Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа"

Транскрипт

1 Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f( x ) слева при стремлении x к a, если для любого числа существует такое число ( ) x a ; a, выполняется неравенство, что для всех f ( x) A Обозначают это так: lim f ( x) A или f ( a ) A xa Аналогично определяется предел функции f( x ) справа Определение Число A называется пределом функции f( x ) справа при стремлении x к a, если для любого числа существует такое число ( ) x a; a, выполняется неравенство, что для всех f ( x) A Обозначают это так: lim f ( x) A или f ( a ) A xa Непрерывность функций Определение 1 Функция f ( x) с областью определения D называется непрерывной в точке x, если выполнены следующие условия: 1) функция f ( x) определена в точке ) существует lim f( x) ; xx 3) lim f ( x) f ( x ) xx Условие пункта эквивалентно существованию равных односторонних пределов функции f( x ) в точке x, те lim f ( x) lim f ( x) lim f ( x ) xx xx xx Если в точке x нарушено хотя бы одно из условий 1 3, то точка x называется точкой разрыва функции f ( x) Можно дать еще одно определение непрерывности функции, опираясь на понятия приращения аргумента и функции 1

2 Пусть функция f ( x) определена в некотором интервале ( ab, ) Возьмем произвольную точку x ( a, b) Для любого x ( a, b) разность x x называется приращением аргумента x в точке x и обозначается x («дельта x;»): x x x Отсюда x x x Разность соответствующих значений функций f ( x) f ( x) называется приращением функции f ( x) в точке x и обозначается (или f или f( x) ): f ( x) f ( x) или f ( x x) f ( x) (см рис47) Рис 47 Очевидно, приращения x и могут быть как положительными, так и отрицательными числами Определение Запишем равенство lim f ( x) f ( x ) (1), xx в новых обозначениях Так как lim f ( x) f ( x ), lim( f ( x) f ( x )), xx xx x x, xx то равенство принимает вид или lim () x Полученное равенство является еще одним определением непрерывности функции в точке: функция f ( x) называется непрерывной в точке x, если она определена в точке x и ее окрестности и выполняется равенство (), т е бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции Исследуя непрерывность функции в точке, применяют либо первое определение (равенство (1)), либо второе (равенство ())

3 Пример Исследовать на непрерывность функцию sin x Решение: Функция sin x определена при всех x Возьмем произвольную точку x и найдем приращение : x x sin( x x) sin x cosx sin Тогда x x lim lim cosx sin, так как произведение x x ограниченной функции и бмф есть бмф Согласно определению (3), функция sin x непрерывна в точке x Аналогично доказывается, что функция cos x; также непрерывна Непрерывность функции в интервале и на отрезке Определение Функция f ( x) называется непрерывной в интервале ( ab, ), если она непрерывна в каждой точке этого интервала Определение Функция f ( x) ab, если она непрерывна в интервале ( ab, ) и в точке x a непрерывна справа (те lim f ( x) f ( a) ), а в точке x b непрерывна слева (т е lim f ( x) f ( b) xa называется непрерывной на отрезке, x b При исследовании функции на непрерывность пользуются следующей теоремой: Всякая элементарная функция непрерывна в каждой точке, в которой она определена Точки разрыва функции и их классификация Определение Если функция f ( x) непрерывна в каждой точке некоторого интервала ab,, где a b, то говорят, что функция непрерывна на этом интервале Следовательно, функция может иметь разрыв в точках, где она меняет способ своего задания или не определена 3

4 Существуют следующие виды точек разрыва 1 Если в точке x существует конечный предел функции f( x ), но он не равен значению функции в этой точке, те lim f ( x) f ( x ), xx то такая точка называется точкой разрыва I рода (устранимый разрыв) f x x x Точка x называется точкой разрыва I рода (точка скачка) функции f( x ), если в этой точке существуют конечные односторонние пределы функции lim f ( x) A, xx lim f ( x) B, A, B const, xx но они не равны между собой A B x x 3Точка x называется точкой разрыва II рода или точкой бесконечного разрыва, если хотя бы один из односторонних пределов функции f( x ) в точке x равен бесконечности x x x x x x 4

5 Пример Исследовать функции на непрерывность, найти точки разрыва и определить их тип: 1 x при x, а) f( x), x, при x Данная функция определена на всей числовой оси Она задана двумя различными формулами для интервалов ; и, и может иметь разрыв в точке x, где меняется способ ее задания Найдем односторонние пределы в точке x : 1 1 lim f ( x) lim x, x x 1 f ( x) x, lim f ( x) lim x, так как слева от точки x функция x x так как справа от точки x функция f ( x) x Таким образом, в точке x функция f( x ) имеет конечные односторонние пределы, но они не равны между собой Следовательно, x - точка разрыва I рода (точка скачка) Во всех остальных точках числовой оси данная функция непрерывна, так как формулы, которыми она задана определяют элементарные непрерывные функции Построим график этой функции x x x 5

