6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x)

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "6. Ряды Фурье Ортогональные системы функций. Ряд Фурье по ортогональной системе функций. Функции ϕ (x)"

Транскрипт

1 6 Ряды Фурье 6 Ортогональные системы функций Ряд Фурье по ортогональной системе функций Функции ϕ () и ψ (), определенные и интегрируемые на отрезке [, ], называются ортогональными на этом отрезке, если ϕ( ) ψ ( ) d Система функций ( ϕ ), ϕ ( ), K, ϕ ( ), K, определенных на отрезке [, ] и интегрируемых на нем вместе с их квадратами, называется ортогональной на отрезке [, ], если все функции последовательности попарно ортогональны на этом отрезке, те если ϕ ( ) ϕ ( ) d ( i j ) Замечание Предполагается, что среди функций нет функции, тождественно равной нулю i j ϕ ), ϕ ( ), K, ϕ ( ), K ( НАПРИМЕР ) Система функций si, si, K, si, K будет ортогональной на отрезке [, ] Действительно, при m m si si d ( m ) ( m ) cos cos d ( m ) ( m ) si si ( m ) ( m ) ) Система функций, cos, cos, K, cos, K будет ортогональной на отрезке [, ] Действительно, cos d si m cos cos d ( si si ) ( m ) ( m ) cos cos d ), (при m ) 38

2 3) Рассмотрим так называемую основную тригонометрическую систему функций:, cos, si, cos, si, K, cos, si, K Легко убедиться в том, что эта система ортогональна на отрезке [, ] Пусть система функций ϕ ), ϕ ( ), K, ϕ ( ), K (6) ортогональна на отрезке ( [, ] Рассмотрим ряд вида ϕ( ) ϕ ( ) K ϕ ( ) K ϕ ( ), (6) где (,, K) числа, называемые коэффициентами ряда (6) Пусть ряд (6) сходится на отрезке [, ] равномерно и f ( ) его сумма Определим коэффициенты этого ряда Будем для простоты считать, что функции ϕ ), ϕ ( ), K, ϕ ( ), K ( непрерывны на отрезке [, ] Тогда f () тоже будет функцией непрерывной (как сумма равномерно сходящегося ряда непрерывных функций) Умножим ряд (6) на функцию ϕ () Получится ряд, равномерно сходящийся на отрезке [, ] к функции f ( ) ϕ ( ) (равномерная сходимость сохранится, так как на отрезке [, ] функция ϕ () непрерывна и, следовательно, ограничена) Проинтегрируем его почленно в пределах от до и получим: K f ( ) ϕ( ) d ϕ( ) ϕ( ) d ϕ ( ) ϕ( ) d [ ϕ( )] ( ) d K, Откуда f ( ) ϕ( ) d [ ϕ( )] ( ) d f ( ) ϕ ( ) d [ ϕ ( )] ( ) d,,, K (63) ОПРЕДЕЛЕНИЕ Пусть функция f () непрерывна на отрезке [, ] или имеет на этом отрезке конечное число точек разрыва первого рода Рядом Фурье такой функции f () на отрезке [,] по ортогональной системе (6) называется ряд 39

3 ϕ( ) ϕ ( ) K ϕ ( ) K ) коэффициенты которого определяются равенствами (63) ϕ (, (6) Если ряд Фурье функции f () по системе (6) сходится к f () в каждой ее точке непрерывности, то говорят, что функция f () разлагается в ряд по ортогональной системе (6) Очевидно, что если функция f () разлагается в ряд по некоторой ортогональной системе функций, то это разложение единственно 6 Тригонометрические ряды Фурье В электротехнике и радиотехнике наиболее широко применяются ряды Фурье по основной тригонометрической системе функций, те по системе функций, cos, si, cos, si, K, cos, si, K (64) В 6 мы отметили, что система (64) является ортогональной на отрезке [, ] Поэтому ряд Фурье по системе (64) можно записать для любой функции f (), определенной и интегрируемой на отрезке [, ] Ряд Фурье по основной тригонометрической системе функций (64) называют тригонометрическим рядом Фурье Его записывают в виде cos si Коэффициенты и находятся по формулам f ( ) cos d f ( ) si d,,,,3, K, (65),,,3, K (66) (Чтобы получить эти формулы, следует в (63) вычислить [ ϕ ( )] ( ) d Легко проверить, что для основной тригонометрической системы (64) эти интегралы равны, если ϕ cos или ϕ si, и, если ϕ ) Достаточные условия сходимости тригонометрического ряда Фурье к функции f () на отрезке [, ] дают следующие две теоремы 4

