Формула Тейлора для ФНП. Экстремумы ФНП

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Формула Тейлора для ФНП. Экстремумы ФНП"

Транскрипт

1 Математический анализ Раздел: Функция нескольких переменных Тема: Формула Тейлора для ФНП. Экстремумы ФНП Лектор Рожкова С.В. 1 г.

2 18. Формула Тейлора для ФНП Если y = раз дифференцируема в окрестности точки, то справедлива формула 3: = K β, 1!! где β, бесконечно малая при. Формулу 3 называют формулой Тейлора разложения функции по степеням в окрестности точки. Сумму K 1!!! называют многочленом Тейлора функции по степеням. Слагаемое R = β называют остаточным членом формулы Тейлора.

3 Остаточный член R можно записать в нескольких формах: 1 R = β =o форма Пеано; если y = 1 раз дифференцируема в окрестности точки, то R можно записать в форме Лагранжа : где c точка между и. Если c точка между и, то θ ; 1 такое, что c = θ Δ, где Δ=. Остаточный член в форме Лагранжа примет вид:, 1! 1 1 = c R. 1! 1! Δ Δ = = c R θ

4 Если в формуле Тейлора =, то она примет вид 4: Формулу 4 называют формулой Маклорена. Заметим, что = Δ = d. Следовательно, формулу 3 можно записать в виде 5: Формулу 5 можно обобщить на случай ФНП.. 1!!! 1! 1 Δ = d d d d θ K. 1!!! 1! 1 1 = c K

5 Пусть z =,y 1 раз дифференцируема в некоторой окрестности U точки M. Тогда, как и в случае функции y =, справедлива формула d M d M d M M = M K R 1!!! где M Δ Δy U, R = d 1 θ Δ, y 1! θ Δy или R = oρ при ρ = Δ Δy.. Формулу 5 называют формулой Тейлора для функции z =,y в окрестности точки M по степеням, y y. < θ < 1, 5

6 M!,y вокрест- Сумму d M d M d M K 1!! называют многочленом Тейлора функции ности точки M. Слагаемое R называют остаточным членом формулы Тейлора функции,y в окрестности точки M в форме Лагранжа Пеано. Аналогичный вид имеет формула Тейлора для функций большего числа переменных

7 19. Понятие квадратичной формы ОПРЕДЕЛЕНИЕ. Многочлен переменных 1,,, в котором все члены имеют одинаковую степень, называется однородным или формой. ПРИМЕРЫ. 1 1,, 3 = однородный 1-й степени линейная форма; 1, = однородный -й степени квадратичная форма; 3 1, = однородный 3-й степени.

8 Общий вид квадратичной формы: 1,,, =a 11 1 a a a 1 1 a a 1 1 a 3 3 a 4 4 a a 1, 1. Будем считать, что a ij = a ji. Тогда квадратичную форму можно записать в виде K 1,,, = i, j = 1 a ij i j

9 ОПРЕДЕЛЕНИЕ. Квадратичная форма 1,,, называется положительно отрицательно определенной если 1,,, > [ 1,,, <] для любых, не равных одновременно нулю, значений переменных 1,,,. Положительно и отрицательно определенные квадратичные формы называются знакоопределенными. Если квадратичная форма может принимать как положительные, так и отрицательные значения, то она называется неопределенной. Симметрическая матрица из коэффициентов квадратичной формы, т.е. матрица вида a11 a1 K a1 a1 a K a A = K K K K a1 a K a называется матрицей квадратичной формы.

10 Главными угловыми минорами квадратной матрицы C =c ij называются ее миноры вида c11 c1 c13 c14 c11 c1 c13 c11 c1 c1 c c3 c4 c11,, c1 c c3, и т.д. c1 c c31 c3 c33 c34 c31 c3 c33 c c c c ТЕОРЕМА 1 критерий Сильвестра. 1 Квадратичная форма положительно определена все главные угловые миноры ее матрицы положительные. Квадратичная форма отрицательно определена знаки главных угловых миноров ее матрицы чередуются, начиная с минуса, т.е. a11 a1 a13 a11 a1 a11 <, >, c1 a a3 < и т.д. a1 a a a a

11 . Экстремумы ФНП Пусть z =,y определена в некоторой области D Oy, M D. ОПРЕДЕЛЕНИЕ 1. Точка M называется точкой максимума функции,y, если M,y UM,δ выполняется неравенство,y. Точка M называется точкой минимума функции,y, если M,y UM,δ выполняется неравенство,y. Точки максимума и минимума функции называются ее точками экстремума. Значения функции в точках максимума и минимума называются соответственно максимумами и минимумами экстремумами этой функции.