6 б) 1 x 5 Функция определена для всех значений кроме x1 5 и x 5 Эта функция элементарная, значит, она непрерывна во всей области D ( ) ; 5 5;5 5; В точках x1 5 и своего определения x 5 функция имеет разрывы, так как нарушается первое условие непрерывности Чтобы определить характер разрыва в этих точках, найдем односторонние пределы lim lim 5, x x 5 x5 x5x lim lim 5, x x 5 x5 x5x lim lim 5 x x 5 x5 x 5x , lim lim 5 x x 5 x5 x 5 x Поскольку все односторонние пределы равны бесконечности, 1 функция терпит в точках x 1 5 и x 5 разрывы II рода x 5 Построим график функции x x 6

7 1 в) x1 3 e Функция определена и непрерывна на всей числовой оси, кроме точки x 1 Из этого следует, что в точке x 1 функция имеет разрыв Найдем односторонние пределы ( 1 ) 1 lim 3 e x 3 3 e e 3 e x , e ( 1 ) 1 lim 3 x e 3 e 3 e 3 x1 Так как предел справа в точке x 1 равен бесконечности, заключаем, что x точка разрыва II рода Построим график функции 1 x1 3 e x 7

8 Основные теоремы о непрерывных функциях Непрерывность элементарных функций Теоремы о непрерывности функций следуют непосредственно из соответствующих теорем о пределах Теорема 1 Сумма, произведение и частное двух непрерывных функций есть функция непрерывная (для частного за исключением тех значений аргумента, в которых делитель равен нулю) Доказательство Пусть функция f( x ) и ( x) непрерывны на некотором множестве X и x любое значение из этого множества Докажем, например, непрерывность произведения F( X ) f ( x) ( x) Применяя теорему о пределе произведения, получим: lim F( x) lim( f ( x) ( x)) lim f ( x) lim ( x) f ( x ) ( x ) F( x ) xx xx xx xx Итак, lim F( x) F( x ), что и доказывает непрерывность функции xx f ( x) ( x) в точке x Теорема Пусть функции u ( x) непрерывна в точке x, а функция f ( u) непрерывна в точке u ( x) Тогда сложная функция f ( x), состоящая из непрерывных функций, непрерывна в точке x Доказательство В силу непрерывности функции u ( x), lim ( x) ( x) u, т е при x x имеем u u Поэтому, вследствие xx непрерывности функции f ( u) имеем: f x f u f u f x lim ( ) lim ( ) ( ) ( ) xx uu Это и доказывает, что сложная функция f ( x) непрерывна в точке x Теорема 3 Если функция f ( x) на ab, оси Ox, то обратная функция ( x) f ( ( x)) непрерывна и строго монотонна также непрерывна и монотонна на соответствующем отрезке, cd оси O (без доказательства) sin x Так, например, функция tgx, в силу теоремы 1, есть cos x функция непрерывная для всех значений x, кроме тех, для которых cos x, т е кроме значений x n, n 8

9 Функции arcsin x, arctg x, arccos x, arcctg x, в силу теоремы 3, непрерывны при всех значениях x, при которых эти функции определены Можно доказать, что все основные элементарные функции непрерывны при всех значениях x, для которых они определены Как известно, элементарной называется такая функция, которую можно задать одной формулой, содержащей конечное число арифметических действий и суперпозиций (операции взятия функции от функции) основных элементарных функций Поэтому из приведенных выше теорем вытекает: всякая элементарная функция непрерывна в каждой точке, в которой она определена Этот важный результат позволяет, в частности, легко находить пределы элементарных функций в точках, где они определены ctg Пример Найти lim x x 4 x4 Решение: Функция ctg ctgx 4 lim = ctgx непрерывна в точке 5 Свойства функций, непрерывных на отрезке x, поэтому 4 Непрерывные на отрезке функции имеют ряд важных свойств Сформулируем их в виде теорем, не приводя доказательств Теорема 4 (Вейерштрасса) Если функция непрерывна на отрезке ab,, то она достигает на этом отрезке своего наибольшего и наименьшего значений Рис5 Изображенная на рисунке 5 функция f ( x) непрерывна на отрезке ab,, принимает свое наибольшее значение M в точке x 1, а 9

