Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости

Размер: px
Начинать показ со страницы:

Download "Лекция 24. Регрессионный анализ. Функциональная, статистическая и корреляционная зависимости"

Транскрипт

1 МВДубатовская Теория вероятностей и математическая статистика Лекция 4 Регрессионный анализ Функциональная статистическая и корреляционная зависимости Во многих прикладных (в том числе экономических) задачах требуется установить и оценить зависимость изучаемой СВ Y от одной или нескольких других величин (случайных или неслучайных) Рассмотрим зависимость Y от одной величины X Две СВ могут быть связаны либо функциональной зависимостью либо зависимостью другого рода называемой статистической либо быть независимыми В статистических моделях строгая функциональная зависимость реализуется редко поскольку обе величины или одна из них подвержены действию случайных факторов которые воздействуют на СВ вместе или отдельно Возникает так называемая статистическая зависимость при которой изменение одной из случайных величин влечет изменение распределения другой В частности статистическая зависимость проявляется в том что при изменении одной их случайных величин изменяется среднее значение другой При исследовании взаимосвязей между СВ X и Y может быть неизвестно какая из двух величин является независимой а какая зависимой В этом случае они равноправны и исследуют их статистическую взаимосвязь корреляционного типа Другая ситуация возникает если одна из величин является независимой (объясняющей) а другая зависит от первой (является объясняемой) Например снижение процентной ставки увеличивает инвестиции рост валютного курса сокращает чистый экспорт и тд В этой ситуации строят уравнение регрессии формулу статистической связи между величинами Статистическая зависимость не является однозначной В регрессионном анализе изучают как влияет объясняющая переменная на зависимую переменную «в среднем» Эта зависимость выражается формулой (уравнением регрессии Y на X ): M ( Y ) f ( ) Здесь M ( Y ) M ( Y X ) - условное математическое ожидание (математическое ожидание СВ Y при условии что СВ X принимает значение ) f () - некоторая функция от Здесь - любая допустимая реализация (значение) СВ X

2 МВДубатовская Теория вероятностей и математическая статистика Реальные значения зависимой переменной не всегда совпадают с условными математическими ожиданиями поэтому имеет место соотношение: Y M ( Y / ) где - случайное слагаемое выражающее отклонение от точной статистической зависимости (часто называемое ошибкой наблюдения или измерения а также статистическим «шумом») Исследование статистической зависимости Y от X проводится в предположении что математическое ожидание равно 0 Оценка условного математического ожидания условное выборочное среднее - также является функцией от Обозначая эту функцию f () получим выборочное уравнением регрессии Y на X : f () Функцию f () называют выборочной регрессией Y на X а ее график выборочной линией регрессии Y на X Условным средним называют среднее арифметическое наблюдаемых значений СВ Y соответствующих X Например если при СВ Y приняла значения то условное среднее 7 3 При рассмотрении связи двух переменных речь идет о парной регрессии Выбор вида формулы связи (функций f () или f () ) называют спецификацией уравнения регрессии Одна из самых простых линейная связь Парная линейная регрессия Рассмотрим случай парной регрессии в предположении что функция f () линейна Тогда M 0 ( Y ) где 0 - параметры линейной регрессии На практике параметры линейной регрессии неизвестны и их оценки определяются по результатам наблюдений переменных Y и X Пусть проведено независимых наблюдений случайной величины Y при значениях объясняющей переменной При этом измерения величины Y дали следующие результаты: Так как эти значения

3 МВДубатовская Теория вероятностей и математическая статистика имеют разброс относительно линейной регрессии то связь между переменными Y и можно записать в виде линейной (по параметрам 0 ) регрессионной модели: где M ( ) 0 Y 0 - случайная ошибка наблюдений (так называемый «шум») причем D ( ) Значение дисперсии ошибок неизвестно и оценка ее определяется по результатам наблюдений Задача линейного регрессионного анализа состоит в том чтобы по результатам наблюдений ) : ( ) Получить наилучшие точечные и интервальные оценки неизвестных параметров 0 и линейной регрессионной модели ) Проверить статистические гипотезы о параметрах модели 3) Проверить согласованность модели с результатами наблюдений (адекватность модели результатам наблюдений) В соответствии с моделью результаты наблюдений являются реализациями зависимой переменной Y те значениями случайных величин Y 0 Задача линейного регрессионного анализа решается в предположении что случайные ошибки наблюдений и j не коррелированы имеют математические ожидания равные нулю и одну и ту же дисперсию равную те M ( ) 0 K j 0 j j При статистическом анализе регрессионной модели дополнительно предполагается что случайные ошибки наблюдений ( ) имеют нормальное распределение таким образом N (0 ) ( ) Заметим что в силу сделанных предположений ошибки наблюдений являются независимыми случайными величинами Для нахождения точечных оценок параметров модели по результатам наблюдений используется метод наименьших квадратов (МНК) По этому методу выбирают такие оценки параметров 0 которые минимизируют сумму квадратов отклонений наблюдаемых значений случайных величин Y от их математических ожиданий те

4 МВДубатовская Теория вероятностей и математическая статистика Q( 0 ) ( ( 0 )) m МНК-оценки параметров линейной регрессии имеют вид (суммы распространяются на все наблюдаемые пары значений ) ): или 0 ( ( )( ) 0 ( ( ) ) ) ( Оценки параметров линейной регрессии вычисленные по методу наименьших квадратов при указанных выше условиях имеют следующие свойства: ) Они являются линейными функциями результатов наблюдений ( ) и несмещенными оценками параметров те M ( j ) j j 0 ) Они имеют минимальные дисперсии в классе несмещенных оценок являющихся линейными функциями результатов наблюдений и в этом смысле наилучшими несмещенными оценками 3) МНК-оценки совпадают с оценками вычисленными по методу максимального правдоподобия Функция f ( ) 0 определяет выборочную (эмпирическую) регрессию Y на X Она является оценкой теоретической регрессии по результатам наблюдений Разности между наблюдаемыми значениями переменной Y при и расчетными значениями называются остатками и обозначаются e : на X 0 e ( ) Выборочное уравнение регрессии записывают еще в виде: Коэффициент 0 называют выборочным коэффициентом регрессии Y