12 Замечания. 1 По смыслу точкой максимума минимума функции,y могут быть только внутренние точки области D. Если M,y U*M,δ выполняется неравенство,y< [,y> ], то точку M называют точкой строгого максимума соответственно точкой строгого минимума функции,y. Определенные в 1 точки максимума и минимума называют иногда точками нестрогого максимума и минимума. 3 Понятия экстремумов носят локальный характер. В рассматриваемой области функция может совсем не иметь экстремумов, может иметь несколько в том числе бесчисленно много минимумов и максимумов. При этом некоторые минимумы могут оказаться больше некоторых ее максимумов.

13 ТЕОРЕМА 1 необходимые условия экстремума. Если функция z =,y вточке M имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю, либо хотя бы одна из них не существует. ГЕОМЕТРИЧЕСКИЙ СМЫСЛ теоремы 1. Если M точка экстремума функции z =,y, то касательная плоскость к графику этой функции в точке P, либо параллельна плоскости Oy, либо вообще не существует. ДОКАЗАТЕЛЬСТВО Точки, в которых обе частные производные первого порядка функции z =,y равны нулю, называются стационарными точками функции z =,y. Точки, удовлетворяющие условиям теоремы 1, называются критическими точками функции z =,y.

14 Пусть z =,y, Dz=D Oy, M D. Пусть z =,y дважды дифференцируема в окрестности U точки M и M критическая точка для z =,y. Тогда 1 M U d M d M M = M R, 1!! где R = oρ при ρ = Δ Δy ; M =, y M = d M dm = и M = M! d M Δ M,! Получили, что знак ΔM и d M совпадает. Следовательно, доказана следующая теорема. R,

15 ТЕОРЕМА достаточные условия экстремума функции переменных. Пусть M стационарная точка функции z = M и в некоторой окрестности точки M функция M имеет непрерывные частные производные -го порядка. Тогда 1 M имеет в точке M максимум, если квадратичная форма d M отрицательно определена ; M имеет в точке M минимум, если квадратичная форма d M положительно определена ; 3 если квадратичная форма d M является неопределенной, то M не является точкой экстремума; 4 если d M или d M т.е. среди главных угловых миноров имеются нулевые, то никакого заключения о критической точке M сделать нельзя и требуются дополнительные исследования.

16 Если z =,y, то d M квадратичная форма с матрицей M y M y M yy M Тогда: 1 Квадратичная форма d M отрицательно определена если M y M M <, > ; M M y Квадратичная форма d M положительно определена если M y M M >, >. M M y yy yy

17 ТЕОРЕМА 3 достаточные условия экстремума функции ДВУХ переменных. Пусть M критическая точка функции z =,y ив некоторой окрестности точки M функция имеет непрерывные частные производные до -го порядка включительно. Обозначим A =, y, B = y, y, C = yy, y. Тогда 1 если A C B <, то точка M не является точкой экстремума; если A C B > и A >, то в точке M функция имеет минимум; 3 если A C B > и A <, то в точке M функция имеет максимум; 4 если A C B =,то никакого заключения о критической точке M сделать нельзя и требуются дополнительные исследования.