4 ТЕОРЕМА 6 (Дирихле) Пусть на отрезке [, ] функция f () удовлетворяет условиям: ) f () непрерывна или имеет конечное число точек разрыва первого рода; ) f () монотонна или имеет конечное число точек экстремумов Тогда тригонометрический ряд Фурье функции f () сходится во всех точках отрезка [, ] и его суммой будет функция S (), определенная на этом отрезке следующим образом: а) S ( ) f ( ), если (, ) и точка непрерывности функции f () ; f ( ) f ( ) б) S ( ), если (, ) и точка разрыва функции f () ; f ( ) f ( ) в) S ( ) S( ) Причем на любом отрезке [, ] [, ], не содержащем точек разрыва функции f (), сходимость тригонометрического ряда Фурье будет равномерной Замечание Условия и теоремы 6 называются условиями Дирихле ТЕОРЕМА 6 Пусть на отрезке [, ] функция f () и ее производная f () непрерывны или имеют конечное число точек разрыва первого рода Тогда тригонометрический ряд Фурье функции f () сходится во всех точках отрезка [, ] и его суммой будет функция S (), определенная на этом отрезке следующим образом: а) S ( ) f ( ), если (, ) и точка непрерывности функции f () ; f ( ) f ( ) б) S ( ), если (, ) и точка разрыва функции f () ; f ( ) f ( ) в) S ( ) S( ) Причем, на любом отрезке [, ] [, ], не содержащем точек разрыва функции f (), сходимость тригонометрического ряда Фурье будет равномерной Существуют и другие достаточные условия разложимости функции в тригонометрический ряд Фурье Но для решения практических задач обычно достаточно теорем 6 и 6, так как условиям этих теорем удовлетворяет очень широкий класс функций 4

5 Сделаем также замечание по поводу суммы тригонометрического ряда Фурье Все функции системы (64) периодические, их общий период T Поэтому если ряд сходится на отрезке [, ], то он сходится и на всей числовой оси, а его сумма периодически повторяет те значения, которые она принимала на отрезке [, ] Следовательно, можно говорить о разложении в тригонометрический ряд Фурье не только функции f () на отрезке [, ], но и о разложении в ряд периодической функции, которая является ее периодическим продолжением (с периодом T ) на всю числовую ось Их ряд Фурье один и тот же, только в первом случае он рассматривается на отрезке [, ], а во втором на всей числовой оси, если, НАПРИМЕР Функцию f ( ) разложить в, если <, тригонометрический ряд Фурье на отрезке [ ; ] Функция f () удовлетворяет условиям и теоремы 6, и теоремы 6 Поэтому она представима в виде суммы ряда Фурье В данном случае По формулам (65) и (66) находим ( ) f d d d,, u du d cos d dv cos d, v si ( ) ) si si d cos ( ), u du d si d dv si d, v cos 4( ) cos cos d si 4( ) ( ) Таким образом, ряд Фурье функции f () будет иметь вид ( ) ) ( ) ( ) cos si 4

6 Сумма S () этого ряда функция периодическая, с периодом T 4 Согласно теореме 6 или 6, на интервале ( ; ) она будет совпадать с функцией f () В точках ± функция S () принимает значение f ( ) f () На остальной части числовой оси функция S () периодически повторяет эти значения (см рисунок) y 6 6 В приложениях часто пользуются другой, более компактной формой записи тригонометрического ряда Фурье, называемой комплексной формой ряда Фурье Чтобы получить ее, преобразуем выражения cos ω si ω, где ω, а коэффициенты и определяются формулами (65) и (66) По формулам Эйлера (см ) iω iω e e cosω, iω iω iω iω e e e e si ω i i iω iω iω iω e e e e Тогда cosω siω i i iω i iω e e Обозначим c, i i c, c Тогда ряд Фурье для функции () f перепишется в виде c iω iω ( ce c ) e 43 c e iω Теперь получим формулы для вычисления коэффициентов > имеем i c f ( ) cosω d i f ( ) si ω d f ( ) (cosω isi ω ) d f ( ) e iω d c При

7 Легко убедиться в том, что полученная формула будет верна и для для < Таким образом, получили, что ряд Фурье можно записать в виде c i e ω, где c f ( ) e iω d Эту форму записи и называют комплексной формой ряда Фурье 63 Тригонометрические ряды Фурье для четных и нечетных функций Разложение в ряд Фурье функций, заданных на [, ] и на [, ] а) Пусть функция f () задана на отрезке [, ] и удовлетворяет на нем условиям теоремы 6 или 6 Если при этом функция f () является четной, то функция f ( ) si будет нечетной, а f ( ) cos четной Но тогда по свойствам определенного интеграла f ( ) si d,,,3, K, f ( ) cos d f ( ) cos d,,,,3, K Следовательно, тригонометрический ряд Фурье четной функции будет иметь вид cos, (67) где f ( ) cos d,,,,3, K (68) Если же функция f () нечетная, то функция f ( ) si будет четной, а f ( ) cos нечетной Тогда по свойствам определенного интеграла f ( ) si d f ( ) si d f ( ) cos d,,,,3, K,,,3, K, и 44