10 наименьшее m в точке x a, b имеет место неравенство m f ( x) M Следствие 1 Если функция непрерывна на отрезке, то она ограничена на этом отрезке Теорема 5 (Больцано-Коши) Если функция f ( x) непрерывна на отрезке ab, и принимает на его концах неравные значения f ( a) A и f () b B, то на этом отрезке она принимает и все промежуточные значения между A и B Геометрически теорема очевидна (см рис51) x Для любого Рис 51 Для любого числа C, заключенного между A и B, найдется точка с внутри отрезка ab, такая, что f () c C Прямая C пересечет график функции по крайней мере в одной точке Следствие Если функция f ( x) непрерывна на отрезке ab, и на его концах принимает значения разных знаков, то внутри отрезка ab, найдется хотя бы одна точка c, в которой данная функция f( x) обращается в нуль: f( c) Геометрический смысл теоремы: если график непрерывной функции переходит с одной стороны оси Ox на другую, то он пересекает ось Ox (см рис5) Рис5 1

11 Следствие лежит в основе так называемого «метода половинного деления», который используется для нахождения корня уравнения f( x) Рис 53 Утверждения теорем 4 и 5, вообще говоря, становятся неверными, если нарушены какие-либо из их условий: функция непрерывна не на отрезке ab,, а в интервале ab,, либо функция на отрезке ab, имеет разрыв Рисунок 53 показывает это для следствия теоремы 5: график разрывной функции не пересекает ось Ox Пример Определить с точностью до е =,1 корень уравнения x 1 e x 5, принадлежащий отрезку [; 1], применив метод половинного деления Решение: Обозначим левую часть уравнения через f( x ) Шаг 1 Вычисляем f( a) и f() b, где a, b 1 a b Шаг Вычисляем x Шаг 3 Вычисляем f ( x) Если f( x), то x корень уравнения Шаг 4 При f( x) если, то полагаем b x,, иначе полагаем a x, Шаг 5 Если b a то задача решена В качестве искомого a b корня (с заданной точностью ) принимается величина x Иначе процесс деления отрезка ab, пополам продолжаем, возвращаясь к шагу В результате произведенных действий получим: x,


6 Лекция Второй замечательный предел. показано, что предел числовой последовательности 1 n xn = 1 + , n N, имеет предел, равный e. = e. (6.

6 Лекция Второй замечательный предел. показано, что предел числовой последовательности 1 n xn = 1 + , n N, имеет предел, равный e. = e. (6. Второй замечательный предел Непрерывность функции Непрерывность функции в точке Непрерывность функции в интервале и на отрезке Точки разрыва функции и их классификация Свойства непрерывных функций 6 Лекция

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

lim lim arctg x~ 1 cos x ~ (1 x) ~1 m Лекция ( ) Предел функции (продолжение) lim f(x) = b, то f(x) = b +

lim lim arctg x~ 1 cos x ~ (1 x) ~1 m Лекция ( ) Предел функции (продолжение) lim f(x) = b, то f(x) = b + Предел функции (продолжение) Лекция (..) Теорема (о связи функции, ее предела и бесконечно малой). Если, где б.м. при a. Доказательство. Пусть б.м. при +. f( = b, то f( = b + f ( = b. Рассмотрим функцию

Подробнее

Лекция 2.4. Непрерывность функции. Классификация точек разрыва

Лекция 2.4. Непрерывность функции. Классификация точек разрыва Лекция 4 Непрерывность функции Классификация точек разрыва Аннотация: Рассматриваются свойства функции, непрерывной на отрезке Приводится пример использования этих свойств при решении нелинейных уравнений

Подробнее

4. Непрерывность функции 1. Основные определения

4. Непрерывность функции 1. Основные определения 4. Непрерывность функции 1. Основные определения Пусть f(x) определена в некоторой окрестности точки x. ОПРЕДЕЛЕНИЕ 1. Функция f(x) называется непрерывной в точке x если справедливо равенство f ( x). (1)

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1 РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ Найти область определения D и множество значений Е функции y Р е ш е н и е Функция y определена если те если Поэтому областью определения функции является множество f ; D R Поскольку

Подробнее

Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ. , если выполняются следующие три условия :

Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ. , если выполняются следующие три условия : 57 Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ Определение 1 Функция = f ( ) называется непрерывной в точке, если выполняются следующие три условия : 1) функция = f (

Подробнее

Лекции подготовлены доц. Мусиной М.В. Первый замечательный предел. Тригонометрические неопределенности. S (1).