18 Замечание. Если с помощью теоремы 3 исследовать критическую точку M не удалось, то ответ на вопрос о наличии в M экстремума даст знак Δ : а если при всех достаточно малых Δ и Δy имеем Δ <, то M точка строгого максимума; б если при всех достаточно малых Δ и Δy имеем Δ >, то M точка строгого минимума. В случае нестрогих экстремумов при некоторых значениях Δ и Δy приращение функции будет нулевым

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение

и имеет минимум, если. Максимум и минимум называют экстремумами функции. Из данного определения следует, что в окрестности точки максимума приращение Лекция 3 Экстремум функции нескольких переменных Пусть функция нескольких переменных u = f ( x,, x ) определена в области D, и точка x ( x,, x ) = принадлежит данной области Функция u = f ( x,, x ) имеет

Подробнее

Математический анализ 2.5

Математический анализ 2.5 Математический анализ 2.5 Лекция: Экстремумы функции нескольких переменных Доцент кафедры ВММФ Зальмеж Владимир Феликсович Рассмотрим функцию w = f ( x), определённую в области D R n. Точка x 0 D называется

Подробнее

7. Экстремумы функций нескольких переменных

7. Экстремумы функций нескольких переменных 7. Экстремумы функций нескольких переменных 7.. Локальные экстремумы Пусть функция f(x,..., x n ) определена на некотором открытом множестве D R n. Точка M D называется точкой локального максимума (локального

Подробнее

Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ

Лекция 9. ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Лекция 9 ЭКСРЕМУМ ФУНКЦИИ МНОГИХ ПЕРЕМЕННЫХ Понятие экстремума функции многих переменных Некоторые сведения о квадратичных формах 3 Достаточные условия экстремума Понятие экстремума функции многих переменных

Подробнее

13. Частные производные высших порядков

13. Частные производные высших порядков 13. Частные производные высших порядков Пусть = имеет и определенные на D O. Функции и называют также частными производными первого порядка функции или первыми частными производными функции. и в общем

Подробнее

ЛЕКЦИИ. Лекция 1. Раздел I. ТЕОРИЯ ОПТИМИЗАЦИИ 1. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ОПТИМИЗАЦИИ И ОСНОВНЫЕ ПОЛОЖЕНИЯ

ЛЕКЦИИ. Лекция 1. Раздел I. ТЕОРИЯ ОПТИМИЗАЦИИ 1. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ОПТИМИЗАЦИИ И ОСНОВНЫЕ ПОЛОЖЕНИЯ ЛЕКЦИИ Лекция 1 Раздел I. ТЕОРИЯ ОПТИМИЗАЦИИ 1. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ ОПТИМИЗАЦИИ И ОСНОВНЫЕ ПОЛОЖЕНИЯ Постановка задачи поиска минимума функций содержит: целевую функцию f ( x ), где x = ( x1,..., x

Подробнее

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции

10. ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1. Возрастание и убывание функции 10 Исследование функций и построение графиков 10 ИССЛЕДОВАНИЕ ФУНКЦИЙ И ПОСТРОЕНИЕ ГРАФИКОВ 1 Возрастание и убывание функции 1 x ( 1 1 ОПРЕДЕЛЕНИЕ Функция y = f (x) называется возрастающей (неубывающей)

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Тема: Степенные ряды.

Тема: Степенные ряды. Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

Подробнее

А.В. Абанин, Д.А. Полякова ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

А.В. Абанин, Д.А. Полякова ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» АВ Абанин, ДА Полякова ЛОКАЛЬНЫЙ

Подробнее

Практикум: «Формула Тейлора». Если функция f (x)

Практикум: «Формула Тейлора». Если функция f (x) Практикум: «Формула Тейлора» Если функция f () имеет производные до (п +)-го порядка включительно в интервале ( 0, 0 ), 0, то для всех х из этого интервала справедлива формула Тейлора (порядка п) ( ) f

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2.

Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2. Вопросы для подготовки к экзамену Тема. Линейная алгебра 1. Что такое определитель? При каких преобразованиях величина определителя не меняется? 2. В каких случаях определитель равен нулю? Что следует

Подробнее

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА

ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА ВАРИАЦИЯ И ЭКСТРЕМУМ ФУНКЦИОНАЛА А. Н. Мягкий Интегральные уравнения и вариационное исчисление Лекция Пусть задан функционал V = V [y(x)], y(x) M E. Зафиксируем функцию y (x) M. Тогда любую другую функцию

Подробнее

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных.