8 Следовательно, тригонометрический ряд Фурье нечетной функции будет иметь вид si, (69) где f ( ) si d,,,3, K (6) Ряды (67) и (68) называют неполными тригонометрическими рядами Если функция f () разлагается в неполный тригонометрический ряд (67) [или (68)], то говорят, что она разлагается в ряд по косинусам (или по синусам) б) Пусть функция f () задана на отрезке [, ] и удовлетворяет на нем условиям теоремы 6 или 6 Такую функцию тоже можно разложить в ряд Фурье Чтобы сделать это, нужно доопределить функцию на промежутке [,) и разложить получившуюся функцию в ряд Фурье При этом полученный ряд следует рассматривать только на отрезке [, ], те на отрезке, на котором функция задана Доопределять функцию на промежуток [,) можно произвольным образом Но на практике обычно доопределяют ее четным или нечетным образом (те так, чтобы получающаяся в результате функция была четной или нечетной) Это удобно, так как коэффициенты ряда могут быть в этом случае вычислены по формулам (68) или (6) (те не нужно находить аналитического выражения для доопределенной части функции) Замечание Поскольку разложение в ряд Фурье функции, заданной на отрезке [, ], предполагает ее доопределение на промежутке [,) произвольным образом, то ряд Фурье для такой функции не будет единственным (другое доопределение другой ряд) НАПРИМЕР Функцию f ( ) разложить на отрезке [ ; ] в тригонометрический ряд Фурье: а) по косинусам, б) по синусам а) Доопределим функцию f () на промежутке [ ; ) четным образом В результате получим функцию ϕ (), график которой изображен на рисунке Так как ϕ () четная функция, то ее коэффициенты Фурье можно найти по формуле (68): f ( ) d ( ) d y ϕ ()

9 u, du d f ( ) cos d ( ) cosd dv cosd, v si (cos cos) si si d cos 4 ( ) ), k, k Таким образом, ряд Фурье функции ϕ () будет иметь вид (( ) ) 4 cos cos(k ) k (k ) Сумма S () этого ряда функция периодическая, с периодом T Согласно теореме 6 или 6, для всех [ ; ] она будет совпадать с функцией f () б) Доопределим функцию f () на промежутке y [ ; ) четным образом В результате получим ψ () функцию ψ (), график которой изображен на рисунке Так как ψ () нечетная функция, то ее ко- - - эффициенты Фурье можно найти по формуле (6): u, du d f ( ) si d ( ) si d dv si d, v cos cos cosd cos cos si ( ) ( ) (( ) ( ) ) Таким образом, ряд Фурье функции ψ () будет иметь вид (( ) ( ) ) si Сумма S () этого ряда функция периодическая, с периодом T Согласно теореме 6 или 6, для всех ( ; ) она будет совпадать с функцией f () 46

10 в) Пусть функция f () задана на произвольном отрезке [, ] и удовлетворяет на нем условиям теоремы 6 или 6 Такую функцию тоже можно разложить в ряд Фурье Чтобы сделать это, нужно периодически (с периодом ) продолжить функцию на всю числовую ось и разложить получившуюся функцию в ряд Фурье При этом полученный ряд следует рассматривать только на отрезке [, ], те на отрезке, на котором функция задана Разлагая периодическое продолжение функции f () в ряд Фурье, следует иметь в виду, что интегралы от периодической функции по отрезку [, ] и по отрезку [ T, T] совпадают Этот факт легко иллюстрируется геометрически: площади криволинейных трапеций с основанием [, ] и с основанием [ T, T] равны между собой y T T Поэтому коэффициенты ряда Фурье для периодического продолжения функции f () могут быть найдены по формулам f ( ) cos d f ( ) si d,,,,3, K,,,,3, K 64 Применение тригонометрических рядов Фурье при изучении периодических процессов Тригонометрические ряды Фурье имеют широкое применение в электротехнике и радиотехнике С их помощью изучают периодические процессы Как известно, простое гармоническое колебание описывается уравнением s Asi( ω t ϕ), где s отклонение колеблющейся точки от положения равновесия, A амплитуда колебания, ω круговая частота, t время, ϕ начальная фаза Поэтому функцию A si( ω t ϕ) (и ее график) называют часто простой гармоникой Колебания, получающиеся в результате наложения нескольких простых гармонических колебаний, называются сложными гармоническими колебаниями Доказано, что сложное колебание A si( ω t ϕ) A si( ω t ϕ) K A k si( ωk t ϕk) будет периодическим, если частоты ω i соизмеримы, те если существуют такие целые числа r, r, K, r k и частота ω, что ω r ω, ω rω, K, ω k rkω 47