Лекции подготовлены доц. Мусиной М.В. Первый замечательный предел. Тригонометрические неопределенности. S (1). Первый замечательный предел. Тригонометрические неопределенности. При вычислении пределов функций, которые содержат тригонометрические выражения часто используют предел: Это первый замечательный предел.

Подробнее

ФУНКЦИЯ. ПОНЯТИЕ ФУНКЦИИ

ФУНКЦИЯ. ПОНЯТИЕ ФУНКЦИИ ФУНКЦИЯ ПОНЯТИЕ ФУНКЦИИ Одним из основных математических понятий является понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пусть даны два непустых множества

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее

Последовательность. n n

Последовательность. n n Последовательность. Определение. Если каждому натуральному числу ( N ) по некоторому закону приведено в соответствие число { }, то этим определена числовая последовательность,,,... (или просто последовательность).

Подробнее

lim f x f x используя обозначения приращений. 0 (2).

lim f x f x используя обозначения приращений. 0 (2). Лекция подготовлена доц Мусиной МВ Непрерывность функции Пусть функция y = f(x) определена в точке x и в некоторой окрестности этой точки Функция y = f(x) называется непрерывной в точке x, если существует

Подробнее

Пределы и непрерывность

Пределы и непрерывность Пределы и непрерывность. Предел функции Пусть функция = f ) определена в некоторой окрестности точки = a. При этом в самой точке a функция не обязательно определена. Определение. Число b называется пределом

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

Непрерывность функции

Непрерывность функции Непрерывность функции Непрерывная в точке функция, свойства Непрерывная на множестве функция Теоремы о функциях, непрерывных на отрезке. Обратная функция Метод половинного деления. Односторонние пределы.

Подробнее

Раздел 2. Дифференциальное исчисление функции одной и нескольких переменных

Раздел 2. Дифференциальное исчисление функции одной и нескольких переменных - - Раздел Дифференциальное исчисление функции одной и нескольких переменных Функция действительного аргумента Действительные числа Целые положительные числа называются натуральными Добавим к натуральным

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

4. ЛЕКЦИЯ 4. НЕПРЕРЫВНЫЕ ФУНКЦИИ И ОБРАТНАЯ ФУНКЦИЯ. 3

4. ЛЕКЦИЯ 4. НЕПРЕРЫВНЫЕ ФУНКЦИИ И ОБРАТНАЯ ФУНКЦИЯ. 3 MA ksm-n4a-непрерывные функции 4. ЛЕКЦИЯ 4. НЕПРЕРЫВНЫЕ ФУНКЦИИ И ОБРАТНАЯ ФУНКЦИЯ. 3 4.. Непрерывные функции одной переменной. 3 4... Непрерывность функции в точке. 3 4... Точки разрыва, устранимые 9

Подробнее

Свойства непрерывных функций

Свойства непрерывных функций Свойства непрерывных функций Тимиркаева А.В., Нигматуллина А.М. 1 курс, факультет ИТФ, Елабужский институт КФУ, Научный руководитель: Миронова Ю. Н., Кандидат физ.-мат. наук, профессор РАЕ, Доцент кафедры

Подробнее

Замечание. Теорема дает второе определение предельной точки, теорема определение открытого множества, теорема определение замыкания.

Замечание. Теорема дает второе определение предельной точки, теорема определение открытого множества, теорема определение замыкания. ГЛАВА 3. Предел и непрерывность отображения 1. Предельные точки, открытые и замкнутые множества в метрических пространствах Опр. 3.1.1. Пусть (X, ) метрическое пространство, x X, >. Проколотой - окрестностью

Подробнее

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y)

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y) I Множества Основные понятия Отображение множеств Множество одно из основных понятий математики, которое не определяется Множество состоит из элементов Всякая совокупность элементов произвольного рода

Подробнее

Бесконечно малые величины. Бесконечно большие величины. Математический анализ (лекция 5) / 52

Бесконечно малые величины. Бесконечно большие величины. Математический анализ (лекция 5) / 52 Бесконечно большие величины Математический анализ (лекция 5) 16.03.2013 2 / 52 Определение Функция α(x) называется бесконечно малой величиной при x x 0 (x ), если lim α(x) = 0 ( x x0 ) lim α(x) = 0 x.

Подробнее

Лекция 2.5. Производные основных элементарных функций

Лекция 2.5. Производные основных элементарных функций Лекция 5 Производные основных элементарных функций Аннотация: Даются физическая и геометрическая интерпретации производной функции одной переменной Рассматриваются примеры дифференцирования функции и правила

Подробнее

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл

ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл ДИФФЕРЕНЦИРОВАНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ Понятие производной, ее геометрический и физический смысл Задачи, приводящие к понятию производной Определение Касательной S к линии y f (x) в точке A x ; f (

Подробнее

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 1 Определения Сформулируйте определение: 2 ноября 2013 г. 1. ограниченного

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 7 Предел функции СОДЕРЖАНИЕ: Предел функции в точке Предел функции на бесконечности Основные теоремы о пределах функций Бесконечно

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры.