ЛЕКЦИЯ 23. Экстремум функции нескольких переменных. ЛЕКЦИЯ Экстремум функции нескольких переменных Экстремум функции нескольких переменных Необходимые и достаточные условия существования экстремума Точка M, 0) называется точкой минимума максимума) функции

Подробнее

). Частной производной функции f по переменной x k в точке x. ). Полным дифференциалом функции f

). Частной производной функции f по переменной x k в точке x. ). Полным дифференциалом функции f ГЛАВА 7 Дифференциальное исчисление функций нескольких переменных 1 Частные производные и полный дифференциал функции нескольких переменных Опр711 Пусть М (, y ), : O(М, ) Рассмотрим функцию 1 = 1 ()=

Подробнее

Конечномерные задачи

Конечномерные задачи Глава 1 Конечномерные задачи 1 Конечномерные гладкие задачи без ограничений В этом параграфе даются необходимые и достаточные условия экстремума функций одной и нескольких переменных. 1.1 Постановка задачи

Подробнее

Необходимое и достаточное условие экстремума функции многих переменных

Необходимое и достаточное условие экстремума функции многих переменных Необходимое и достаточное условие экстремума функции многих переменных Рассмотрим задачу на нахождение условного экстремума для случае функции двух переменных. Необходимое условие экстремума. Пусть имеется

Подробнее

Матрица, составленная из вторых производных функции, называется матрицей Гессе:

Матрица, составленная из вторых производных функции, называется матрицей Гессе: Определение. Точка 0 называется точкой локального максимума функции окрестность точки 0, что для всех из этой окрестности f f 0. Определение. Точка 0 называется точкой локального минимума функции окрестность

Подробнее

P Проверим выполнение достаточных

P Проверим выполнение достаточных Функции нескольких переменных (ФНП). Локальный экстремум. 1) Исследовать на локальный экстремум функцию z z e ; а) -х переменных б) 3-х переменных 3 3 3 u u z z 17 48 z. а) z e e e e 1 1 z e e Находим

Подробнее

Практическое занятие 5 Экстремум функции многих переменных. 5.2 Некоторые сведения о квадратичных формах 5.3 Достаточные условия экстремума

Практическое занятие 5 Экстремум функции многих переменных. 5.2 Некоторые сведения о квадратичных формах 5.3 Достаточные условия экстремума Практическое занятие 5 Экстремум функции многих переменных 5 Определение и необходимые условия экстремума 5 Некоторые сведения о квадратичных формах 53 Достаточные условия экстремума 5 Определение и необходимые

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности.

называется прямая, проходящая через эту точку перпендикулярно к касательной плоскости, проведенной в данной точке поверхности. 5 Точка в которой F F F или хотя бы одна из этих производных не существует называется особой точкой поверхности В такой точке поверхность может не иметь касательной плоскости Определение Нормалью к поверхности

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая

Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа. В.В. Колыбасова, Н.Ч. Крутицкая Достаточные условия существования решения задачи об условном экстремуме методом Лагранжа ВВ Колыбасова, НЧ Крутицкая В В Колыбасова, Н Ч Крутицкая Достаточные условия существования решения задачи об условном

Подробнее

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем -

{ теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - { теорема Ферма - теорема Дарбу - теорема Ролля - теорема Лагранжа теорема о среднем значении - геометрическое истолкование теоремы о среднем - теорема Коши - формула конечных приращений - правило Лопиталя

Подробнее

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1,

- количества производимых товаров, p. - цены на товары и затраты на производство товаров определены функцией издержек f ( x1, Глава Экстремумы функции двух переменных Экстремум функции двух переменных При решении многих экономических задач приходится вычислять наибольшее и наименьшее значения В качестве примера рассмотрим задачу

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

= 0. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. ; является точкой локального ми-,0 0

= 0. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. ; является точкой локального ми-,0 0 6 ( ) Получаем, что HP =. Следовательно нельзя, пользуясь теоремой, ответить на вопрос об экстремуме. В данном случае стационарная точка P ( ) ; является точкой локального ми- Δz > P O & P : z = z =. δ

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

С.А. Лавренченко. Лекция 9. Экстремумы

С.А. Лавренченко. Лекция 9. Экстремумы 1 СА Лавренченко Лекция 9 Экстремумы 1 Определения и примеры Определение 11 Говорят, что функция имеет (или достигает) абсолютный максимум в точке, если для всех из области определения Значение называется

Подробнее

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению.