5 МВДубатовская Теория вероятностей и математическая статистика Поскольку то получаем следующие формулы для вычисления этого коэффициента: Здесь - выборочные ско Умножим обе части равенства на Обозначим ( ) Получим r В и назовем r В выборочным коэффициентом корреляции Таким образом Выразим из последнего равенства : r В r В тогда уравнение прямой регрессии Y на X имеет вид: rв ( ) Аналогично для регрессии X на Y получаем уравнение: rв ( ) Замечание Поскольку зависимость X и Y не является функциональной то регрессии Y на X и X на Y не являются обратными функциями Замечание Выборочный коэффициент корреляции является оценкой коэффициента корреляции r M ( XY) M ( X ) M ( Y) и

6 МВДубатовская Теория вероятностей и математическая статистика (можно показать это методом моментов) Метод проверки гипотезы о значимости выборочного коэффициента корреляции мы рассматривали выше Заметим что и тк rв r В В r В r Знак r В совпадает со знаком Квадрат коэффициента корреляции r В называют коэффициентом детерминации Он характеризует долю дисперсии результативного признака Y объясняемую регрессией в общей дисперсии результативного признака Соответственно r В характеризует долю дисперсии результативного признака Y вызванную влиянием остальных не учтенных в модели факторов Сгруппированные данные Корреляционные таблицы При большом числе наблюдений одно и то же значение может встретиться раз одно и то же значение - раз Одна и та же пара чисел ( ) может наблюдаться раз Поэтому данные наблюдений группируют те подсчитывают частоты Сгруппированные данные записывают в виде таблицы которую называют корреляционной Например Y X В случае сгруппированных данных параметры регрессии вычисляются по формулам аналогичным формулам для несгруппированных данных Выборочный коэффициент регрессии Y на X рассчитывают по формуле ( ( ) ) а выборочный коэффициент корреляции по формуле

7 МВДубатовская Теория вероятностей и математическая статистика r В Уравнение прямой регрессии Y на X так же как и в случае несгруппированных данных имеет вид: rв ( ) Аналогично для регрессии X на Y уравнение имеет вид: rв ( ) Корреляционное поле Точки корреляционного поля строятся по наблюдаемым данным В случае несгруппированных данных в системе координат строят точки с координатами ) соответствующие парам наблюдаемых значений ( случайных переменных X и Y В случае сгруппированных данных точки корреляционного поля имеют координаты ( ) Построенное корреляционное поле помогает произвести спецификацию уравнения регрессии (выбор вида зависимости) 0 Рис 7 Корреляционное поле и линия регрессии

8 МВДубатовская Теория вероятностей и математическая статистика Анализ статистической значимости коэффициентов линейной регрессии Рассчитанные коэффициенты регрессии являются значениями случайных величин При выполнении предпосылок относительно распределения их математические ожидания равны 0 При этом оценки тем надежнее чем меньше их разброс вокруг 0 и те дисперсия Надежность получаемых оценок параметров 0 зависит от дисперсии случайных отклонений но поскольку по данным выборки эти отклонения (и соответственно их дисперсии) оценены быть не могут то при анализе надежности коэффициентов регрессии их заменяют на отклонение от линии регрессии 0 Непосредственными вычислениями получаем что D ( D ( 0 ) ) S S 0 S ( ) e где S - мера разброса зависимой переменной вокруг линии дисперсии (необъясненная дисперсия) Коэффициент есть мера наклона линии регрессии Очевидно чем больше разброс значений вокруг линии регрессии тем больше в среднем ошибка в определении наклона линии регрессии Если такого разброса нет совсем то прямая определяется однозначно и ошибки в расчете коэффициентов регрессии отсутствуют Дисперсия D ) свободного члена уравнения пропорциональна D ) ( 0 и равна D( 0 ) D( ) и тем самым также соответствует приведенным выше пояснениям Кроме того дисперсия тем больше чем больше средняя величина При больших значениях даже небольшое изменение наклона регрессионной прямой может вызвать большое изменение оценки свободного члена S ( ) (

9 МВДубатовская Теория вероятностей и математическая статистика Формально значимость оцененного коэффициента регрессии может быть проверена с помощью анализа его отношения к своему ско D ( ) Эта величина при выполнении исходных предпосылок модели имеет распределение Стьюдента с степенями свободы ( - число наблюдений): T D( ) Проверяется нулевая гипотеза о равенстве ее нулю Проверка значимости коэффициента парной линейной регрессии эквивалентна проверке значимости коэффициента корреляции и


Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа

Глава 9. Регрессионный анализ 9.1. Задачи регрессионного анализа 46 Глава 9. Регрессионный анализ 9.. Задачи регрессионного анализа Во время статистических наблюдений как правило получают значения нескольких признаков. Для простоты будем рассматривать в дальнейшем двумерные

Подробнее

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

17 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика Лекция 3 7 6 Разложение оценок коэффициентов на неслучайную и случайную компоненты Регрессионный анализ позволяет определять оценки коэффициентов регрессии Чтобы сделать выводы по полученной модели необходимы

Подробнее

7 Корреляционный и регрессионный анализ

7 Корреляционный и регрессионный анализ 7 Корреляционный и регрессионный анализ. Корреляционный анализ статистических данных.. Регрессионный анализ статистических данных. Статистические связи между переменными можно изучать методами дисперсионного,

Подробнее

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние,

10 Экономическая кибернетика Коэффициент корреляции. , xy y i x i выборочные средние, Лекция 0.3. Коэффициент корреляции В эконометрическом исследовании вопрос о наличии или отсутствии зависимости между анализируемыми переменными решается с помощью методов корреляционного анализа. Только

Подробнее

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов

7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ. Линейная регрессия. Метод наименьших квадратов 7. КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Линейная регрессия Метод наименьших квадратов ( ) Линейная корреляция ( ) ( ) 1 Практическое занятие 7 КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ Для решения практических

Подробнее

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов.

