: lim = lim = < п=!, т. е. ряд сходится при любом. ( )! Примечание. Если существует предел (конечный или бесконечный) a R= lim a a lim, то a В самом деле, если число R определено этой формулой и <R, то a a lim = lim = < a a R и поэтому ряд () для такого сходится (и притом абсолютно). Если же >R, то > и, следовательно, ряд () абсолютно расходится. То есть R R действительно является радиусом сходимости ряда (). Аналогично, для поиска R можно пользоваться признаком Коши: R = lim a Если же в ряду имеются коэффициенты со сколь угодно большими номерами, равные нулю, то этот метод не всегда пригоден. Теперь будем рассматривать степенные ряды с действительными членами. Коэффициенты всех рядов действительны и переменные и также действительны. Итак, ряды = a ( ), где a (=,,, ),, действительны. Если R радиус сходимости ряда a ( ), то ряд сходится, если - <R и = расходится, если - >R. Тогда интервал ( -R, R) интервал сходимости ряда. Рассмотрим степенной ряд a a a a (5) и пусть он имеет интервал сходимости (-R, R). Рассмотрим ряды, получающиеся из (5) почленным дифференцированием и интегрированием: a a a - (6) a a a (7) Применяя признак Даламбера к рядам, составленным из абсолютных величин (6) и (7), убеждаемся, что они имеют такой же интервал сходимости, что и (5), то есть верна: теорема. Пусть степенной ряд a a a a имеет интервал сходимости (R, R). Тогда ряды, полученные из данного ряда почленным его дифференцированием и интегрированием, имеют тот же интервал сходимости, что и данный ряд. Теорема. Степенной ряд a a a a можно почленно дифференцировать в любой точке его интервала сходимости.

4 Доказательство. Рассмотрим ряд, составленный из производных a a a - заданного ряда. Согласно предыдущей теореме интервал сходимости у этого ряда совпадает с интервалом сходимости (5). Если произвольная точка интервала сходимости, а [-r, r], отрезок, лежащий внутри интервала сходимости и содержащий точку ( <r<r), то по сформулированной выше теореме, степенной ряд (6) равномерно сходится. Поэтому, его сумма равна производной от суммы данного ряда, то есть (a a a ) / =a a a - Теорема. Степенной ряд a a a можно почленно интегрировать в интервале сходимости (-R, R), то есть если и точки, принадлежащие интервалу сходимости, то ( a a a ) d = ad ad a d.... Ряд Тейлора. Пусть функция f() является суммой степенного ряда f()=a a (-a)a (-a) a (-a) (), интервал сходимости которого (a-r, ar). Говорят, что функция f() разлагается в степенной ряд в окрестности точки a или по степеням -a. Найдем коэффициенты a, a,, a, этого степенного ряда. Последовательно дифференцируя тождество (), получим тождества, справедливые для любого из интервала сходимости: f()=a a (-a)a (-a) a (-a) a (-a) f / ()=a a (-a)a (-a) a (-a) - ()a (-a) f ()=a a (-a) (-)a (-a) - ()a (-a). f () ()=(-)(-) a ()(-) a (-a) Полагая =a, имеем f(a)=a ; f / (a)=a ; f (a)=a ; f / (a)= a ; f () (a)=(-)(-) a / ( f ) ( a) Отсюда находим a =f(a); a =f / (a); a = ; a = ; a = ; или 4... / ( ) f ( a) a =f(a), a =, a =, a =,!!! / ( ) Итак, f()=f(a) ( a) ( a) ( a)!!! Этот ряд называется рядом Тейлора для функции f(). Если a=, то ряд называется рядом Маклорена / ( ) f () f () f () f()=f()!!! Итак, пусть дана бесконечно дифференцируемая функция f(). Составим для нее ряд Тейлора и выясним, при каких условиях сумма ряда Тейлора данной функции совпадает с ней. Запишем частичную сумму ряда Тейлора / ( ) S ()=f(a) ( a) ( a) ( a).!!! Эта частичная сумма называется многочленом Тейлора степени. R ()=f()-s () остаточный член ряда. Теорема. Для того, чтобы бесконечно дифференцируемая в точке a функция f() являлась суммой составленного для нее ряда Тейлора, необходимо и достаточно, чтобы остаточный член R () стремился к нулю при. Доказательство. Необходимость. 4