ЛЕКЦИЯ N Скалярное поле. Производная по направлению. Градиент. 1.Производная по направлению. ЛЕКЦИЯ N. Скалярное поле. Производная по направлению. Градиент. Касательная плоскость и нормаль к поверхности. Экстремумы функции многих переменных. Условный экстремум.. Скалярное поле. Производная по

Подробнее

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3 Лекции 56 Глава 6 Производная функции 6 Понятие производной Пусть функция определена и непрерывна на некотором промежутке X Взяв значение X придадим аргументу приращение так что и новое значение не выходит

Подробнее

7. КВАДРАТИЧНЫЕ ФОРМЫ. n. Это условие не ограничивает общности, так как сумму двух подобных членов

7. КВАДРАТИЧНЫЕ ФОРМЫ. n. Это условие не ограничивает общности, так как сумму двух подобных членов 7 КВАДРАТИЧНЫЕ ФОРМЫ 7 ОПРЕДЕЛЕНИЕ КВАДРАТИЧНОЙ ФОРМЫ Квадратичной формой переменных,, называется выражение вида q a, 7 в котором коэффициенты a, не все равные нулю, удовлетворяют условиям симметричности

Подробнее

ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ

ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ ПРОИЗВОДНАЯ ФУНКЦИИ ПО ВОЗРАСТАЮЩЕЙ ФУНКЦИИ Проф др Авыт АСАНОВ Кыргызско-Турецкий Университет «Манас» Классические понятия производной и дифференциала функции изложены во многих работах Например в []

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

С.А. Лавренченко. Лекция 10. Исследование функции при помощи производных

С.А. Лавренченко. Лекция 10. Исследование функции при помощи производных 1 СА Лавренченко Лекция 10 Исследование функции при помощи производных 1 Исследование функции при помощи первой производной Под интервалом мы будем подразумевать или конечный интервал, или один из следующих

Подробнее

Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C 2 -гладкие функции.

Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C 2 -гладкие функции. Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C -гладкие функции. Определение 1 Функция называется выпуклой (вогнутой), если ее надграфик (подграфик) выпуклая область. Пример 1 x

Подробнее

ЛЕКЦИЯ 16 ЗАДАЧА ОБ УСТОЙЧИВОСТИ ПОЛОЖЕНИЯ РАВНОВЕСИЯ В КОНСЕРВАТИВНОЙ СИСТЕМЕ

ЛЕКЦИЯ 16 ЗАДАЧА ОБ УСТОЙЧИВОСТИ ПОЛОЖЕНИЯ РАВНОВЕСИЯ В КОНСЕРВАТИВНОЙ СИСТЕМЕ ЛЕКЦИЯ 16 ЗАДАЧА ОБ УСТОЙЧИВОСТИ ПОЛОЖЕНИЯ РАВНОВЕСИЯ В КОНСЕРВАТИВНОЙ СИСТЕМЕ 1. Теорема Лагранжа об устойчивости положения равновесия консервативной системы Пусть имеется n степеней свободы. q 1, q 2,,

Подробнее

~ 1 ~ «Признаки монотонности функции»

~ 1 ~ «Признаки монотонности функции» ~ 1 ~ «Признаки монотонности функции» Теорема: Для того чтобы функция f(x), дифференцируемая на a,b возрастала (убывала) на a,b необходимо и достаточно, чтобы x a,b выполнялось неравенство f (x) 0 (f (x)

Подробнее

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ДЛЯ СТУДЕНТОВ МОиАИС 1-Й СЕМЕСТР ГРАЖДАНЦЕВА Е.Ю.

ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ДЛЯ СТУДЕНТОВ МОиАИС 1-Й СЕМЕСТР ГРАЖДАНЦЕВА Е.Ю. ЛЕКЦИИ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ ДЛЯ СТУДЕНТОВ МОиАИС 1-Й СЕМЕСТР ГРАЖДАНЦЕВА Е.Ю. Глава 1 Исследование функции одной переменной 1.1 Признаки возрастания и убывания. Определение. Функция f(x), определенная