ЭКОНОМЕТРИКА. 1. Предпосылки метода наименьших квадратов. Лекция 5 ЭКОНОМЕТРИКА 5 Проверка качества уравнения регрессии Предпосылки метода наименьших квадратов Рассмотрим модель парной линейной регрессии X 5 Пусть на основе выборки из n наблюдений оценивается

Подробнее

Линейная регрессионная модель и эмпирическое уравнение регрессии. Метод наименьших квадратов (МНК)

Линейная регрессионная модель и эмпирическое уравнение регрессии. Метод наименьших квадратов (МНК) Линейная регрессионная модель и эмпирическое уравнение регрессии Метод наименьших квадратов (МНК) Предпосылки МНК Анализ точности определения оценок коэффициентов регрессии Обе переменные равноценны нельзя

Подробнее

Лекция 15. Элементы теории корреляции. 1. Функциональная, статистическая и корреляционная зависимости.

Лекция 15. Элементы теории корреляции. 1. Функциональная, статистическая и корреляционная зависимости. Лекция 5. Элементы теории корреляции.. Функциональная, статистическая и корреляционная зависимости. Две случайные величины могут быть связаны функциональной зависимостью, т.е. изменение одной из них по

Подробнее

ЭКОНОМЕТРИКА. 7. Анализ качества эмпирического уравнения множественной линейной регрессии. t, (7.1) a j j a j. распределения Стьюдента.

ЭКОНОМЕТРИКА. 7. Анализ качества эмпирического уравнения множественной линейной регрессии. t, (7.1) a j j a j. распределения Стьюдента. Лекция 7 ЭКОНОМЕТРИКА 7 Анализ качества эмпирического уравнения множественной линейной регрессии Построение эмпирического уравнения регрессии является начальным этапом эконометрического анализа Построенное

Подробнее

Корреляция. u n. Методические указания

Корреляция. u n. Методические указания Методические указания Корреляция Регрессией Y на X или условным математическим ожиданием случайной величины Y относительно случайной величины X называется функция вида М (Y/ x)=f(x). Регрессией X на Y

Подробнее

Тема 2.3. Построение линейно-регрессионной модели экономического процесса

Тема 2.3. Построение линейно-регрессионной модели экономического процесса Тема 2.3. Построение линейно-регрессионной модели экономического процесса Пусть имеются две измеренные случайные величины (СВ) X и Y. В результате проведения n измерений получено n независимых пар. Перед

Подробнее

Контрольная работа по дисциплине Эконометрика

Контрольная работа по дисциплине Эконометрика Министерство образования Российской Федерации Новосибирский государственный технический университет Кафедра прикладной математики Контрольная работа по дисциплине Эконометрика Выполнил: Студент группы

Подробнее

Методические указания для выполнения лабораторной работы 2. Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы.

Методические указания для выполнения лабораторной работы 2. Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы. Методические указания для выполнения лабораторной работы Найти выборочное уравнение линейной регрессии Y на X на основании корреляционной таблицы. Методические указания Регрессией Y на X или условным математическим

Подробнее

12. Интервальные оценки параметров распределения

12. Интервальные оценки параметров распределения МВДубатовская Теория вероятностей и математическая статистика Лекция 7 Интервальные оценки параметров распределения Для выборок малого объема точечные оценки могут значительно отличаться от оцениваемых

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ Основные понятия математической статистики Совокупность - это множество объектов (элементов совокупности), обладающих общим свойством. Объем совокупности - это число

Подробнее

ТЕМА 1. ПРОСТАЯ ЛИНЕЙНАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ Оценивание параметров эконометрической модели методом наименьших квадратов

ТЕМА 1. ПРОСТАЯ ЛИНЕЙНАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ Оценивание параметров эконометрической модели методом наименьших квадратов 8 ТЕМА ПРОСТАЯ ЛИНЕЙНАЯ ЭКОНОМЕТРИЧЕСКАЯ МОДЕЛЬ Оценивание параметров эконометрической модели методом наименьших квадратов Простая линейная регрессионная модель устанавливает линейную зависимость между

Подробнее

3. РЕГРЕССИОННЫЙ АНАЛИЗ Постановка задачи регрессионного анализа

3. РЕГРЕССИОННЫЙ АНАЛИЗ Постановка задачи регрессионного анализа 55 3 РЕГРЕССИОННЫЙ АНАЛИЗ 3 Постановка задачи регрессионного анализа Экономические показатели функционирования предприятия (отрасли хозяйства) как правило представляются таблицами статистических данных:

Подробнее

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна Тема: Математическая статистика Дисциплина: Математика Авторы: Нефедова Г.А.. Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка:. (0;0). (5;5) 3. (0;5) 4. (5;5) 5. (0;0).

Подробнее

ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe :

ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe : 1 ЗАДАНИЕ ВЕРОЯТНОСТНО-СТАТИСТИЧЕСКИЙ АНАЛИЗ МАТЕРИАЛОВ НАБЛЮДЕНИЙ (ПРОВЕРКА СОГЛАСИЯ ЭМПИРИЧЕСКОГО РАСПРЕДЕЛЕНИЯ С НОРМАЛЬНЫМ) Исходные данныe : 0.30-1.4 0.59-1.79 0.4 0.7 1.73 0.45 0.34-0.09 1.09 -.04

Подробнее

Лекция 25. Схема построения уравнения линейной регрессии. Корреляционная зависимость

Лекция 25. Схема построения уравнения линейной регрессии. Корреляционная зависимость МДубатовская Теория вероятностей и математическая статистика Лекция 5 Схема построения уравнения линейной регрессии Корреляционная зависимость Ниже приведем схемы практического построения уравнения регрессии

Подробнее

ОСНОВЫ РЕГРЕССИОННОГО АНАЛИЗА

ОСНОВЫ РЕГРЕССИОННОГО АНАЛИЗА ОСНОВЫ РЕГРЕССИОННОГО АНАЛИЗА ПОНЯТИЕ КОРРЕЛЯЦИОННОГО И РЕГРЕССИОННОГО АНАЛИЗА Для решения задач экономического анализа и прогнозирования очень часто используются статистические, отчетные или наблюдаемые

Подробнее

Курсовая работа. Институт экономики и финансов кафедра «Математика»

Курсовая работа. Институт экономики и финансов кафедра «Математика» ФЕДЕРАЛЬНО ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА НИКОЛАЯ II» Институт экономики и финансов кафедра «Математика»

Подробнее

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков.

Лекция 8 Тема. Содержание темы. Основные категории. Сравнение случайных величин или признаков. Лекция 8 Тема Сравнение случайных величин или признаков. Содержание темы Аналогия дискретных СВ и выборок Виды зависимостей двух случайных величин (выборок) Функциональная зависимость. Линии регрессии.

Подробнее

ЗНАЧИМОСТЬ УРАВНЕНИЯ РЕГРЕССИИ И КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ

ЗНАЧИМОСТЬ УРАВНЕНИЯ РЕГРЕССИИ И КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ ЗНАЧИМОСТЬ УРАВНЕНИЯ РЕГРЕССИИ И КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ Проверить значимость уравнения регрессии значит установить, соответствует ли построенное уравнение регрессии экспериментальным данным и достаточно

Подробнее

Кафедра «Теория рынка» Тимофеев В.С. ОСНОВЫ ЭКОНОМЕТРИКИ (Раздел 2. корреляционный анализ) теоретические материалы для студентов ОФиП

Кафедра «Теория рынка» Тимофеев В.С. ОСНОВЫ ЭКОНОМЕТРИКИ (Раздел 2. корреляционный анализ) теоретические материалы для студентов ОФиП МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

Подробнее

Кафедра «Теория рынка» Тимофеев В.С. ОСНОВЫ ЭКОНОМЕТРИКИ (Раздел 3. парная регрессия) теоретические материалы для студентов ОФиП

Кафедра «Теория рынка» Тимофеев В.С. ОСНОВЫ ЭКОНОМЕТРИКИ (Раздел 3. парная регрессия) теоретические материалы для студентов ОФиП МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ

Подробнее

анализа входит не только построение самой модели, но и исследование случайных отклонений , т.е. остаточных величин.

анализа входит не только построение самой модели, но и исследование случайных отклонений , т.е. остаточных величин. Финансовый университет при Правительстве РФ Fnancal unversty under the Government of the Russan Federaton Гапаева Марима Абдул-Рахмановна Gapaeva Marma Линейная модель множественной регрессии с гетероскедастичными

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА С.П.Еркович ПРИМЕНЕНИЕ РЕГРЕССИОННОГО И КОРРЕЛЯЦИОННОГО АНАЛИЗА ДЛЯ ИССЛЕДОВАНИЯ ЗАВИСИМОСТЕЙ В ФИЗИЧЕСКОМ ПРАКТИКУМЕ. Москва, 994.

Подробнее

РЕГРЕССИОННЫЙ АНАЛИЗ

РЕГРЕССИОННЫЙ АНАЛИЗ РЕГРЕССИОННЫЙ АНАЛИЗ Пусть у нас есть серии значений двух параметров. Подразумевается, что у одного и того же объекта измерены два параметра. Нам надо выяснить есть ли значимая связь между этими параметрами.

Подробнее

26 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика

26 ГрГУ им. Я. Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика 6 ГрГУ им Я Купалы - ФМ и И - СА и ЭМ - «Экономическая кибернетика» - Эконометрика Лекция 4 Точечный и интервальный огнозы по уравнению регрессии Одной из центральных задач эконометрического моделирования

Подробнее

Абдиев Б.А. «Эконометрика» Предназначено для студентов специальности: Финансы, вечернее отделение (2 курс 4г.о.) Учебный год:

Абдиев Б.А. «Эконометрика» Предназначено для студентов специальности: Финансы, вечернее отделение (2 курс 4г.о.) Учебный год: Абдиев Б.А. «Эконометрика» Предназначено для студентов специальности: Финансы, вечернее отделение (2 курс 4г.о.) Учебный год: 2015-2016 Текст вопроса 1 Парная регрессия у=а+вх+е представляет собой регрессию

Подробнее

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия.

Вариационный ряд делится тремя квартилями Q 1, Q 2, Q 3 на 4 равные части. Q 2 медиана. Показатели рассеивания. Выборочная дисперсия. Квантили Выборочная квантиль x p порядка p (0 < p < 1) определяется как элемент вариационного ряда выборки x (1),, x () с номером [p]+1, где [a] целая часть числа а В статистической практике используется

Подробнее

ЛЕКЦИЯ 3 ЛИНЕЙНАЯ РЕГРЕССИЯ: СЛУЧАЙ ОДНОЙ ОБЪЯСНЯЮЩЕЙ ПЕРЕМЕННОЙ (ПРОДОЛЖЕНИЕ)

ЛЕКЦИЯ 3 ЛИНЕЙНАЯ РЕГРЕССИЯ: СЛУЧАЙ ОДНОЙ ОБЪЯСНЯЮЩЕЙ ПЕРЕМЕННОЙ (ПРОДОЛЖЕНИЕ) ЛЕКЦИЯ 3 ЛИНЕЙНАЯ РЕГРЕССИЯ: СЛУЧАЙ ОДНОЙ ОБЪЯСНЯЮЩЕЙ ПЕРЕМЕННОЙ (ПРОДОЛЖЕНИЕ. Несколько результатов относительно регрессий оцениваемых МНК.. Дисперсионный анализ. 3. Оценка качества регрессии. Интерпретация

Подробнее

ε t y t Вариант 4 Решение: Объём продаж продовольственных товаров с 1 января 1990 г. в относительных единицах. Дата t t 2 ε t t ŷ t

ε t y t Вариант 4 Решение: Объём продаж продовольственных товаров с 1 января 1990 г. в относительных единицах. Дата t t 2 ε t t ŷ t Контрольная работа выполнена на сайте www.maburo.ru Вариант 4 Задание. Прогнозирование экономических процессов. В таблице приведены данные продаж продовольственных товаров в магазине. Разработать модель

Подробнее

ЛЕКЦИЯ 14 НАРУШЕНИЯ ПРЕДПОСЫЛОК ТЕОРЕМЫ ГАУССА-МАРКОВА: Ч. II. ГЕТЕРОСКЕДАСТИЧНОСТЬ: ТЕСТИРОВАНИЕ И УСТРАНЕНИЕ

ЛЕКЦИЯ 14 НАРУШЕНИЯ ПРЕДПОСЫЛОК ТЕОРЕМЫ ГАУССА-МАРКОВА: Ч. II. ГЕТЕРОСКЕДАСТИЧНОСТЬ: ТЕСТИРОВАНИЕ И УСТРАНЕНИЕ ЛЕКЦИЯ 4 НАРУШЕНИЯ ПРЕДПОСЫЛОК ТЕОРЕМЫ ГАУССА-МАРКОВА: Ч. II. ГЕТЕРОСКЕДАСТИЧНОСТЬ: ТЕСТИРОВАНИЕ И УСТРАНЕНИЕ. Тестирование гипотез на наличие (отсутствие) гетероскедастичности: тесы Уайта, Глейзера, Бройша-

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа Корреляционный анализ Оглавление Понятие корреляционного и регрессионного анализа... 3 Парный корреляционный анализ. Коэффициент корреляции... 4 Задание

Подробнее

Вариант 5.5. Ожидаемая продолжительность жизни при рождении 2005 г., лет, Х 1. человеческого развития, Y. Х 1 прогн = 73, Х 2 прогн =3300, = 0,05.

Вариант 5.5. Ожидаемая продолжительность жизни при рождении 2005 г., лет, Х 1. человеческого развития, Y. Х 1 прогн = 73, Х 2 прогн =3300, = 0,05. Задача 5. Имеются данные по странам за 005 год. Построить регрессионную модель: Y= 0 + Х + Х +. Задание.. По МНК оценить коэффициенты линейной регрессии i, i= 0,,.. Оценить статистическую значимость найденных

Подробнее

В зависимости от способа сбора экспериментальной информации различают: 1. пассивный эксперимент; 2. активный эксперимент.

В зависимости от способа сбора экспериментальной информации различают: 1. пассивный эксперимент; 2. активный эксперимент. Лекция В зависимости от способа сбора экспериментальной информации различают: 1. пассивный эксперимент; 2. активный эксперимент. Суть: исследователь собирает некоторый объем экспериментальной информации:

Подробнее

Математическая статистика. Тема: «Статистическое оценивание параметров распределения»

Математическая статистика. Тема: «Статистическое оценивание параметров распределения» Математическая статистика Тема: «Статистическое оценивание параметров распределения» Введение Математическая статистика наука, занимающаяся методами обработки экспериментальных данных, полученных в результате

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Исходные данные

ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ. Исходные данные ДОМАШНЕЕ ЗАДАНИЕ по МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ Исходные данные Задана большая выборка, объем которой п 00..49 3.548 4.409 5.08 0.39.096 5.4 4.586 4.49.678 4.08 3.993 4.3 6.9 -.48 5.8 5.07 3.889.3 5.59 9.377.644

Подробнее

Курсовая работа. Институт экономики и финансов кафедра «Математика»

Курсовая работа. Институт экономики и финансов кафедра «Математика» ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ИМПЕРАТОРА НИКОЛАЯ II» Институт экономики и финансов кафедра «Математика»

Подробнее

Найдем вероятность события А - интересующие студента данные не содержатся только в двух пособиях.

Найдем вероятность события А - интересующие студента данные не содержатся только в двух пособиях. Задача. Студент выполняет работу по статистике, пользуясь пятью пособиями. Вероятность того, что интересующие его данные находятся в первом, втором, третьем, четвертом и пятом пособиях, соответственно

Подробнее

2 Статистические оценки неизвестных параметров распределения

2 Статистические оценки неизвестных параметров распределения Статистические оценки неизвестных параметров распределения Статистическая оценка неизвестного параметра теоретического распределения Виды статистических оценок 3 Нахождение оценок неизвестных параметров

Подробнее

Контрольная работа по дисциплине: «Эконометрика» студента Папченко Антона Алексеевича

Контрольная работа по дисциплине: «Эконометрика» студента Папченко Антона Алексеевича Контрольная работа по дисциплине: «Эконометрика» студента Папченко Антона Алексеевича Задача. Метод наименьших квадратов, уравнения регрессии. Используя метод наименьших квадратов, определить наилучшую

Подробнее

. Таким образом, вероятность того, что на каждом этаже выйдет по одному пассажиру. m n. которая носит название формулы полной вероятности.

. Таким образом, вероятность того, что на каждом этаже выйдет по одному пассажиру. m n. которая носит название формулы полной вероятности. МВДубатовская Теория вероятностей и математическая статистика Методические рекомендации к решению задач из экзаменационного задания Семь человек вошли в лифт на первом этаже восьмиэтажного дома Считая,

Подробнее

α, β - неизвестные параметры.

α, β - неизвестные параметры. ОПРЕДЕЛЕНИЕ ФОРМЫ СВЯЗИ МЕЖДУ РЕЗУЛЬТИРУЮЩИМ (У) И ОБЪЯСНЯЮЩИМ (Х) ФАКТОРАМИ И РАСЧЕТ ПАРАМЕТРОВ УРАВНЕНИЯ ПАРНОЙ РЕГРЕССИИ Задачу определения парной регрессии можно сформулировать следующим образом: по

Подробнее

Контрольные тесты по дисциплине «Эконометрика»

Контрольные тесты по дисциплине «Эконометрика» Контрольные тесты по дисциплине «Эконометрика» Первая главная компонента A. Содержит максимальную долю изменчивости всей матрицы факторов. B. Отражает степень влияния первого фактора на результат. C. Отражает

Подробнее

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика»

ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» Задача 1. ПРИМЕР РЕШЕНИЯ КОНТРОЛЬНОЙ РАБОТЫ 6 (МПМ, 2 курс, 3 семестр) Тема «Математическая статистика» В результате тестирования группа из 24 человек набрала баллы: 4, 0, 3, 4, 1, 0, 3, 1, 0, 4, 0, 0,

Подробнее

4 Проверка параметрических гипотез

4 Проверка параметрических гипотез 4 Проверка параметрических гипотез Статистическая гипотеза Параметрическая гипотеза 3 Критерии проверки статистических гипотез Статистической называют гипотезу о виде неизвестного распределения или о параметрах

Подробнее

5 Гипотезы и критерии согласия

5 Гипотезы и критерии согласия 5 Гипотезы и критерии согласия Гипотезы и критерии согласия Критерий согласия - Пирсона Пусть,,, выборка из распределения теоретической случайной величины с неизвестной функцией распределения F ( Проверяется

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 МАТЕМАТИЧЕСКАЯ

Подробнее

Теория вероятностей и математическая статистика Конспект лекций

Теория вероятностей и математическая статистика Конспект лекций Министерство образования и науки РФ ФБОУ ВПО Уральский государственный лесотехнический университет ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ Кафедра высшей математики Теория вероятностей и математическая статистика

Подробнее

Коррекция гетероскедастичности. Метод взвешенных наименьших квадратов

Коррекция гетероскедастичности. Метод взвешенных наименьших квадратов РГУ нефти и газа имени И.М. Губкина Коррекция гетероскедастичности. Метод взвешенных наименьших квадратов Иткина Анна Яковлевна, ст. преподаватель кафедры ЭНиГП Список лекций Метод наименьших квадратов

Подробнее

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ ИЗМЕРЕНИЙ РЕЖИМНЫХ ПАРАМЕТРОВ В ЗАДАЧЕ УПРАВЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ ИЗМЕРЕНИЙ РЕЖИМНЫХ ПАРАМЕТРОВ В ЗАДАЧЕ УПРАВЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ УДК...0 КОРРЕЛЯЦИОННЫЙ АНАЛИЗ ИЗМЕРЕНИЙ РЕЖИМНЫХ ПАРАМЕТРОВ В ЗАДАЧЕ УПРАВЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ СИСТЕМЫ Павлюков В.С., Павлюков С.В. Южно-Уральский государственный университет, г. Челябинск, Россия Основные

Подробнее

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии

Камчатский государственный технический университет. Кафедра высшей математики ЭКОНОМЕТРИКА. Модель парной регрессии Камчатский государственный технический университет Кафедра высшей математики ЭКОНОМЕТРИКА Модель парной регрессии Задания и методические указания для студентов специальностей ФК, БУ, ПИ дневного и заочного

Подробнее

, при уровнях значимости = 0, 05

, при уровнях значимости = 0, 05 Задача скачана с сайта wwwqacademru Задача Имеется информация за лет относительно среднего дохода X и среднего потребления Y (млн руб): Годы 9 9 9 93 94 95 96 97 98 99 X,5,6,3 3,7 4,5 6, 7,3 8,7,,8 Y 8,5,3

Подробнее

где i = 1,2,,k; y1 xmin Номера интервалов и данные расчета их границ занести в Таблицу 1 (графы 1 и 2).

где i = 1,2,,k; y1 xmin Номера интервалов и данные расчета их границ занести в Таблицу 1 (графы 1 и 2). Методические указания к выполнению задания. Преобразование исходной выборки в группированный статистический ряд выполняется в следующем порядке: а). Определить размах выборки R, где m - максимальный, а

Подробнее

11. Тесты по математической статистике. Тест Дана выборка ( 3,1,2,3,1,4, 5). Составьте вариационный ряд.

11. Тесты по математической статистике. Тест Дана выборка ( 3,1,2,3,1,4, 5). Составьте вариационный ряд. 11 Тесты по математической статистике Тест 1 P 1 Для любого x имеет место соотношение F x правую часть Заполните Дана выборка ( 3,1,,3,1,4, 5) Составьте вариационный ряд 3 Что оценивают x и выборочная

Подробнее

Задачи по математической статистике

Задачи по математической статистике Задачи по математической статистике Задача. По данным распределения возрастного состава участников революционного движения в России 70-х годов 9-го века была построена следующая таблица Возраст 7-3 3-9

Подробнее

4. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Задачи и проблемы корреляционного анализа

4. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ Задачи и проблемы корреляционного анализа 4. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ 4.. Задачи и проблемы корреляционного анализа Главной задачей корреляционного анализа является оценка взаимосвязи между переменными величинами на основе выборочных данных. Различают

Подробнее

Рассмотрим некоторые методы проверки выполнения предпосылок Гаусса-Маркова и приемы исследования в случаях, когда они нарушаются.

Рассмотрим некоторые методы проверки выполнения предпосылок Гаусса-Маркова и приемы исследования в случаях, когда они нарушаются. Рассмотрим некоторые методы проверки выполнения предпосылок Гаусса-Маркова и приемы исследования в случаях, когда они нарушаются. Способ проверки остатков на случайный характер Для проверки остатков на

Подробнее

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость

( x i, y i ). Предположим, что X и Y связаны линейной корреляционной. ϕ называют линией Линейная корреляционная зависимость .. Линейная корреляционная зависимость Часто на практике требуется установить вид и оценить силу зависимости изучаемой случайной величины Y от одной или нескольких других величин (случайных или неслучайных).

Подробнее

СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ НА ИЗНАШИВАНИЕ

СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ НА ИЗНАШИВАНИЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ КАФЕДРА «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» СТАТИСТИЧЕСКАЯ ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ НА ИЗНАШИВАНИЕ Методические

Подробнее

Математика (Статистика, корреляция и регрессия)

Математика (Статистика, корреляция и регрессия) Федеральное агентство воздушного транспорта Федеральное государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Подробнее

Тема 1. Основные понятия теории вероятностей и статистики (Теоретические вопросы)

Тема 1. Основные понятия теории вероятностей и статистики (Теоретические вопросы) Эконометрика_0-03 уч.год_типовые ЗАДАЧИ Тема. Основные понятия теории вероятностей и статистики (Теоретические вопросы) Эконометрика- это: наука, которая дает количественное выражение взаимосвязей в экономике

Подробнее

СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ СОЦИАЛЬНО- ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ

СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ СОЦИАЛЬНО- ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ СОЦИАЛЬНО- ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ ТЕМА: СТАТИСТИЧЕСКОЕ ИЗУЧЕНИЕ ВЗАИМОСВЯЗИ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ ЯВЛЕНИЙ 1. Причинность, регрессия, корреляция 2. Применение корреляционно-регрессионный

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа 7 Анализ остатков. Автокорреляция Оглавление Свойства остатков... 3 1-е условие Гаусса-Маркова: Е(ε i ) = 0 для всех наблюдений... 3 2-е условие Гаусса-Маркова:

Подробнее

Содержание задачи: Исследовать влияние денежных доходов населения на оборот розничной торговли

Содержание задачи: Исследовать влияние денежных доходов населения на оборот розничной торговли Содержание задачи: Исследовать влияние денежных доходов населения на оборот розничной торговли - Денежные доходы населения (в среднем на душу населения в месяц), руб. y - Оборот розничной торговли, млрд.

Подробнее

Кафедра «Математика» КУРСОВАЯ РАБОТА. По дисциплине «Эконометрика»

Кафедра «Математика» КУРСОВАЯ РАБОТА. По дисциплине «Эконометрика» ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра «Математика» КУРСОВАЯ РАБОТА

Подробнее

Эконометрическое моделирование

Эконометрическое моделирование Эконометрическое моделирование Лабораторная работа 3 Парная регрессия Оглавление Парная регрессия... 3 Метод наименьших квадратов (МНК)... 3 Интерпретация уравнения регрессии... 4 Оценка качества построенной

Подробнее

Проблема мультиколлинеарности в регрессионных моделях

Проблема мультиколлинеарности в регрессионных моделях Проблема мультиколлинеарности в регрессионных моделях ПОНЯТИЕ МУЛЬТИКОЛЛИНЕАРНОСТИ Одно из условий возможности применения МНК матрица коэффициентов системы уравнений наблюдений X должна иметь полный ранг,

Подробнее

def Интервал ( 1 ; 2 ) называют доверительным интервалом для

def Интервал ( 1 ; 2 ) называют доверительным интервалом для .0. Определение доверительного интервала Пусть θ некоторый неизвестный параметр распределения. По выборке X,..., Х из данного распределения построим интервальную оценку параметра θ распределения, то есть

Подробнее

Лекция 9. Введение в регрессионный анализ

Лекция 9. Введение в регрессионный анализ Лекция 9. Введение в регрессионный анализ Изучение корреляционных зависимостей основывается на исследовании таких связей между переменными, при которых значения одной переменной, ее можно принять за зависимую

Подробнее

МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. ПОСТРОЕНИЕ ФУНКЦИИ ПОТРЕБЛЕНИЯ ОТ ДВУХ ФАКТОРОВ

МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. ПОСТРОЕНИЕ ФУНКЦИИ ПОТРЕБЛЕНИЯ ОТ ДВУХ ФАКТОРОВ МОДЕЛИ МНОЖЕСТВЕННОЙ РЕГРЕССИИ. ПОСТРОЕНИЕ ФУНКЦИИ ПОТРЕБЛЕНИЯ ОТ ДВУХ ФАКТОРОВ Если на потребление влияет не один, а несколько факторов, то взаимосвязь их выражают уравнением множественной регрессии,

Подробнее

Линейный коэффициент корреляции и коэффициент детерминации

Линейный коэффициент корреляции и коэффициент детерминации Лекция 10. Методы измерения тесноты парной корреляционной связи. Часть 1 Признаки могут быть представлены в количественных, порядковых и номинальных шкалах. В зависимости от того, по какой шкале представлены

Подробнее

Методические указания для проведения практических занятий по теории вероятностей и математической статистике для направления Экономика

Методические указания для проведения практических занятий по теории вероятностей и математической статистике для направления Экономика Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Саратовский государственный университет имени

Подробнее

Корреляция. Содержание. Коэффициент корреляции

Корреляция. Содержание. Коэффициент корреляции Корреляция Материал из Википедии свободной энциклопедии Корреля ция статистическая взаимосвязь двух или нескольких случайных величин (либо величин которые можно с некоторой допустимой степенью точности

Подробнее

АНАЛИЗ ПРИЧИННО-СЛЕДСТВЕННЫХ СВЯЗЕЙ НА ОСНОВЕ КОРРЕЛЯЦИОННЫХ ОТНОШЕНИЙ 1

АНАЛИЗ ПРИЧИННО-СЛЕДСТВЕННЫХ СВЯЗЕЙ НА ОСНОВЕ КОРРЕЛЯЦИОННЫХ ОТНОШЕНИЙ 1 УДК 519.33.5 М. А. НОВОЖИЛОВ Санкт-Петербургский политехнический университет Петра Великого Санкт-Петербург АНАЛИЗ ПРИЧИННО-СЛЕДСТВЕННЫХ СВЯЗЕЙ НА ОСНОВЕ КОРРЕЛЯЦИОННЫХ ОТНОШЕНИЙ 1 В данной работе сформулирована

Подробнее

Глоссарий. Вариационный ряд группированный статистический ряд

Глоссарий. Вариационный ряд группированный статистический ряд Глоссарий Вариационный ряд группированный статистический ряд Вариация - колеблемость, многообразие, изменчивость значения признака у единиц совокупности. Вероятность численная мера объективной возможности

Подробнее

Лекция 18. Интервальные оценки параметров распределения. Интервальные оценки. Точность. Надежность

Лекция 18. Интервальные оценки параметров распределения. Интервальные оценки. Точность. Надежность Лекция 18 Интервальные оценки параметров распределения Интервальные оценки Точность Надежность Точечные оценки могут значительно отличаться от оцениваемых параметров Достаточно часто это происходит в случае

Подробнее

МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЗЕМЛЕУСТРОЙСТВЕ

МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЗЕМЛЕУСТРОЙСТВЕ МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ЗЕМЛЕУСТРОЙСТВЕ Карпиченко Александр Александрович доцент кафедры почвоведения и земельных информационных систем Литература elib.bsu.by Математические методы в землеустройстве [Электронный

Подробнее

ПРОВЕРКА ВЫПОЛНИМОСТИ ПРЕДПОСЫЛОК МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ. i 2 M ( ) 0, i j. (3) i i i. i i i

ПРОВЕРКА ВЫПОЛНИМОСТИ ПРЕДПОСЫЛОК МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ. i 2 M ( ) 0, i j. (3) i i i. i i i ПРОВЕРКА ВЫПОЛНИМОСТИ ПРЕДПОСЫЛОК МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ Напомним, что условия Гаусса-Маркова требуют выполнения следующих условий на ошибки : M ( ) 0, 1,, ; (1) D( ), 1,,, () M ( ) 0, j (3) Часто

Подробнее

КУРСОВАЯ РАБОТА. по дисциплине «Эконометрика» «Комплексный анализ взаимосвязи финансово-экономических показателей деятельности предприятий»

КУРСОВАЯ РАБОТА. по дисциплине «Эконометрика» «Комплексный анализ взаимосвязи финансово-экономических показателей деятельности предприятий» ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра «Экономика и управление на транспорте»

Подробнее

Дисциплина «Методы и статистика исследований» 1. Статистические свойства оценок параметров парной регрессионной модели.

Дисциплина «Методы и статистика исследований» 1. Статистические свойства оценок параметров парной регрессионной модели. НОВЫЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ имени Т.РЫСКУЛОВА Научно-педагогическая Магистратура 1курс кафедры Специальности : «6М090200-Таможенное дело», «6М051000-Государственное и местное управление», «6М020200-Международные

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения 1. Кафедра Математики и математических методов в экономике 2. Направление подготовки 01.03.02

Подробнее

Лекция 9. Множественная линейная регрессия

Лекция 9. Множественная линейная регрессия Лекция 9. Множественная линейная регрессия Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Множественная регрессия... Санкт-Петербург, 2013 1 / 39 Cодержание Содержание 1

Подробнее

Лекция 26. Элементы дисперсионного анализа. Понятие о дисперсионном анализе

Лекция 26. Элементы дисперсионного анализа. Понятие о дисперсионном анализе Лекция 6. Элементы дисперсионного анализа Понятие о дисперсионном анализе Пусть генеральные совокупни X, X,..., X распределены нормально и имеют одинаковую, хотя и неизвестную дисперсию. Математические

Подробнее

Регрессияшпаргалка. Кафедра Автоматизации технологических процессов Доц. Южанин В.В.

Регрессияшпаргалка. Кафедра Автоматизации технологических процессов Доц. Южанин В.В. Регрессияшпаргалка Кафедра Автоматизации технологических процессов Доц. Южанин В.В. Об использовании регрессионной модели для описания реальных процессов Ошибка (шум) моделирует неучтенные факторы. Невозможность

Подробнее

Проблема мультиколлинеарности в регрессионных моделях

Проблема мультиколлинеарности в регрессионных моделях Проблема мультиколлинеарности в регрессионных моделях ПОНЯТИЕ МУЛЬТИКОЛЛИНЕАРНОСТИ Одно из условий возможности применения МНК матрица коэффициентов системы уравнений наблюдений X должна иметь полный ранг,

Подробнее

Домашнее задание 2. Обработка результатов наблюдений двухмерного случайного вектора

Домашнее задание 2. Обработка результатов наблюдений двухмерного случайного вектора Домашнее задание. Обработка результатов наблюдений двухмерного случайного вектора.1. Содержание и порядок выполнения работы Дана парная выборка (x i ; y i ) объема 50 из двумерного нормально распределенного

Подробнее

Управление дистанционного обучения и повышения квалификации. Математика ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Управление дистанционного обучения и повышения квалификации. Математика ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Прикладная математика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по дисциплине

Подробнее

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БАЗА ТЕСТОВЫХ ЗАДАНИЙ

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БАЗА ТЕСТОВЫХ ЗАДАНИЙ Е. В. Морозова 0 МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» КАМЫШИНСКИЙ

Подробнее

ЛЕКЦИЯ Проблема автокорреляции остатков

ЛЕКЦИЯ Проблема автокорреляции остатков ЛЕКЦИЯ 6 15 Проблема автокорреляции остатков 151 Причины и последствия автокорреляции остатков регрессии Понятие автокорреляции остатков было введено в п 5 (лекция 1) где формулировались требования предъявляемые

Подробнее

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии.

Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Проверка статистической гипотезы о математическом ожидании нормального распределения при известной дисперсии. Пусть имеется нормально распределенная случайная величина N,, определенная на множестве объектов

Подробнее

Тесты по дисциплине 123

Тесты по дисциплине 123 Тесты по дисциплине 3 ТЕСТ. Коэффициент корреляции, равный нулю, означает, что между переменными: а) линейная связь отсутствует; б) существует линейная связь; в) ситуация не определена.. Коэффициент корреляции,

Подробнее

СБОРНИК ЗАДАНИЙ ПО ТЕМЕ: «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

СБОРНИК ЗАДАНИЙ ПО ТЕМЕ: «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА» МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра прикладной математики В.П.

Подробнее

Критерии и показатели оценивания компетенций на различных этапах их формирования

Критерии и показатели оценивания компетенций на различных этапах их формирования Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю) Общие сведения 1. Кафедра Математики, физики и информационных технологий 2. Направление подготовки 02.03.01

Подробнее

Контрольная работа 4

Контрольная работа 4 Контрольная работа 4 Тема: Теория вероятностей З а д а ч и 1-10 Задачи 1-10 посвящены вычислениям вероятности событий с использованием основных теорем теории вероятности и комбинаторики. Конкретный пример

Подробнее

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров

1. СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ Понятие о статистической оценке параметров . СТАТИСТИЧЕСКАЯ ОЦЕНКА ПАРАМЕТРОВ РАСПРЕДЕЛЕНИЯ.. Понятие о статистической оценке параметров Методы математической статистики используются при анализе явлений, обладающих свойством статистической устойчивости.

Подробнее

1. Исходные данные для выполнения курсовой работы. Разряд Производственный стаж, полных лет

1. Исходные данные для выполнения курсовой работы. Разряд Производственный стаж, полных лет 3 СОДЕРЖАНИЕ Введение 4 1. Исходные данные для выполнения курсовой работы 5. Варианты заданий на курсовую работу 7 3.Методические указания по выполнению курсовой работы 13 3.1. Сводка и группировка данных

Подробнее