11 При этом, при различных значениях параметров Ai, ϕ i и целых чисел r i и k будут получаться самые разнообразные периодические движения Замечание Совокупность величин A i носит название амплитудного спектра, а совокупность величин ϕ фазового спектра Естественно возникла обратная задача: нельзя ли так подобрать простые гармонические колебания, чтобы их наложение вызвало заранее данное периодическое движение, те нельзя ли представить периодическое движение как сложное гармоническое колебание? Оказалось, что этого, как правило, сделать нельзя, если ограничиться конечной суммой простых гармоник А если привлечь к рассмотрению бесконечные суммы простых гармоник (те ряды)? Но представление функции в виде бесконечной суммы простых гармоник это и есть представление функции ее тригонометрическим рядом Фурье Действительно, cos ω si ω A si( ω ϕ ), где ω, A, tg ϕ Представление периодической функции рядом Фурье (те в виде суммы гармоник) называется гармоническим анализом i 48

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ

1. РЯДЫ ФУРЬЕ РЕШЕНИЕ ТИПОВЫХ ЗАДАЧ СПИСОК ЛИТЕРАТУРЫ ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ РЯДЫ ФУРЬЕ 4 Понятие о периодической функции 4 Тригонометрический полином 6 3 Ортогональные системы функций 4 Тригонометрический ряд Фурье 3 5 Ряд Фурье для четных и нечетных функций 6 6 Разложение

Подробнее

Тема: Тригонометрические ряды Фурье

Тема: Тригонометрические ряды Фурье Математический анализ Раздел: Числовые и функциональные ряды Тема: Тригонометрические ряды Фурье Лектор Рожкова С.В. 013 г. 38. Тригонометрические ряды Фурье 1. Разложение функции в тригонометрический

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

{тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды

{тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды {тригонометрический ряд тригонометрическая система примеры - разложение на интервале [ -l; l ] для функций произвольного периода - неполные ряды разложение по синусам и косинусам четные и нечетные продолжения}

Подробнее

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А.

РЯДЫ ФУРЬЕ. Автор-составитель: доцент каф. ВМ Цапаева С.А. РЯДЫ ФУРЬЕ Автор-составитель: доцент каф ВМ Цапаева СА Великий Новгород ПОНЯТИЕ И СВОЙСТВА ГАРМОНИК Определение Гармониками называются комплекснозначные функции вида iω ( ) e, где действительная переменная,

Подробнее

ω n =, а коэффициенты a n и

ω n =, а коэффициенты a n и Интеграл Фурье Действительная и комплексная формы записи интеграла Фурье Пусть f () непериодическая функция, определенная на всей числовой оси и удовлетворяющая условиям Дирихле на любом конечном промежутке

Подробнее

Лекция 4. Гармонический анализ. Ряды Фурье

Лекция 4. Гармонический анализ. Ряды Фурье Лекция 4. Гармонический анализ. Ряды Фурье Периодические функции. Гармонический анализ В науке и технике часто приходится иметь дело с периодическими явлениями, т. е. такими, которые повторяются через

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет. Кафедра «Высшая математика 3» РЯДЫ ФУРЬЕ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет. Кафедра «Высшая математика 3» РЯДЫ ФУРЬЕ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра «Высшая математика 3» РЯДЫ ФУРЬЕ Методические указания по дисциплине «Математика» для студентов строительных

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Элементы гармонического анализа

Элементы гармонического анализа Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Высшая и прикладная математика» Н. П. Чуев Элементы гармонического анализа Методические

Подробнее

7 Тригонометрические ряды Фурье

7 Тригонометрические ряды Фурье 35 7 Тригонометрические ряды Фурье Ряды Фурье для периодических функций с периодом T. Пусть f(x) - кусочно - непрерывная периодическая функция с периодом T. Рассмотрим основную тригонометрическую систему

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

( x) С учетом того, что коэффициенты при косинусах принято обозначать буквой a, при синусах буквой b, а начальный коэффициент

( x) С учетом того, что коэффициенты при косинусах принято обозначать буквой a, при синусах буквой b, а начальный коэффициент Лекция 4 РЯДЫ ФУРЬЕ ПО ТРИГОНОМЕТРИЧЕСКОЙ СИСТЕМЕ Ряд Фурье для периодической функции с периодом T Признаки сходимости тригонометрических рядов Фурье 3 Тригонометрические ряды Фурье для четных и нечетных

Подробнее

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье.