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает

Подробнее

Тема: Понятие устойчивости решения ДУ и решения системы ДУ

Тема: Понятие устойчивости решения ДУ и решения системы ДУ Математический анализ Раздел: дифференциальные уравнения Тема: Понятие устойчивости решения ДУ и решения системы ДУ Лектор Пахомова Е.Г. 2012 г. 5. Понятие устойчивости решения 1. Предварительные замечания

Подробнее

«Математический анализ»

«Математический анализ» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени НЭ БАУМАНА Билеты для сдачи экзамена по курсу «Математический анализ» МГТУ имени НЭ Баумана МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени

Подробнее

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ ФУНКЦИИ. Уравнение касательной

ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ ФУНКЦИИ. Уравнение касательной ПРИМЕНЕНИЕ ПРОИЗВОДНОЙ ФУНКЦИИ Уравнение касательной Рассмотрим следующую задачу: требуется составить уравнение касательной l, проведенной к графику функции в точке Согласно геометрическому смыслу производной

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Методические указания для практических занятий

ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. Методические указания для практических занятий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ

Практическое занятие 3 ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Практическое занятие ДИФФЕРЕНЦИРОВАНИЕ СЛОЖНОЙ И НЕЯВНОЙ ФУНКЦИИ Дифференцирование сложной функции Дифференцирование неявной функции задаваемой одним уравнением Системы неявных и параметрически заданных

Подробнее

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора.

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора. ЛЕКЦИЯ N6 Правило Бернулли-Лопиталя Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Раскрытием неопределенностей

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ РАЗДЕЛА

Подробнее

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2).

F x, F. Пример. Записать уравнение касательной к кривой x y 2xy 17 точке М(1, 2). Дифференцирование неявно заданной функции Рассмотрим функцию (, ) = C (C = const) Это уравнение задает неявную функцию () Предположим, мы решили это уравнение и нашли явное выражение = () Теперь можно

Подробнее

8. Свойства дифференцируемых функций

8. Свойства дифференцируемых функций 8. Свойства дифференцируемых функций 8.. Производная функции в данной точке отражает локальные свойства функции, т. е. свойства, присущие функции в некоторой окрестности данной точки. Вместе с тем есть

Подробнее

max f при условии, что g(x) = b i, (1)

max f при условии, что g(x) = b i, (1) Метод множителей Лагранжа Рассмотрим экстремальную задачу с ограничениями в виде равенств: найти a при условии что ) = ) на множестве допустимых значений описываемом системой уравнений где R : R R : R

Подробнее

Глава 5. Исследование функций с помощью формулы Тейлора.

Глава 5. Исследование функций с помощью формулы Тейлора. Глава 5 Исследование функций с помощью формулы Тейлора Локальный экстремум функции Определение Функция = f ( достигает в точке с локального максимума (минимума), если можно указать такое δ >, что ее приращение

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ,

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком матрицы?

Подробнее

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной?

Лекция 3. Системы линейных алгебраических уравнений. 1. Чем отличается однородная система от неоднородной? . КОНТРОЛЬНЫЕ ВОПРОСЫ К ЛЕКЦИЯМ. Раздел 1. Векторная и линейная алгебра. Лекция 1. Матрицы, операции над ними. Определители. 1. Определения матрицы и транспонированной матрицы.. Что называется порядком

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

Учебные материалы по математическому анализу в электронном виде, а также примеры экзаменационных билетов прошлых лет вы можете найти на сайте

Учебные материалы по математическому анализу в электронном виде, а также примеры экзаменационных билетов прошлых лет вы можете найти на сайте Перечень тем и вопросов, выносимых на зимнюю сессию 2013-2014 уч. год, 1 курс, 2 поток Дисциплина Математический анализ, лектор к.ф.-м.н., доцент Фроленков И.В. 1. Понятие функции. График функции. Обзор

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Теория функций нескольких переменных (аргументов)

Теория функций нескольких переменных (аргументов) Тема 6. Пределы последовательностей и функций, их свойства и приложения 1 Теория функций нескольких переменных (аргументов) Дифференциальное исчисление функций нескольких переменных Определение функции

Подробнее

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений

Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Поздравляю с началом нового учебного года. Желаю успехов в изучении функций многих переменных и дифференциальных уравнений Веб- страница кафедры http://kvm.gubkin.ru 1 Функции многих переменных 2 Определение