5 Пусть f() сумма ряда Тейлора, то есть lim S ( ) = f ( ). Тогда из R ()=f()-s () следует, что lim R ( ) =. Достаточность. Пусть lim R ( ) =. Тогда lim [ f ( ) S ( )] =, то есть lim S ( ) = f ( ), а это и значит, что f() сумма ряда. Итак, для исследования вопроса о разложимости функции в ряд Тейлора нужно исследовать поведение его остаточного члена R () при. Если lim R ( ) = для данного значения =, то сумма ряда Тейлора равна значению функции в точке, то есть f( ). Если же R ( ) не стремится к нулю, то ряд Тейлора либо расходится, либо его сумма при = не совпадает со значением функции в данной точке. Остаточный член ряда Тейлора может быть записан в нескольких формах: ( a) ( a) ) R ()= Q, где Q=f () ( ) (c), то есть R ()= f ( c), где a<c<. Это ( )! ( )! остаточный член в форме Лагранжа. ( ) f ( c) Для ряда Маклорена R ()=, где <c<. ( )! f ) R ()=! остаточного члена. ) R ()= ( t)! ( ) [ a θ ( a)] ( ) a f ( θ ) ( a), где <θ< это форма Коши ( t) dt - это интегральная форма остаточного члена. Теорема. Пусть функция f определена и непрерывна вместе со своими производными до порядка () включительно на интервале ( -h, h), h>. Тогда остаточный член R (), ее формулы Тейлора для всех ( -h, h) можно записать в одной из перечисленных выше форм..разложение некоторых элементарных функций в ряды Тейлора и Маклорена. ) Рассмотрим функцию f()=e. Найдем производные этой функции f / ()=e,, f () ()=e, При =: f()=; f / ()=; f ()=; f ()=. Тогда ряд Маклорена будет таким!!! Найдем область сходимости:! lim = lim = <,т.е. ряд сходится на всей числовой оси и lim = ( )!! (стремится к нулю как общий член сходящегося ряда). Для того, чтобы установить, что ряд имеет своей суммой e, покажем, что для любого остаточный член R () стремится к нулю при. Так как f () (c)=e, то R () имеет вид ( ) c f ( c) e R ()= =, где <c<. Функция e монотонно возрастает, поэтому ( )! ( )! c e e c <e, так как с<. Поэтому, R () = ( )! отрезке [-,] ограничена). 5 < e ( )!.(Учитываем, что e на

6 Но известно, что lim = и также стремится к нулю при. Поэтому! ( )! R () для любого и сумма ряда совпадает с e : e =!!! ) Рассмотрим функцию f()=si 7 ( ) Аналогично, получаем ряд: -! 5! 7! ( )! π ( ) si[ c ( ) ] R ()= f ( c) π =, где <c<. Так как f () (c) = si[c() ], ( )! ( )! то R () и учитывая, что lim =, заключаем, что R (). ( )! ( )! ( ) Итак, si=-...! 5! ( )! ) f()=cos 4 ( ) Аналогично, cos=-...! 4! ( )! Это разложение справедливо на всей числовой оси. 4) Рассмотрим биномиальный ряд f()=() m, где m любое действительное число, отличное от нуля. Дифференцируя: f / ()=m() m- ; f ()=m(m-)() m- ; ; f () ()=m(m-)(m-) (m-)() m-, при = f()=; f / ()=m; ; f () ()=m(m-) (m-). m m( m ) m( m )( m ) m( m )( m )...( m ) Получим ряд!!!! Это биномиальный ряд. Найдем интервал сходимости по признаку Даламбера: u m lim = lim =. u Ряд сходится при <, то есть в интервале <<. Можно доказать, что R () стремится к нулю. m m( m ) Итак, в интервале << имеет место разложение () m =!! При >, ряд расходится (если только m не является натуральным числом). Если m натуральное число, то начиная с =m все коэффициенты обращаются в нуль и получается многочлен, представляющий собой частный случай бинома Ньютона. 5) f()=l. При = функция l не определена, поэтому ее нельзя разложить по степеням, то есть в ряд Маклорена. Разложим функцию y=l в ряд Тейлора по степеням -. ( ) ( ) ( ) ( ) Получим l=... Применим признак Даламбера: lim = < ; -<-< <<. ( ) Исследуем концы интервала и увидим, что = точка сходимости ряда. Итак, область сходимости <. 6