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье. Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда..4. Равенство Парсеваля Пусть система вещественных функций g( ), g( ),..., g ( ),... ортогональна и

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

(a k cos nx + b k sin nx) (5.1.1) k=1

(a k cos nx + b k sin nx) (5.1.1) k=1 Глава 5. Ряды Фурье 5.. Занятие 5 5... Основные определения Функциональный ряд вида a 2 + (a k cos x + b k si x) (5..) называется тригонометрическим рядом, числа a и b коэффициентами тригонометрического

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ

О. В. Афонасенков, Т. А. Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ, РЯДЫ И ИНТЕГРАЛ ФУРЬЕ О В Афонасенков Т А Матвеева ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ И ИНТЕГРАЛ ФУРЬЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ.

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РЯДЫ ФУРЬЕ. Министерство образования Российской Федерации Ульяновский государственный технический университет ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ РЯДЫ ФУРЬЕ Ульяновск УДК 57(76) ББК 9 я 7 Ч-67 Рецензент кандфиз-матнаук

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

Ряды и преобразования Фурье.

Ряды и преобразования Фурье. Ряды и преобразования Фурье. Тригонометрические ряды. Определение. Тригонометрическим рядом T( называется ряд вида где -я частичная сумма ряда T( A ( + A (, A( a, A( a cosx+ b six. T( имеет вид s ( A (

Подробнее

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости).

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости). «Ряды» Тесты для самопроверки Необходимый признак сходимости ряда Теорема необходимый признак сходимости Если ряд сходится то lim + Следствие достаточное условие расходимости ряда Если lim то ряд расходится

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Тема: Степенные ряды.

Тема: Степенные ряды. Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ. Кафедра «Математика»

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ. Кафедра «Математика» ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Математика» Учебно-методическое пособие по дисциплине «Математика» «Ряды Часть II» Авторы

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» ВЫСШАЯ МАТЕМАТИКА МАТЕМАТИКА МАТЕМАТИЧЕСКИЙ АНАЛИЗ РЯДЫ Методические рекомендации

Подробнее

1.10. Гармонический анализ; ряды и преобразование Фурье

1.10. Гармонический анализ; ряды и преобразование Фурье Лекция 3. Ряды Фурье. Достаточное условие представления функции f( рядом Фурье. Разложение периодической.. Гармонический анализ; ряды и преобразование Фурье... Свойство ортогональности функций Две вещественные

Подробнее

Математический анализ Ряды

Математический анализ Ряды Тема 6. Пределы последовательностей и функций, их свойства и приложения Математический анализ Ряды Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Н.В. Комиссарова МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» НВ Комиссарова МАТЕМАТИКА Часть 6 РЯДЫ Методические указания для студентов -го и -го курсов

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

называется обобщенным рядом Фурье по ортогональной системе функций

называется обобщенным рядом Фурье по ортогональной системе функций 345 4 Ряды Фурье по ортогональным системам функций Пусть ( ( x - ортогональная система функций в L [ ; ] Выражение c ( x + c1 ( x + 1 c ( x + + ( c ( x = c ( x (41 = называется обобщенным рядом Фурье по

Подробнее

ВЫСШИЙ ГОСУДАРСТВЕННЫЙ КОЛЛЕДЖ СВЯЗИ ПРОГРАММА, МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ. по дисциплине

ВЫСШИЙ ГОСУДАРСТВЕННЫЙ КОЛЛЕДЖ СВЯЗИ ПРОГРАММА, МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ. по дисциплине ВЫСШИЙ ГОСУДАРСТВЕННЫЙ КОЛЛЕДЖ СВЯЗИ ПРОГРАММА МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ по дисциплине «ВЫСШАЯ МАТЕМАТИКА» Часть IV для студентов уровня ВО заочной формы обучения специальности 45 «Сети

Подробнее

РЯДЫ ФУРЬЕ. К а ф е д р а Прикладной математики и информатики. Практикум по математическому анализу

РЯДЫ ФУРЬЕ. К а ф е д р а Прикладной математики и информатики. Практикум по математическому анализу МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» К а ф е д р а Прикладной математики

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Министерство общего и профессионального образования Российской Федерации САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ АП Аксёнов МАТЕМАТИЧЕСКИЙ АНАЛИЗ РЯДЫ ФУРЬЕ ИНТЕГРАЛ ФУРЬЕ СУММИРОВАНИЕ

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее

где - функции данного класса, а - коэффициенты из R или C,

где - функции данного класса, а - коэффициенты из R или C, Ряды Фурье Ортогональные системы функций С точки зрения алгебры равенство где - функции данного класса а - коэффициенты из R или C попросту означает что вектор является линейной комбинацией векторов В

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

Всего 66 вопросов. 1 год обучения. Модули 1 2.