Подробнее

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1)

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1) 1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения (2006-2007, сем.1 1. Сформулируйте определение ограниченного множества вещественных чисел. 2. Сформулируйте определение

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Тема: Дифференцирование функций комплексного

Тема: Дифференцирование функций комплексного Математический анализ Раздел: Теория функций комплексного переменного Тема: Дифференцирование функций комплексного переменного Лектор Пахомова Е.Г. 2011 г. 5. Дифференцирование функции комплексного переменного

Подробнее

Математический анализ

Математический анализ Никифоровская Анна 14 сентября 2017 г. Содержание 1. 1 1.1 4. Экстремум функций.................................. 1 1.2 4. Обратные отображения................................. 3 1.3 6. Условный экстремум..................................

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

Функции нескольких переменных.

Функции нескольких переменных. Московский Государственный Технический Университет имени НЭ Баумана Дубограй ИВ Скуднева ОВ Левина А И Функции нескольких переменных методические указания для подготовки к аттестации Москва Издательство

Подробнее

1. Производная Рассмотрим график непрерывной функции секущая графика. будем называть касательной. в точке x

1. Производная Рассмотрим график непрерывной функции секущая графика. будем называть касательной. в точке x Лекция: Основы дифференциального исчисления Конспект лекции. Производная Рассмотрим график непрерывной функции на отрезке b M M секущая графика. Тогда тангенс угла наклона секущей. Предельное положение

Подробнее

Образцы базовых задач и вопросов по МА за 1 семестр

Образцы базовых задач и вопросов по МА за 1 семестр Образцы базовых задач и вопросов по МА за семестр Предел последовательности Простейшие Вычислите предел последовательности l i m 2 n 6 n 2 + 9 n 6 4 n 6 n 4 6 4 n 6 2 2 Вычислите предел последовательности

Подробнее

Лекция Исследование функции и построение ее графика

Лекция Исследование функции и построение ее графика Лекция Исследование функции и построение ее графика Аннотация: Функция исследуется на монотонность, экстремум, выпуклость-вогнутость, на существование асимптот Приводится пример исследования функции, строится

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр,

Вопросы и задачи к экзамену по математическому анализу I семестр, Вопросы и задачи к экзамену по математическому анализу I семестр, - Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

ЗАДАЧИ К ОБЩЕМУ ЗАЧЕТУ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ, I СЕМЕСТР.

ЗАДАЧИ К ОБЩЕМУ ЗАЧЕТУ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ, I СЕМЕСТР. МГУ им МВЛомоносова Физический факультет Кафедра математики - ЗАДАЧИ К ОБЩЕМУ ЗАЧЕТУ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ, I СЕМЕСТР Предел последовательности (-) Пользуясь определением предела последовательности,

Подробнее

Методологические особенности формулы Тейлора в курсе математического анализа

Методологические особенности формулы Тейлора в курсе математического анализа Методологические особенности формулы Тейлора в курсе математического анализа # январь Кандаурова И Е УДК: 57 Россия МГТУ им НЭ Баумана hadaur@gyrplaru Введение Классический курс математического анализа

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

Глава 6. Основы теории устойчивости

Глава 6. Основы теории устойчивости Глава 6 Основы теории устойчивости Лекция Постановка задачи Основные понятия Ранее было показано, что решение задачи Коши для нормальной системы ОДУ = f, () непрерывно зависит от начальных условий при

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр, г. Тема 1. Числовые множества и последовательности

Вопросы и задачи к экзамену по математическому анализу I семестр, г. Тема 1. Числовые множества и последовательности Вопросы и задачи к экзамену по математическому анализу I семестр, - г Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

Ответы к заданию Определение приращения аргумента Δx

Ответы к заданию Определение приращения аргумента Δx Ответы к заданию приращения аргумента Δ Приращением аргумента Δ f ( называется разность между значением аргумента в точке и любой другой точке из некоторой окрестности точки Δ, U ( : δ приращения f Δ (

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Квадратичные формы. Линейная алгебра (лекция 9) / 30

Квадратичные формы. Линейная алгебра (лекция 9) / 30 Линейная алгебра (лекция 9) 10.11.2012 2 / 30 Определение Квадратичной формой F (x 1, x 2,..., x n ) от n неизвестных x 1, x 2,..., x n называется сумма, каждое слагаемое которой является либо квадратом