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры. Математический анализ, 27/28 Группы БПМ7 75 Промежуточный экзамен, модули 2 На устном экзамене студент получает два теоретических вопроса и две задачи ВОПРОСЫ К ЭКЗАМЕНУ Расскажите о числах: натуральных,

Подробнее

Курс лекций по математическому анализу. Глава 3. Непрерывность функции одной переменной.

Курс лекций по математическому анализу. Глава 3. Непрерывность функции одной переменной. Глава 3 Непрерывность фнкции одной переменной 1 Непрерывность фнкции в точке Сществет несколько определений непрерывности фнкции одной переменной в точке, каждое из которы использется в определенном слчае

Подробнее

Дифференциальное исчисление функции одной переменной

Дифференциальное исчисление функции одной переменной Дифференциальное исчисление функции одной переменной Дифференциальное исчисление раздел математики, в котором изучаются производные и дифференциалы функций и их применение к исследованию функций 5 Производная

Подробнее

ТИПОВОЙ РАСЧЕТ «ПРЕДЕЛЫ»

ТИПОВОЙ РАСЧЕТ «ПРЕДЕЛЫ» ТИПОВОЙ РАСЧЕТ «ПРЕДЕЛЫ» I. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ. Числовые последовательности. Предел последовательности. Свойства пределов последовательности.. Существование предела монотонной ограниченной последовательности.

Подробнее

Лекция 3, 4. Будем считать, что область задания функции f (x) } значений аргумента функции f ( x n ) значений функции сходится к b.

Лекция 3, 4. Будем считать, что область задания функции f (x) } значений аргумента функции f ( x n ) значений функции сходится к b. Лекция 3, 4 Предельное значение функции при, + и Будем считать, что область задания функции f ( имеет хотя бы один элемент, лежащий вне отрезка [ A, A], для любого положительного числа A. Определение (по

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

Предел функции. 4 1 Понятие предела функции

Предел функции. 4 1 Понятие предела функции Глава 4 Предел функции 4 1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы

Подробнее

Вопросы и задачи к экзамену по математическому анализу ( )

Вопросы и задачи к экзамену по математическому анализу ( ) Вопросы и задачи к экзамену по математическому анализу (2013 2014) 29 августа 2013 г. Тема I. Вещественные числа 1. Определения 1.1. Сформулируйте правило сравнения вещественных чисел. Сформулируйте определение:

Подробнее

2. Сформулируйте определение того, что предел (по Коши) функции f(x) не равен + 3. Вычислите предел, не используя правила Лопиталя: lim

2. Сформулируйте определение того, что предел (по Коши) функции f(x) не равен + 3. Вычислите предел, не используя правила Лопиталя: lim Билет 1 1 Сформулируйте определение того, что предел (по Коши) функции f(x) равен + при x + Сформулируйте и докажите теорему о пределе произведения двух функций 2 Сформулируйте определение того, что предел

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

1. Числовой последовательностью называется бесконечное множество чисел

1. Числовой последовательностью называется бесконечное множество чисел 1. Числовой последовательностью называется бесконечное множество чисел (1) следующих одно за другим в определенном порядке и построенных по определенному закону, с помощью которого задается как функция

Подробнее

Ответы к заданию

Ответы к заданию Ответы к заданию.. понятия одного аргумента.. Основные элементарные.. элементарных функций.4. предела f в точке. х Х Если каждому элементу х из множества Х поставлен в соответствие определенный элемент

Подробнее

1., 2., 3., где а, d постоянные числа.

1., 2., 3., где а, d постоянные числа. ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь

Подробнее

Математика (БкПл-100)

Математика (БкПл-100) Математика (БкПл-100) М.П. Харламов 011/01 учебный год Тема. Пределы, непрерывность, производные 1 Тема: Предел функции 1. Предел функции Пусть f(x) функция, определенная на множестве Х; А и а числа. Опр.

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ Пределы Методические указания

Подробнее

Вопросы к экзамену по курсу 1-2 модулей

Вопросы к экзамену по курсу 1-2 модулей На устном экзамене студент получает два вопроса и две задачи. Вопросы к экзамену по курсу 1- модулей 1. Расскажите о числах: натуральных, целых, рациональных и иррациональных. Расскажите о числовой прямой

Подробнее

Лекция 1 Вещественные числа.