Всего 66 вопросов. 1 год обучения. Модули 1 2. ВОПРОСЫ И ТИПОВЫЕ ЗАДАЧИ к итоговому экзамену по дисциплине «Математический анализ» Прикладная математика На устном экзамене студент получает два теоретических вопроса и две задачи Всего 66 вопросов год

Подробнее

РЯДЫ. 1. Числовые ряды

РЯДЫ. 1. Числовые ряды РЯДЫ. Числовые ряды. Основные определения Пусть дана бесконечная последовательность чисел Выражение (бесконечная сумма) a, a 2,..., a n,... a i = a + a 2 + + a n +... () i= называется числовым рядом. Числа

Подробнее

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ

3724 РЯДЫ. КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 3724 РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ 1 РАБОЧАЯ ПРОГРАММА РАЗДЕЛОВ «РЯДЫ КРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ» 11 Числовые ряды Понятие числового ряда Свойства числовых рядов Необходимый признак сходимости

Подробнее

Тригонометрические ряды Фурье

Тригонометрические ряды Фурье Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

4.3. Сложение колебаний. что фаза 0 t растет линейно со временем, а соответственно вектор

4.3. Сложение колебаний. что фаза 0 t растет линейно со временем, а соответственно вектор 4.3. Сложение колебаний. 4.3.. Векторная диаграмма. Сложение колебаний одинаковой частоты. Удобно использовать наглядное изображение колебаний с помощью векторных диаграмм. Введем ось и отложим вектор,

Подробнее

Лекция 6 ЦЕПИ ПЕРИОДИЧЕСКОГО НЕСИНУСОИДАЛЬНОГО ТОКА

Лекция 6 ЦЕПИ ПЕРИОДИЧЕСКОГО НЕСИНУСОИДАЛЬНОГО ТОКА Лекция 6 ЦЕПИ ПЕРИОДИЧЕСКОГО НЕСИНУСОИДАЛЬНОГО ТОКА План Тригонометрическая форма ряда Фурье Ряд Фурье в комплексной форме Комплексный частотный спектр 3 Мощности в цепях несинусоидального тока Коэффициенты,

Подробнее

Белорусский национальный технический университет Факультет информационных технологий и робототехники Кафедра высшей математики 1

Белорусский национальный технический университет Факультет информационных технологий и робототехники Кафедра высшей математики 1 Белорусский национальный технический университет Факультет информационных технологий и робототехники Кафедра высшей математики СОГЛАСОВАНО СОГЛАСОВАНО Заведующая кафедрой Декан факультета Катковская И

Подробнее

Тема 2. ГАРМОНИЧЕСКИЙ АНАЛИЗ ПЕРИОДИЧЕСКИХ СИГНАЛОВ

Тема 2. ГАРМОНИЧЕСКИЙ АНАЛИЗ ПЕРИОДИЧЕСКИХ СИГНАЛОВ Тема ГАРМОНИЧЕСКИЙ АНАЛИЗ ПЕРИОДИЧЕСКИХ СИГНАЛОВ Базисная система гармонических функций Тригонометрический ряд Фурье Амплитудный и фазовый спектры периодического сигнала Историческая справка Комплексный

Подробнее

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы

I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы ЛАБОРАТОРНАЯ РАБОТА 7 ОБОБЩЕННЫЕ ФУНКЦИИ I. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Обозначим через D множество всех бесконечно дифференцируемых финитных функций действительного переменного. Это

Подробнее

Лекция 4 Москва, 2015

Лекция 4 Москва, 2015 Спектральное представление сигналов к.ф.-м.н., доцент Московский государственный университет факультет ВМК кафедра Математических методов прогнозирования Спектральное представление сигналов Лекция 4 Москва,

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

ИССЛЕДОВАНИЕ СПЕКТРАЛЬНОГО СОСТАВА ПЕРИОДИЧЕСКИХ НЕСИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ

ИССЛЕДОВАНИЕ СПЕКТРАЛЬНОГО СОСТАВА ПЕРИОДИЧЕСКИХ НЕСИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ Лабораторная работа 4 ИССЛЕДОВАНИЕ СПЕКТРАЛЬНОГО СОСТАВА ПЕРИОДИЧЕСКИХ НЕСИНУСОИДАЛЬНЫХ КОЛЕБАНИЙ 4 Тригонометрическая форма ряда Фурье Если периодическая несинусоидальная функция отвечает условиям Дирихле,