7 4.Применение степенных рядов. Разложение в степенной ряд методом интегрирования. Дифференцируя или интегрируя известные разложения функций в ряд Тейлора, можно получать разложения новых функций в степенные ряды. Так, например, интегрируя = t t... ( ) t в пределах от до, < (это законно, так как ряд t равномерно сходится на отрезке с концами в точках и при <), получим формулу dt l()= =...( ) t Ряд в правой части сходится при = и, значит, сумма его непрерывна в этой точке. Пример. Разложить по степеням функцию arctg. dt Известно, что arctg =. Разложим подынтегральную функцию в степенной ряд: t = t t t t... (из биномиального разложения, полагя t =). t Этот ряд сходится для всех значений t, удовлетворяющих неравенствам <t<. Итак: arctg = 7 dt 4 6 t t t = = ( ) = = t t t dt t t 7 = ( ) Вычисление значений функций с помощью рядов. Пусть нужно вычислить значение функции f() при = с заданной точностью ε. Пусть f() разлагается в ряд: f()=a a (-a) a (-a) в интервале (a-r, ar) и точка принадлежит интервалу. Тогда, f( )=a a ( -a)a ( -a) Взяв достаточное число первых членов, получим приближенное равенство, точность которого увеличивается с увеличением. Абсолютная погрешность f( )-S ( ) = R ( ), где R ( )=a ( -a) a ( -a) Необходимо, чтобы R ( ) <ε Пример. Вычислить с точностью до, число e. Решение. e =!!! e =!!! e!!! c e R ()=, где <c<, при = ( )! e c R ()= и так как e с <e <, получим R ()< и подбором получим, что ( )! ( )! достаточно =6 e, 78.!! 4! 5! 6! 7

8 Пример. si d с точностью до,., 5 Приближенное вычисление интегралов. Так как si= si =! 5!... Интегрируя 4 si d = (...) d = ( ),5 = ( ) ( )! 5!! 5 5!!!......,5,5 Ряд можно рассматривать как разность сходящихся знакопеременных рядов: -...! 5 5!...! 5 5! Погрешность не превосходит первого из отброшенных членов, и, подбором, видим, что si достаточно трех скобок в разложении d,45 Пример. π cos d = =! 4! /...,5,7 =,48 6!5 5, ! 4! 6! d = / (! 6...) d = 4! 6! (!...) 4! 6!5 / = 8

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

3. Ряды Числовые ряды

3. Ряды Числовые ряды . Ряды Числовые ряды Определение. Числовым рядом называется выражение вида u u u... u..., где числа u, u, u,... называются членами ряда u называется общим членом ряда. Определение. -ой частичной суммой

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени

Подробнее

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики

Министерство образования и науки Российской Федерации. «Сибирский государственный индустриальный университет» Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

7. Общие понятия. U n (x),n N, определены в области D. Выра-

7. Общие понятия. U n (x),n N, определены в области D. Выра- Глава Функциональные ряды 7 Общие понятия U (), N, определены в области D Выра- Определение 7 Пусть функции жение () U() U() U(), D U (5) называется функциональным рядом Каждому значению D соответствует