Лекция 1 Вещественные числа. Лекция 1 Вещественные числа. 1. Рациональные числа. Простейшими числами являются целые положительные числа 1, 2,..., используемые при счете. Они называются натуральными числами, и люди их знали так много

Подробнее

Введение в математический анализ. Теория пределов

Введение в математический анализ. Теория пределов Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Подробнее

Лекция 2. Последовательности

Лекция 2. Последовательности Лекция 2 Последовательности Определение. Если каждому натуральному числу ставится в соответствие по определенному закону некоторое вещественное число x, то множество занумерованных чисел x, x2,..., x,...

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Коршикова Т. И., Калиниченко

Подробнее

Учебные материалы по математическому анализу в электронном виде, а также примеры экзаменационных билетов прошлых лет вы можете найти на сайте

Учебные материалы по математическому анализу в электронном виде, а также примеры экзаменационных билетов прошлых лет вы можете найти на сайте Перечень тем и вопросов, выносимых на зимнюю сессию 2013-2014 уч. год, 1 курс, 2 поток Дисциплина Математический анализ, лектор к.ф.-м.н., доцент Фроленков И.В. 1. Понятие функции. График функции. Обзор

Подробнее

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ Министерство образования и науки Российской Федерации Ярославский государственный университет им ПГ Демидова Кафедра дискретного анализа СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Введение в математический анализ Предел последовательности и функции. Раскрытие неопределенностей в пределах. Производная функции. Правила дифференцирования. Применение производной

Подробнее

Производная и дифференциал. Лекция 4-5

Производная и дифференциал. Лекция 4-5 Производная и дифференциал Лекция 4-5 Приращения функции и аргумента Пусть функция y f ( x) определена в некоторой окрестности U( x) точки x и x U( x) произвольная точка из этой окрестности. Разность x

Подробнее

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения.

Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения. Методические рекомендации для выполнения практических работ по теме Производная функции и её приложения Цель: сформировать умение находить производные функций, заданных в явном, логарифмическом и параметрическом

Подробнее

Тема 39. «Производные функций»

Тема 39. «Производные функций» Тема 39. «Производные функций» Функция Производной функции в точке х 0 называется предел отношения приращения функции к приращению переменной, то есть = lim = lim + ( ) Таблица производных: Производная

Подробнее

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП

Функции нескольких переменных. 1. Определение функции нескольких переменных. Предел и непрерывность ФНП Функции нескольких переменных 11. Определение функции нескольких переменных. Предел и непрерывность ФНП 1. Определение функции нескольких переменных ОПРЕДЕЛЕНИЕ. Пусть X = { 1 n i X i R } U R. Функция

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

МНОЖЕСТВА. Операции над множествами.

МНОЖЕСТВА. Операции над множествами. МНОЖЕСТВА Множество В математике понятие множество используется для описания совокупности предметов или объектов При этом предполагается, что предметы объекты данной совокупности можно отличить друг от

Подробнее

2 Предел функции. , определенная на множестве всех натуральных чисел N 1,2,3,..., n,... . Значения функции f1, f2,..., fn,...

2 Предел функции. , определенная на множестве всех натуральных чисел N 1,2,3,..., n,... . Значения функции f1, f2,..., fn,... Предел функции. Предел числовой последовательности Определение. Бесконечной числовой последовательностью (или просто числовой последовательностью называется функция f f (, определенная на множестве всех

Подробнее

ИССЛЕДОВАНИЕ ФУНКЦИЙ

ИССЛЕДОВАНИЕ ФУНКЦИЙ Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы ИССЛЕДОВАНИЕ ФУНКЦИЙ (для

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ Министерство образования и науки Российской Федерации Курганский государственный университет Кафедра экономической теории и моделирования экономических процессов МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ

Подробнее

«ИССЛЕДОВАНИЕ ФУНКЦИЙ»

«ИССЛЕДОВАНИЕ ФУНКЦИЙ» Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы «ИССЛЕДОВАНИЕ ФУНКЦИЙ»

Подробнее

В.И. Иванов С.И. Васин

В.И. Иванов С.И. Васин Министерство образования Российской Федерации Российский государственный университет нефти и газа имени И.М. Губкина В.И. Иванов С.И. Васин Методические указания к изучению темы «ИССЛЕДОВАНИЕ ФУНКЦИЙ»

Подробнее

Приложение производных к исследованию функций

Приложение производных к исследованию функций Приложение производных к исследованию функций Лекции 1 6 Л.И. Терехина, И.И. Фикс Курс: Высшая математика Семестр 1, 2009 год portal.tpu.ru Теорема 1 (Ферма) Если функция y = f (x): 1) непрерывна в замкнутом