Подробнее

Глава 7. Функции многих переменных

Глава 7. Функции многих переменных Глава 7. Функции многих переменных 7.1. Евклидово пространство R n Начнем с определения n-мерного эвклидова пространства. Определение 7.1. n-мерным эвклидовым пространством R n над полем действительных

Подробнее

Модуль и производная В.В. Сильвестров

Модуль и производная В.В. Сильвестров Модуль и производная В.В. Сильвестров При решении некоторых задач приходится находить производную функции, содержащей один или несколько модулей. Такие задачи возможны и на едином государственном экзамене

Подробнее

Нелинейная задача оптимизации.

Нелинейная задача оптимизации. Нелинейная задача оптимизации. Кольцов С.Н 2014 www.linis.ru Задача безусловной оптимизации Задача оптимизации формулируется следующим образом: заданы множество Х (допустимое множество задачи) и функция

Подробнее

равен k во всех точках множества Q.

равен k во всех точках множества Q. 17. Условный экстремум 17.1. Обратимся к рассмотрению нахождения условного (говорят также относительного) экстремума. Задача нахождения условного экстремума состоит в поиске локальных максимумов и минимумов

Подробнее

3 Конечномерные гладкие задачи с равенствами

3 Конечномерные гладкие задачи с равенствами 3 Конечномерные гладкие задачи с равенствами и неравенствами В этом параграфе даются необходимые и достаточные условия экстремума в гладкой конечномерной задаче с ограничениями типа равенств и неравенств.

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 13

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ЛЕКЦИЯ 13 ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СЕМЕСТР ЛЕКЦИЯ 13 ПРИВЕДЁННАЯ СИСТЕМА ПОТЕНЦИАЛ РАУСА СТАЦИОНАРНЫЕ ДВИЖЕНИЯ КОНСЕРВАТИВНОЙ СИСТЕМЫ С ЦИКЛИЧЕСКИМИ КООРДИНАТАМИ И ИХ УСТОЙЧИВОСТЬ ТЕОРЕМА РАУСА Лектор: Батяев Евгений

Подробнее

6. Достаточные условия экстремума в задаче с закрепленными концами. Вернемся к задаче с закрепленными концами: найти минимум функционала b

6. Достаточные условия экстремума в задаче с закрепленными концами. Вернемся к задаче с закрепленными концами: найти минимум функционала b Лекция 1 6 Достаточные условия экстремума в задаче с закрепленными концами Вернемся к задаче с закрепленными концами: найти минимум функционала [ ] (,, ) V = F x x при условии, что = A, = B Необходимое

Подробнее

Примерные практические задания:

Примерные практические задания: Банк заданий по теме «ПРОИЗВОДНАЯ» МАТЕМАТИКА 11 класс (база) Учащиеся должны знать/понимать: Понятие производной. Определение производной. Теоремы и правила нахождения производных суммы, разности, произведения

Подробнее

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x)

Практикум: «Дифференцируемость и дифференциал функции». Если функция y f (x) Практикум: «Дифференцируемость и дифференциал функции» Если функция y f () имеет конечную производную в точке, то приращение функции в этой точке можно представить в виде: y(, ) f ( ) ( ) (), где ( ) при

Подробнее

~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ. называется функцией двух переменных xy,, если каждой паре значений x, Область определения. D - замкнутая область

~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ. называется функцией двух переменных xy,, если каждой паре значений x, Область определения. D - замкнутая область ~ 1 ~ ФУНКЦИЯ МНОГИХ ПЕРЕМЕННЫХ 3 Функция двух переменных, область определения, способы задания и геометрический смысл. Определение: z f, называется функцией двух переменных,, если каждой паре значений,

Подробнее

Исследование функций и построение графиков. Исследование на монотонность на интервале. a, монотонно

Исследование функций и построение графиков. Исследование на монотонность на интервале. a, монотонно Функция Исследование функций и построение графиков. Исследование на монотонность на интервале. f на интервале b не убывает, если f f ; не возрастает, если f f ; a, монотонно строго возрастает, если f f

Подробнее