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

1 Степенные ряды. Радиус сходимости и интервал

1 Степенные ряды. Радиус сходимости и интервал В.В. Жук, А.М. Камачкин 1 Степенные ряды. Радиус сходимости и интервал сходимости. Характер сходимости. Интегрирование и дифференцирование. 1.1 Радиус сходимости и интервал сходимости. Функциональный ряд

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики

Ряды. Практикум по математическому анализу. К а ф е д р а прикладной математики и информатики МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а прикладной математики

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

4. Функциональные ряды, область сходимости

4. Функциональные ряды, область сходимости 4. Функциональные ряды, область сходимости Областью сходимости функционального ряда () называется множество значений аргумента, для которых этот ряд сходится. Функция (2) называется частичной суммой ряда;

Подробнее

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда

Степенные ряды. числовой ряд; функциональный ряд. u n x функции по классам функций u n x. u n числа по изменению знаков членов ряда u ; u числа, числовой ряд; u числа по изменению знаков членов ряда знакопостоянные знакоположительные знакопеременные знакочередующиеся k= u степенные u ; u функции, функциональный ряд u функции по классам

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

Разложение функции в ряд Тейлора

Разложение функции в ряд Тейлора 82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Подробнее

Курс лекций. Министерство образования и науки Российской Федерации

Курс лекций. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ Государственное образовательное учреждение высшего профессионального образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики

Подробнее

Лекция 3. Представление функций степенными рядами

Лекция 3. Представление функций степенными рядами С А Лавренченко wwwlawrecekoru Лекция Представление функций степенными рядами Введение Представление функций степенными рядами оказывается полезным при решении следующих задач: - интегрирование функций

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» НВ Комиссарова МАТЕМАТИКА Часть 6 РЯДЫ Методические указания для студентов -го и -го курсов

Подробнее

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ О В Афонасенков Т А Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ И ИНТЕГРАЛ ФУРЬЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

16. Равномерная сходимость последовательностей и рядов

16. Равномерная сходимость последовательностей и рядов 16. Равномерная сходимость последовательностей и рядов 16.1. Рассмотрим произвольное множество X и последовательность функций f, определенных на X. Говорят, что последовательность f сходится поточечно

Подробнее

1.Разложение аналитической функции в степенной ряд.

1.Разложение аналитической функции в степенной ряд. ЛЕКЦИЯ N37. Ряды аналитических функций. Разложение аналитической функции в степенной ряд. Ряд Тейлора. Ряд Лорана..Разложение аналитической функции в степенной ряд.....ряд Тейлора.... 3.Разложение аналитической

Подробнее

Теория рядов 1. Теория рядов

Теория рядов 1. Теория рядов Теория рядов 1 Теория рядов ОСНОВНЫЕ ПОНЯТИЯ Решение задачи представленной в математических терминах например в виде комбинации различных функций их производных и интегралов нужно уметь довести до числа

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

Сходимость знакопеременных числовых рядов

Сходимость знакопеременных числовых рядов ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Сходимость знакопеременных числовых рядов Числовой ряд u, в котором имеется бесконечно много как положительных, так = и отрицательных элементов, называется числовым рядом с произвольными

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Министерство образования Российской Федерации МАТИ Российский государственный технологический университет им.к.э.циолковского Кафедра «Высшая математика» ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Варианты курсовых

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ВН Алексеев, ДА Приказчиков, ВВ Ридель РЯДЫ Утверждено редакционно-издательским советом РОАТ в качестве учебного пособия РОАТ Москва 9 5 УДК 575(75)

Подробнее

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр -е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр Найти радиус сходимости степенного ряда, используя признак Даламбера: ( 89 ( ) n n (n!) ) p (n + )! n= Ряд Тейлора f(x)

Подробнее

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ НОВОСИБИРСК 200 2 МИНОБРНАУКИ РОССИИ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Е.М. Рудой МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК О. В. Исакова Л. А. Сайкова М.Д. Улымжиев УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ

Подробнее

Всего 66 вопросов. 1 год обучения. Модули 1 2.