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

Математический анализ Лекция 1.2

Математический анализ Лекция 1.2 Московский Государственный Технический Университет им. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Математический анализ Лекция 1.2 к.ф.-м.н. Семакин А.Н. Математический анализ, Лекция

Подробнее

Математический анализ Модуль 2. Пределы и непрерывность функций одной переменной Лекция 2.4

Математический анализ Модуль 2. Пределы и непрерывность функций одной переменной Лекция 2.4 Математический анализ Модуль 2. Пределы и непрерывность функций одной переменной Лекция 2.4 Аннотация Непрерывность функций. Односторонняя непрерывность. Точки разрыва и их классификация. Свойства функций,

Подробнее

1. ПРОИЗВОДНАЯ. f x lim lim x. в точке x. dy Существуют и другие обозначения производной: y,, называется сложной, если u есть функция от x :

1. ПРОИЗВОДНАЯ. f x lim lim x. в точке x. dy Существуют и другие обозначения производной: y,, называется сложной, если u есть функция от x : СОДЕРЖАНИЕ ПРОИЗВОДНАЯ Определение производной Дифференцирование неявных функций Логарифмическое дифференцирование Производные высших порядков Дифференцирование функции, заданной параметрически 6 Уравнение

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы 1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. 1.1 Теорема о промежуточных значениях Теорема 1. (Больцано-Коши) Пусть функция f непрерывна на отрезке [a, b], причем f(a) f(b). Тогда для любого числа C, заключенного между f(a) и f(b) найдется точка γ (a, b), что f(γ) = C. Доказательство. Пусть, например, f(a) = A < B = f(b) и A < C < B. Функция g(x) = f(x) C, очевидно, непрерывна на [a, b]. Кроме того, g(a) < 0, g(b) > 0. Для доказательства теоремы достаточно показать, что существует такая точка γ (a, b), что g(γ) = 0. Разделим отрезок [a, b] точкой x 0 на два равных по длине отрезка, тогда либо g(x 0 ) = 0 и, значит, искомая точка γ = x 0 найдена, либо g(x 0 ) 0 и тогда на концах одного из полученных промежутков функция g принимает значения разных знаков, точнее, на левом конце значение меньше нуля, на правом - больше. Обозначим этот отрезок [a 1, b 1 ] и разделим его снова на два равных по длине отрезка и т.д. В результате, либо через конечное число шагов придем к искомой точке γ, в которой g(γ) = 0, либо получим последовательность вложенных отрезков [a n, b n ] по длине стремящихся к нулю и таких, что g(a n ) < 0 < g(b n ) (1) Пусть γ - общая точка всех отрезков [a n, b n ], n = 1, 2,... Тогда γ = lim a n = lim b n. Поэтому, в силу непрерывности функции g Из (1) находим, что g(γ) = lim g(a n ) = lim g(b n ) (2) Из (2) и (3) следует, что g(γ) = 0. lim g(a n ) 0 lim g(b n ) (3) Следствие 1. Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке есть хотя бы одна точка, в которой функция обращается в нуль. 1.2 Первая и вторая теоремы Вейерштрасса Будем говорить, что функция f, определенная на множестве E достигает на нем своей верхней (нижней) границы β = sup E f (α = inf E f), если существует такая точка x 0 E, что f(x 0 ) = β (f(x 0 ) = α). 1

Подробнее

ЛЕКЦИЯ N1. 1.Частично упорядоченные множества.

ЛЕКЦИЯ N1. 1.Частично упорядоченные множества. ЛЕКЦИЯ N1 Числовые множества Числовые последовательности Пределы, свойства Теорема Больцано-Вейерштрасса Функции Способы задания Элементарные функции Предел функции в точке 1Частично упорядоченные множества

Подробнее

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ):

Примеры: 1. Площадь треугольника. M 1 (x 1, y 1, z 1 ) и M 2 (x 2, y 2, z 2 ): Функции нескольких переменных Во многих вопросах геометрии естествознания и пр дисциплин приходится иметь дело с функциями двух трех и более переменных Примеры: Площадь треугольника S a h где a основание

Подробнее

- 1 - Вопросы и задачи к экзамену по математическому анализу I семестр,

- 1 - Вопросы и задачи к экзамену по математическому анализу I семестр, - - Вопросы и задачи к экзамену по математическому анализу I семестр, 9- Тема Числовые множества и последовательности Определения Сформулируйте определение ограниченного множества вещественных чисел Сформулируйте