Подробнее

FOURIER SERIES. å. à. Çàòàä M. I. VISHIK

FOURIER SERIES. å. à. Çàòàä M. I. VISHIK FOURIER SERIES M I VISHIK Represetatio of ay periodic fuctio as a sum of correspodig trigoometric series, kow as its Fourier series expasio, is discussed Parseval equatio is preseted: itegral of a squared

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Задачи, приводящие к понятию определённого интеграла J n d lm n m Δõ ξ Δ Геометрический смысл определённого интеграла площадь криволинейной трапеции Физический смысл определённого

Подробнее

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ

ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Московский физико-технический институт государственный университет) О.В. Бесов ТРИГОНОМЕТРИЧЕСКИЕ РЯДЫ ФУРЬЕ Учебно-методическое пособие Москва, 004 Составитель О.В.Бесов УДК 517. Тригонометрические ряды

Подробнее

Спектральное представление функций (сигналов)

Спектральное представление функций (сигналов) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА»

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

Контрольные работы по дисциплине «Математика» для студентов направления ( ) «Технология и дизайн упаковочного производства»

Контрольные работы по дисциплине «Математика» для студентов направления ( ) «Технология и дизайн упаковочного производства» Контрольные работы по дисциплине «Математика» для студентов направления 676 (9) «Технология и дизайн упаковочного производства» Тематических перечень Линейная алгебра Векторная алгебра Аналитическая геометрия

Подробнее

Лекция Несобственные интегралы

Лекция Несобственные интегралы Лекция..9. Несобственные интегралы Аннотация: Рассматриваются несобственные интегралы первого и второго рода. Вводится понятие главного значения несобственного интеграла. Определенный интеграл был введен

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

Министерство образования Республики Беларусь. Учреждение образования «Полоцкий государственный университет»

Министерство образования Республики Беларусь. Учреждение образования «Полоцкий государственный университет» Министерство образования Республики Беларусь Учреждение образования «Полоцкий государственный университет» МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПОДГОТОВКЕ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО РАЗДЕЛУ «РЯДЫ» ДЛЯ СТУДЕНТОВ ЗАОЧНОЙ

Подробнее

Тема 2. Сложение колебаний 1. Методы сложения колебаний 2. Сложение одинаково направленных колебаний. 4. Сложное колебание и его гармонический спектр

Тема 2. Сложение колебаний 1. Методы сложения колебаний 2. Сложение одинаково направленных колебаний. 4. Сложное колебание и его гармонический спектр Тема. Сложение колебаний. Методы сложения колебаний. Сложение одинаково направленных колебаний сложение одинаково направленных колебаний с равными периодами сложение одинаково направленных колебаний с

Подробнее

Глава III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ 3.1. Двойные интегралы

Глава III. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ 3.1. Двойные интегралы Глава III ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ, ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО, РЯДЫ Двойные интегралы ЛИТЕРАТУРА: [], гл; [], глii; [9], гл XII, 6 Для решения задач по этой теме необходимо,

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Задачи, приводящие к понятию определённого интеграла

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Задачи, приводящие к понятию определённого интеграла ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ Задачи, приводящие к понятию определённого интеграла J n lm n m Δх 0 f ξ Δ Геометрический смысл определённого интеграла площадь криволинейной трапеции Физический смысл определённого

Подробнее

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx.

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Лекция 5. Понятие несобственного интеграла -го рода, его вычисление. Критерий сходимости. Интегралы от положительных функций. Признаки сравнения, абсолютная

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ВН Алексеев, ДА Приказчиков, ВВ Ридель РЯДЫ Утверждено редакционно-издательским советом РОАТ в качестве учебного пособия РОАТ Москва 9 5 УДК 575(75)

Подробнее

ХVIII. Ряды. 1. Понятие о числовом ряде. Числовым рядом называется выражение вида

ХVIII. Ряды. 1. Понятие о числовом ряде. Числовым рядом называется выражение вида ХVIII Ряды Понятие о числовом ряде Числовым рядом называется выражение вида (8) где,, 3, некоторые числа, называемые членами ряда Если п произвольный (текущий) номер, то число а п называют общим членом

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО КУРСУ ВЫСШАЯ МАТЕМАТИКА (СПЕЦГЛАВЫ) ДЛЯ СТУДЕНТОВ ЗАОЧНИКОВ НАПРАВЛЕНИЯ , ,

МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО КУРСУ ВЫСШАЯ МАТЕМАТИКА (СПЕЦГЛАВЫ) ДЛЯ СТУДЕНТОВ ЗАОЧНИКОВ НАПРАВЛЕНИЯ , , МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ ПО КУРСУ ВЫСШАЯ МАТЕМАТИКА (СПЕЦГЛАВЫ) ДЛЯ СТУДЕНТОВ ЗАОЧНИКОВ НАПРАВЛЕНИЯ 7, 7, СПБ ГУТ Методические указания и контрольные задания по курсу «Высшая математика

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

Ряды Фурье повышенной сложности. Каждая задача снабжена кратким содержательным комментарием.

Ряды Фурье повышенной сложности. Каждая задача снабжена кратким содержательным комментарием. Ряды Фурье повышенной сложности В данном файле содержатся дополнительные примеры с решениями, которые не вошли в основной урок http://mthproi.r/rydy_rie_primery_resheij.htm Каждая задача снабжена кратким

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ( МИИТ ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ. Кафедра «Прикладная математика 1»

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ( МИИТ ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ. Кафедра «Прикладная математика 1» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ( МИИТ ) МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ( МИИТ ) Кафедра «Прикладная математика» Кафедра «Прикладная математика» ЮП Власов

Подробнее

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя.

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Линейные и нелинейные уравнения физики Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич

Подробнее

7. Общие понятия. U n (x),n N, определены в области D. Выра-

7. Общие понятия. U n (x),n N, определены в области D. Выра- Глава Функциональные ряды 7 Общие понятия U (), N, определены в области D Выра- Определение 7 Пусть функции жение () U() U() U(), D U (5) называется функциональным рядом Каждому значению D соответствует

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика»

УЧЕБНО МЕТОДИЧЕСКИЙ КОМПЛЕКС дисциплины «Математика» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования "УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ" (УГНТУ) Кафедра математики

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ

Лекция 15. ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ 54 Лекция 5 ПРЕОБРАЗОВАНИЕ ФУРЬЕ И СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА ЭЛЕКТРИЧЕ- СКИХ ЦЕПЕЙ План Спектры апериодических функций и преобразование Фурье Некоторые свойства преобразования Фурье 3 Спектральный метод

Подробнее

РЯДЫ. Учебное пособие

РЯДЫ. Учебное пособие РЯДЫ Учебное пособие Министерство образования и науки Российской Федерации Уральский федеральный университет имени первого Президента России Б Н Ельцина Ряды Учебное пособие Рекомендовано методическим

Подробнее

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1 РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ Найти область определения D и множество значений Е функции y Р е ш е н и е Функция y определена если те если Поэтому областью определения функции является множество f ; D R Поскольку

Подробнее

Нижегородский государственный университет им. Н.И. Лобачевского Механико-математический факультет Кафедра теории функций

Нижегородский государственный университет им. Н.И. Лобачевского Механико-математический факультет Кафедра теории функций Нижегородский государственный университет им НИ Лобачевского Механико-математический факультет Кафедра теории функций Михаил Александрович Солдатов Светлана Серафимовна Круглова Евгений Валентинович Круглов

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Е.В. Небогина, О.С. Афанасьева РЯДЫ. ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ

Е.В. Небогина, О.С. Афанасьева РЯДЫ. ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ ЕВ Небогина, ОС Афанасьева РЯДЫ ПРАКТИКУМ ПО ВЫСШЕЙ МАТЕМАТИКЕ Самара 9 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0 Ряды Лорана Более общим типом степенных рядов являются ряды, содержащие как положительные, так и отрицательные степени z z 0. Как и ряды Тейлора, они играют важную роль в теории аналитических функций.

Подробнее

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА.

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра инженерной математики И В Прусова Н А Кондратьева Н К Прихач ВЫСШАЯ МАТЕМАТИКА РЯДЫ, ТЕОРИЯ ФУНКЦИЙ

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

Лекция 1. Функциональные ряды

Лекция 1. Функциональные ряды С А Лавренченко wwwlwrecekoru Лекция Функциональные ряды Понятие функционального ряда Ранее мы изучали числовые ряды, т е членами ряда были числа Сейчас мы переходим к изучению функциональных рядов, т

Подробнее

ГАРМОНИЧЕСКИЙ АНАЛИЗ И СИНТЕЗ ПЕРИОДИЧЕСКИХ СИГНАЛОВ

ГАРМОНИЧЕСКИЙ АНАЛИЗ И СИНТЕЗ ПЕРИОДИЧЕСКИХ СИГНАЛОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ. Н.И. ЛОБАЧЕВСКОГО Гармонический анализ и синтез периодических сигналов: Описание к лабораторной работе

Подробнее