Всего 66 вопросов. 1 год обучения. Модули 1 2. ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ к итоговому экзамену по дисциплине «Математический анализ» Прикладная математика На устном экзамене студент получает два теоретических вопроса и две задачи Всего 66 вопросов год

Подробнее

Математический анализ Ряды

Математический анализ Ряды Тема 6. Пределы последовательностей и функций, их свойства и приложения Математический анализ Ряды Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики

Подробнее

Министерство образования Республики Беларусь. Учреждение образования «Полоцкий государственный университет»

Министерство образования Республики Беларусь. Учреждение образования «Полоцкий государственный университет» Министерство образования Республики Беларусь Учреждение образования «Полоцкий государственный университет» МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО РАЗДЕЛУ «РЯДЫ» ДЛЯ СТУДЕНТОВ ЗАОЧНОЙ

Подробнее

Р.Б. КАРАСЕВА Р Я Д Ы

Р.Б. КАРАСЕВА Р Я Д Ы РБ КАРАСЕВА Р Я Д Ы Омск Министерство образования и науки РФ ГОУ ВПО «Сибирская государственная автомобильно-дорожная академия (СибАДИ)» РБКарасева Р Я Д Ы Учебное пособие Омск СибАДИ УДК ББК К Рецензенты:

Подробнее

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр

19-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр 9-е занятие. Признаки Абеля и Дирихле. Радиус сходимости степенного ряда Матем. анализ, прикл. матем., 3-й семестр Необх. усл. равномерной сходимости функц. ряда f x): f 0. A Исследовать функ. ряд на сх-ть:

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

Математический анализ

Математический анализ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ И М Аксененкова ТР Игонина ОА Малыгина НС Чекалкин АГ Шухов Редактор: НС Чекалкин Математический анализ семестр

Подробнее

53 Тел.: (473)

53 Тел.: (473) Данилова ОЮ Синегубов СВ МАТЕМАТИКА РЯДЫ Учебное пособие Издано в авторской редакции по решению методического совета института Воронежский институт МВД России Все права на размножение и распространение

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

УЧЕБНО-МЕТОДИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Часть 3

УЧЕБНО-МЕТОДИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Часть 3 Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНАНСОВЫЙ УНИВЕРСИТЕТ) Кафедра «Математика»

Подробнее

18-е занятие. Равномерная сходимость функциональных рядов. Признак Вейерштрасса Матем. анализ, прикл. матем., 3-й семестр

18-е занятие. Равномерная сходимость функциональных рядов. Признак Вейерштрасса Матем. анализ, прикл. матем., 3-й семестр 8-е занятие. Равномерная сходимость функциональных рядов. Признак Вейерштрасса Матем. анализ, прикл. матем., 3-й семестр Исследовать следующие ряды на равномерную сходимость с помощью определения: Д 767

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр,

Вопросы и задачи к экзамену по математическому анализу I семестр, Вопросы и задачи к экзамену по математическому анализу I семестр, - Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Методические указания к практическим занятиям для студентов специальности «Математика» (2 семестр)

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Методические указания к практическим занятиям для студентов специальности «Математика» (2 семестр) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ КУРГАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра математического анализа МАТЕМАТИЧЕСКИЙ АНАЛИЗ Методические указания

Подробнее

Московский Государственный Университет им. М.В.Ломоносова Химический факультет.

Московский Государственный Университет им. М.В.Ломоносова Химический факультет. Московский Государственный Университет им МВЛомоносова Химический факультет Пособие для подготовки к экзамену по математическому анализу для студентов общего потока Третий семестр Числовые ряды Дифференциальные

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

2. Сформулировать и доказать теоремы о почленном дифференцировании и почленном интегрировании

2. Сформулировать и доказать теоремы о почленном дифференцировании и почленном интегрировании Билет 1 1. Дать определение и вывести свойства двойного интеграла. Геометрический смысл двойного интеграла. Формулировка теорема существование. Билет 2 1. Вычисление двойного интеграла в декартовых координатах.

Подробнее

Глава III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ 3.1. Двойные интегралы

Глава III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ 3.1. Двойные интегралы Глава III ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ Двойные интегралы ЛИТЕРАТУРА: [], гл; [], глii; [9], гл XII, 6 Для решения задач по этой теме необходимо,

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

k называется рядом Лорана. Здесь k, z

k называется рядом Лорана. Здесь k, z Практическое занятие 6 Ряды Тейлора и Лорана 6 Ряд Тейлора 6 Ряд Лорана 6 Ряд Тейлора Т е о р е м а ( Т е й л о р а ) Функция однозначная и аналитическая в круге R единственным образом разлагается в этом

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1)

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1) 1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения (2006-2007, сем.1 1. Сформулируйте определение ограниченного множества вещественных чисел. 2. Сформулируйте определение

Подробнее

Вопросы для экзамена 1-й курс (1-й семестр)

Вопросы для экзамена 1-й курс (1-й семестр) Вопросы для экзамена 1-й курс (1-й семестр) 1. Определения основных операций над множествами. 2. Законы дистрибутивности для операций над множествами. 3. Произведение множеств, простейшие свойства произведений

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция. Определение ряда, свойства, критерий Коши сходимости ряда. Сравнение положительных рядов. Достаточные признаки сходимости Даламбера, Коши, Коши-Адамара, Раабе,

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее

Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд

Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд 3. Признаки сходимости знакопеременных рядов Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд Ряд u, не являющийся знакоположительным или знакоотрицательным

Подробнее

Математический анализ

Математический анализ Федеральное государственное образовательное учреждение высшего профессионального образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (ФИНУНИВЕРСИТЕТ) Кафедра «Математика» ГАПостовалова

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Демина ЕЛ, Демин СЕ РЯДЫ г Нижний Тагил 00 Предисловие В настоящем

Подробнее

, а всю числовую последовательность - y

, а всю числовую последовательность - y Лекции Глава Числовые последовательности Основные понятия Числовую функцию y f N y R заданную на множестве N натуральных чисел называют числовой последовательностью Число f называют -м элементом последовательности

Подробнее

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1)

18. Степенные ряды Функциональный ряд вида. c n (z a) n, (18.1) 8. Степенные ряды 8.. Функциональный ряд вида c n (z ) n, (8.) n= где c n числовая последовательность, R фиксированное число, а z R, называют степенным рядом с коэффициентами c n. Выполнив замену переменных

Подробнее

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx.

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Лекция 5. Понятие несобственного интеграла -го рода, его вычисление. Критерий сходимости. Интегралы от положительных функций. Признаки сравнения, абсолютная

Подробнее

Тематика контрольных (самостоятельных) работ

Тематика контрольных (самостоятельных) работ Фонды Фонды оценочных средств по дисциплине Б.2.1 «Математический анализ» для проведения текущего контроля успеваемости и промежуточной аттестации студентов по направлению 080100.62 «Экономика» Тематика

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

1. Определение и основные свойства интеграла Римана. Разбиением отрезка [a, b] называется набор точек. a = x 1 < x 2 < < x n+1 = b.

1. Определение и основные свойства интеграла Римана. Разбиением отрезка [a, b] называется набор точек. a = x 1 < x 2 < < x n+1 = b. 1. Определение и основные свойства интеграла Римана Определение разбиения Разбиением отрезка [, b] называется набор точек = x 1 < x 2 < < x n+1 = b. Разбиение обозначают буквой P. Разбиение может быть

Подробнее

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии.

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии. ЛЕКЦИЯ Числовые последовательности Бесконечно большие и бесконечно малые последовательности Основные свойства бесконечно малых последовательностей Числовые последовательности Если каждому из множества

Подробнее

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2

Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2 Содержание Числовые ряды. Основные понятия 2 Необходимый признак сходимости ряда 3 Простейшие свойства числовых рядов 2 4 Знакоположительные ряды 3 5 Знакочередующиеся ряды 9 6 Знакопеременные ряды 0 7

Подробнее

5. ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА (РЯДЫ И ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ)

5. ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА (РЯДЫ И ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ) 5 ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА РЯДЫ И ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 5 Программа курса «Ряды и обыкновенные дифференциальные уравнения» Аннотация: Изучаются числовые и степенные ряды а также

Подробнее

МАТЕМАТИКА ЧИСЛОВЫЕ И СТЕПЕННЫЕ РЯДЫ

МАТЕМАТИКА ЧИСЛОВЫЕ И СТЕПЕННЫЕ РЯДЫ ООО «Резольвента», wwwresolvetaru, resolveta@listru, (495) 59-8- Учебный центр «Резольвента» Доктор физико-математических наук, профессор К Л САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу ЧИСЛОВЫЕ

Подробнее

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x)

6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x) 6 Ряды Фурье 6 Ортогональные системы функций Ряд Фурье по ортогональной системе функций Функции ϕ () и ψ (), определенные и интегрируемые на отрезке [, ], называются ортогональными на этом отрезке, если

Подробнее

для студентов дневной формы обучения специальности «Автоматизация технологических процессов и производств» Составитель: доц. Никонова Т.В.

для студентов дневной формы обучения специальности «Автоматизация технологических процессов и производств» Составитель: доц. Никонова Т.В. Практические занятия по курсу высшей математики (III семестр) на основе учебного пособия «Сборник индивидуальных заданий по высшей математике», том, под ред Рябушко АП для студентов дневной формы обучения

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

Экзаменационный билет 2 Кафедра высшей математики

Экзаменационный билет 2 Кафедра высшей математики Экзаменационный билет Факультет: ПО и ВП, гр.04, 07 и 7.Однородные дифференциальные уравнения первого порядка.. Признак Лейбница. 3 Вычислить интеграл: dx 0 x 6x + Экзаменационный билет Факультет: : ЭМФ.

Подробнее

9. Формула Ньютона Лейбница. Формула замены переменной в определённом интеграле и интегрирование по частям. f(t) dt = Φ(x) Φ(a). f(t) dt = Φ(x) + C.

9. Формула Ньютона Лейбница. Формула замены переменной в определённом интеграле и интегрирование по частям. f(t) dt = Φ(x) Φ(a). f(t) dt = Φ(x) + C. ПРЕДИСЛОВИЕ Пособие является продолжением [7]. Оно создано на базе хорошо известных учебных пособий по математическому анализу [ 6]. В его основу положены лекции В. В. Жука, которые неоднократно читались

Подробнее

Лекция 4. Ряды Тéйлора и Маклóрена

Лекция 4. Ряды Тéйлора и Маклóрена 1 С А Лавренченко wwwlwrecekoru Лекция 4 Ряды Тéйлора и Маклóрена 1 Нахождение коэффициентов степенного ряда Вспомним, что фразы «функция f () представима степенным рядом» и «f () разложима в степенной

Подробнее

Математический анализ (v2.0)

Математический анализ (v2.0) Математический анализ (v.) 1 Числовые ряды. 1.1 Понятие числового ряда. Сходимость числового ряда. Определение. Рассмотрим числовую последовательность {a n } и образуем выражение вида: a 1 + a +... + a

Подробнее

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0 Ряды Лорана Более общим типом степенных рядов являются ряды, содержащие как положительные, так и отрицательные степени z z 0. Как и ряды Тейлора, они играют важную роль в теории аналитических функций.

Подробнее

Математический анализ (наименование дисциплины) Направление подготовки физика

Математический анализ (наименование дисциплины) Направление подготовки физика Аннотация рабочей программы дисциплины Математический анализ (наименование дисциплины) Направление подготовки 03.03.02 физика Профиль подготовки «Фундаментальная физика», «Физика атомного ядра и частиц»

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Витебский государственный технологический университет» ВЫСШАЯ МАТЕМАТИКА Числовые и функциональные ряды Случайные события в теории вероятностей

Подробнее

Математический анализ Конспект лекций

Математический анализ Конспект лекций Министерство образования и науки РФ ФГБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Математический анализ Конспект лекций для направления

Подробнее