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Математический анализ Модуль 1. Элементарные функции и пределы числовых последовательностей Лекция 1.2

Математический анализ Модуль 1. Элементарные функции и пределы числовых последовательностей Лекция 1.2 Математический анализ Модуль 1. Элементарные функции и пределы числовых последовательностей Лекция 1.2 Аннотация Принцип вложенных отрезков. Числовая функция. Основные элементарные функции. Элементарная

Подробнее

23 ВЫПУКЛОСТЬ И ВОГНУТОСТЬ ГРАФИКА ФУНКЦИИ. ТОЧКИ ПЕРЕГИБА

23 ВЫПУКЛОСТЬ И ВОГНУТОСТЬ ГРАФИКА ФУНКЦИИ. ТОЧКИ ПЕРЕГИБА Лекция 23 ВЫПУКЛОСТЬ И ВОГНУТОСТЬ ГРАФИКА ФУНКЦИИ ТОЧКИ ПЕРЕГИБА График функции y=f(x) называется выпуклым на интервале (a; b), если он расположен ниже любой своей касательной на этом интервале График

Подробнее

Â. Ë. Ôàéíøìèäò. Ñàíêò-Ïåòåðáóðã. «ÁÕÂ-Ïåòåðáóðã»

Â. Ë. Ôàéíøìèäò. Ñàíêò-Ïåòåðáóðã. «ÁÕÂ-Ïåòåðáóðã» Â. Ë. Ôàéíøìèäò Рекомендовано Научно-методическим cоветом по математике вузов Северо-Запада РФ в качестве учебника для студентов инженерных специальностей технических вузов Ñàíêò-Ïåòåðáóðã «ÁÕÂ-Ïåòåðáóðã»

Подробнее

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ

ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ Министерство образования и науки Российской Федерации «ТАМБОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ФГБОУ ВПО «ТГТУ» ВАСИЛЬЕВ ВВ, ЛАНОВАЯ АВ, ЩЕРБАКОВА АВ ОСНОВЫ МАТЕМАТИЧЕСКОГО АНАЛИЗА ТЕОРИЯ ПРЕДЕЛОВ

Подробнее

Введем понятие расстояния между точками этого пространства (метрику пространства R n ). Определение 2 Расстоянием ρ( PP, ) ρ PP,

Введем понятие расстояния между точками этого пространства (метрику пространства R n ). Определение 2 Расстоянием ρ( PP, ) ρ PP, 5 Глава ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Пространство R n Понятие функции нескольких переменных Определение Множество всех упорядоченных наборов (,,, n ), где,,, n - действительные числа называется n-мерным

Подробнее

Математический анализ. Введение [1,3,4]

Математический анализ. Введение [1,3,4] I Краткие исторические сведения Математический анализ Введение [1,3,4] Математический анализ часть математики, в которой изучаются функции и их обобщения методами теории пределов Поскольку понятие предела

Подробнее

Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные

Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Q и действительные R числа Натуральные и целые числа

Подробнее

2 ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Множество. Числовые множества.

2 ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Множество. Числовые множества. 1 ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Множество Числовые множества Понятие множества принадлежит к числу первичных, не определяемых через более простые Под множеством понимается совокупность (набор) некоторых

Подробнее

16.2.Н. Производная.

16.2.Н. Производная. 6..Н. Производная 6..Н. Производная. Оглавление 6..0.Н. Производная Введение.... 6..0.Н. Производная сложной функции.... 5 6..0.Н. Производные от функций с модулями.... 7 6..0.Н. Возрастание и убывание

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

Лекция Исследование функции и построение ее графика

Лекция Исследование функции и построение ее графика Лекция Исследование функции и построение ее графика Аннотация: Функция исследуется на монотонность, экстремум, выпуклость-вогнутость, на существование асимптот Приводится пример исследования функции, строится

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Тема. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Элементы теории множеств. Основные понятия Одним из основных понятий современной математики является понятие множества.

Подробнее

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m Тема Теория пределов Практическое занятие Числовые последовательности Определение числовой последовательности Ограниченные и неограниченные последовательности Монотонные последовательности Бесконечно малые

Подробнее

Методические указания по подготовке к экзамену по математическому анализу

Методические указания по подготовке к экзамену по математическому анализу Министерство образования Российской федерации Ярославский государственный университет им. П.Г. Демидова Кафедра дискретного анализа Методические указания по подготовке к экзамену по математическому анализу

Подробнее

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь-

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь- Последовательности. Числовая последовательность. Виды последовательностей Предел числовой последовательности Предельный переход в неравенствах Предел монотонной ограниченной последовательности. Число e.

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее