ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "ЛЕКЦИЯ N2. 1. Свойства бесконечно малых."

Транскрипт

1 ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый замечательный предел 5Второй замечательный предел 3 5Непрерывность функции 4 6Точки разрыва функции 7 Свойства бесконечно малых Теорема : Алгебраическая сумма любого числа бесконечно малых величин является величиной бесконечно малой Доказательство: Пусть дано k бесконечно малых α, α,, α k (k определенное натуральное число) Зададимся произвольным > В процессе изменения бесконечно малых наступят такие моменты, что α < ; α < ; α k <, и каждое из них будет k k k справедливо в дальнейшем процессе изменения Тогда в силу постоянства k непременно наступит такой момент, что неравенства α < ; α < ; α k < выполнятся k k k одновременно Тогда, α ±α ±α 3 ± ±α k α + α + + α k < + + = k k k k =, то есть α ±α ± ±α k < Из-за произвольности это означает, что алгебраическая сумма k бесконечно малых величин есть бесконечно малая величина Теорема : Произведение бесконечно малой величины на ограниченную величину есть величина бесконечно малая Доказательство: Пусть α - бесконечно малая, а u ограниченная переменная величина В процессе их общего изменения наступит такой момент, когда первая из них будет удовлетворять неравенству α <, а вторая u <M, где - произвольное малое М положительное число, а М определенная положительная постоянная Но тогда, начиная с этого момента, для произведения u α имеем оценку u α = u α <M М =, что и требовалось доказать Следствие: ) Произведение двух бесконечно малых и произведение любого определенного числа бесконечно малых величин есть величина бесконечно малая ) Произведение бесконечно малой на любую постоянную величину и частное от деления бесконечно малой на любую, отличную от нуля постоянную, являются величинами бесконечно малыми 3) Любая натуральная степень бесконечно малой величины есть бесконечно малая

2 Признаки существования предела Теорема: Всякая монотонно изменяющаяся и ограниченная в направлении своего изменения переменная величина имеет предел Теорема : Если числовые значения переменной величины v постоянно заключены между соответствующими числовыми значениями двух других переменных u и ω и эти последние стремятся к одному и тому же пределу а, то к этому же пределу а стремится и переменная v Итак, u v ω ( ) и если lim u=a, lim ω=a, то lim v=a Доказательство: В процессе совместного изменения переменных u и ω наступает такой момент, когда обе они будут удовлетворять неравенствам: u-a < и ω-a < () Перепишем эти неравенства в виде: -<u-a<; -<ω-a< или a-<u<a+ ( ); a-<ω<a+ (***) Объединим левую часть (**), неравенство (*) и правую часть (***) получим a-<u v ω<a+ Отсюда ясно, что наряду с неравенством () будет иметь место и v-a <, что и означает, что lim v=a 3Свойства бесконечно больших ) Произведение бесконечно большой величины на величину, имеющую предел, отличный от нуля, а следовательно, и произведения бесконечно большой величины на постоянную, не равную нулю, являются величинами бесконечно большими ) Произведение любого определенного числа бесконечно больших величин есть также величина бесконечно большая 3) Величина, обратная всякой бесконечно большой, есть бесконечно малая 4) Величина, обратная бесконечно малой, будет бесконечно большой, если данная бесконечно малая в процессе своего изменения не принимает значений равных нулю 4Первый замечательный предел si Если угол х выражен в радианах, то lim = si Ограничимся случаем, когда, оставаясь положительным Так как функция y= четная, характер ее изменения при, остающимся отрицательным, тот же самый D В О С А Рассмотрим окружность радиуса R= Отложим от горизонтального диаметра положительный центральный угол ( AOB) Построим линию синуса (CB) и линию тангенса (AD) AOB si =CB/OB=CB/=CB

3 tg =DA/OA=DA/=DA Сравним площади треугольника OAB (S ), сектора AOB (S ) и треугольника AOD (S 3 ), запишем S <S <S 3, Но S =(OA CB)/=(/) si ; S =(/) R =(/) ; S 3 =(OA AD)/=(/) tg Тогда, si <<tg, так как si > и >, то при делении на si знак неравенства si сохраняется, то есть: < <, откуда, > >cos si cos Но, lim cos = и, по теореме о пределе переменной, заключенной между двумя si другими, имеющими общий предел: lim = 5Второй замечательный предел Установим, чему равен следующий предел: lim ( + ) / Сначала найдем предел бесконечной последовательности {y }, где y =(+ ) при Докажем, что эта последовательность {y } монотонно возрастающая и притом ограниченная сверху Этим мы докажем, что последовательность {y } имеет при предел а) убедимся, что y + >y при всяком целом положительном, то есть монотонно возрастает По формуле Ньютона для бинома -ой степени: y =(+ ) = =+ + 3 ( ) ( ) ( )( + 3 ) ( ) + + ( )[ ( )] ( ) 3 Разделим каждый сомножитель числителя на, получим y =(+ ) = / ( / )( / ) ( / )( / )( ( ) / )) Увеличим в этой формуле на единицу Тогда получим выражение для y + y + =(+ ) + =++(-/(+))/+((-/(+))(-/(+)))/( 3)+ + +((-/(+))(-/(+)) (-(-+)/(+)))/( 3 (+))+ ((-/(+))(-/(+)) (-(+)/(++)))/( 3 (+)(+)) Сравнивая равенства для y и y +, видим, что в последнем есть дополнительное последнее слагаемое и каждый из остальных (начиная с третьего) членов правой части равенства для y + больше соответствующего ему члена правой части равенства для y : k k - >- при любом k< + Поэтому и вся сумма в правой части y + больше суммы в правой части y Этим доказано, что y + >y и поэтому последовательность {y } монотонно возрастающая Пользуясь равенством для y, нетрудно показать, что при всяком целом положительном величина y <3 Если все числители, начиная со второго, заменить единицами (отбросив вычитаемые), то числители увеличатся, начиная с третьего слагаемого Если в знаменателях заменить все множители, начиная со второго двойками, то знаменатели уменьшатся И в результате 3

4 этих операций правая часть равенства y увеличится, и мы получим неравенство y =(+ ) < это убывающая геометрическая прогрессия a=; q=/ a a q Ее сумма S= = q Тогда, y =+ =+- =3- Поэтому, при всяком имеем y <3- <3 Последовательность {y } ограничена сверху и монотонно возрастает Следовательно, она имеет предел Этот предел, впервые найденный в XVII столетии Непером, называется неперовым числом е: lim ( + ) = e Число е иррациональное, е=, Можно показать, что к этому же пределу стремится и функция y=(+ z ) z при z и z lim ( + ) = e z z Положим, z= Поскольку величина, обратная бесконечно большой, является бесконечно малой, то при z Поэтому, lim ( + ) =е 5Непрерывность функции Свойства непрерывных на отрезке функций Точки разрыва Определение Функция f() называется непрерывной в точке =, если она определена в некоторой окрестности точки (включая и саму точку ), и если предел функции при стремлении аргумента к существует и равен значению функции в точке : lim f ( ) = f ( )Точка называется точкой непрерывности данной функции Определение Функция y=f() непрерывна в точке =, если она определена в некоторой окрестности этой точки, и если бесконечно малому приращению аргумента у соответствует бесконечно малое приращение самой функции у м y=f() м у=f() f( ) у х=х-х х х х 4

5 Определение 3 Функция y=f() непрерывна в данной точке, если предел функции в этой точке существует и равен значению функции от предела аргумента lim f ( ) = f (lim ) (то есть при нахождении предела непрерывной функции можно переходить к пределу под знаком функции) Существует односторонняя непрерывность функции в точке справа или слева Определение 4 Функция y=f() называется в точке = непрерывной слева, если в этой точке у нее существует левый односторонний предел f( -), и этот предел равен значению функции f( ) в самой точке = : lim f ( ) = f ( ) Аналогично определяется и правый односторонний предел: lim f ( ) = f ( ) + Непрерывность функций в промежутке и на сегменте Определение Функция y=f() называется непрерывной в интервале (промежутке) (a, b), если она непрерывна в каждой точке этого промежутка Определение Функция y=f() называется непрерывной на отрезке [a, b] (сегменте), если она непрерывна в промежутке (a, b) и, кроме того, непрерывна в точке =a справа и точке =b слева Действия над непрерывными функциями Теорема Сумма, разность, произведение и частное от деления двух непрерывных функций являются также функциями непрерывными (для частного за исключением тех значений аргумента, которые обращают в нуль делитель) f ( ) Доказательство Пусть y=, где f() и ϕ() непрерывны, то lim f ( ) = f (lim ), ϕ ( ) lim ϕ ( ) = ϕ (lim ), причем ϕ (lim ) Но lim f ( ) f (lim ) ( ) f lim y = = =, что и требовалось доказать lim ϕ ( ) ϕ (lim ) ϕ ( ) Непрерывность сложной и обратной функций Теорема Если функция u=ϕ() непрерывна в точке, а функция y=f(u) непрерывна в точке u =ϕ( ), то сложная функция y=f[ϕ()] непрерывна в точке Доказательство Нужно доказать, что lim f [ ϕ ( )] = f [( ϕ ( )] Так как u=ϕ() непрерывна, то lim ϕ ( ) = ϕ ( ) = u А вследствие непрерывности f(u): lim f [( ϕ ( )] = lim f ( u) = f ( ϕ ) = f [ ϕ ( )], что и требовалось доказать Теорема Если прямая функция y=f() монотонна и непрерывна в некотором промежутке (a, b) оси O и имеет своей областью значений промежуток (c, d) оси Oy, то обратная ей функция y=ϕ() также монотонна и непрерывна в промежутке (c, d) оси O [или =Ψ(y) в промежутке [c, d] оси Oy] Непрерывность элементарных функций ) Функция y=c cost - непрерывна на всей числовой оси Функция y= также непрерывна на всей числовой оси (во всей области ее определения) 5

6 Поэтому, например, степенная функция y=c, где - целое (больше нуля) непрерывна, как произведение непрерывных функций C =C ( множителей) Можно доказать, что вообще все основные элементарные функции непрерывны при всех значениях, для которых они определены Из двух приведенных выше теорем следует, что и всякая элементарная функция непрерывна во всех точках, принадлежащих области ее определения lim f ( ) = f (lim ) = f ( ) Свойства функций, непрерывных на отрезке Теорема Если функция f() непрерывна на сегменте [a, b], то она достигает на этом сегменте своего наибольшего и наименьшего значений Теорема Функция f(), непрерывная на отрезке [a, b], ограничена на этом сегменте Доказательство: Пусть М наибольшее значение f() на сегменте [a, b], m наименьшее значение f() на [a, b] Тогда m f() M Пусть С наибольшее из m и M Тогда f() C, что и означает ограниченность y=f() на сегменте [a, b] Теорема 3 Если функция y=f() непрерывна на сегменте [a, b], и на его концах принимает значения разных знаков, то внутри сегмента найдется по меньшей мере одна точка, в которой y= y Теорема 4: о промежуточных значениях Если y=f() непрерывна на сегменте [a, b] и f(a)=a, f(b)=b, то для любого числа С, заключенного между А и В, найдется внутри сегмента такая точка c, что f(c)=c Теорема геометрически очевидна y a b Y=f() B C A a f(a) f(c) f(b) c b Теорема 5 Если функция y=f() непрерывна в точке и имеет здесь положительное (отрицательное) значения, то она останется положительной (отрицательной) во всех точках некоторой окрестности точки Доказательство Пусть f( )>, пусть есть >, такое, что f( )-> Но lim f ( ) = f ( ), а по определению f()-f( ) <, то есть f( )-<f()<f( )+, но f( )->, поэтому, и f()> для всех точек области определения 6

7 Определение Функция y=f() называется возрастающей на некотором сегменте [a, b], если большему значению независимой переменной соответствует и большее значение функции, то есть если >, то f( )>f( ), и - убывающей, если >, а f( )<f( ) 6Точки разрыва функции Точками разрыва функции называют: а) принадлежащие области определения функции точки, в которых функция теряет свойство непрерывности; б) не принадлежащие области определения функции точки, но такие, что в любой их окрестности имеются точки из области определения функции (например, точка =b, если промежутки (a, b) и (b, c) принадлежат области определения функции, а сама точка b не принадлежит области определения функции) Говорят, что функция y=f() разрывна в точке, если ) в точке функция не определена; ) не существует lim f ( ) 3) lim f ( ) f ( ) ; Классификация точек разрыва ) Точки разрыва называются точками разрыва первого рода, если существуют и конечны оба односторонних предела lim f ( ) и lim f ( ), но нарушено равенство lim f ( ) = lim f ( ) = f ( ) + + ) Точки разрыва второго рода это точки, в которых не существует (или равен ) хотя бы один из односторонних пределов Разрыв рода случай: f( -) f( +) Разность f( +)-f( -) называют скачком функции в точке разрыва первого рода, а сам разрыв разрывом со скачком y 3 х - f()=, если < 3 3, если3 4 lim 3 f ( ) = lim 3+ f ( ) = f ( ) + f ( + ) Если f( )=, то это правильный разрыв первого рода случай f( -)=f( +), а двойное равенство нарушается либо из-за того, что функция y=f() не определена в точке =, либо ее значение в точке отлично от общего значения обоих односторонних пределов 7

8 Это устранимый разрыв первого рода Его можно устранить, либо доопределив функцию в точке =, либо изменив ее область определения, положив f( )=f( -)=f( +) Пример si не определена в точке = si si lim = lim = Если доопределить f()=, то разрыв устраняется Разрыв второго рода Если предел не существует или если оба односторонних предела, или один бесконечны, то это разрыв называется разрывом второго рода Если один предел конечен, а другой бесконечен, или оба бесконечны, то это разрыв с бесконечным скачком y 8

Пределы и непрерывность

Пределы и непрерывность Пределы и непрерывность. Предел функции Пусть функция = f ) определена в некоторой окрестности точки = a. При этом в самой точке a функция не обязательно определена. Определение. Число b называется пределом

Подробнее

Последовательность. n n

Последовательность. n n Последовательность. Определение. Если каждому натуральному числу ( N ) по некоторому закону приведено в соответствие число { }, то этим определена числовая последовательность,,,... (или просто последовательность).

Подробнее

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа

Непрерывность функций. Непрерывность функции в точке Односторонние пределы. Определение. Число A называется пределом функции f( x ) справа Непрерывность функций Непрерывность функции в точке Односторонние пределы Определение Число A называется пределом функции f( x ) слева при стремлении x к a, если для любого числа существует такое число

Подробнее

Лекции 8,9. Глава 5. Непрерывность функции

Лекции 8,9. Глава 5. Непрерывность функции Лекции 89 Глава 5 Непрерывность функции 5 Непрерывность функции в точке Понятие непрерывности функции является одним из основных понятий высшей математики Очевидно графиком непрерывной функции является

Подробнее

4. Непрерывность функции 1. Основные определения

4. Непрерывность функции 1. Основные определения 4. Непрерывность функции 1. Основные определения Пусть f(x) определена в некоторой окрестности точки x. ОПРЕДЕЛЕНИЕ 1. Функция f(x) называется непрерывной в точке x если справедливо равенство f ( x). (1)

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y)

. Если элементы множества X определяются определенным свойством P, то это записывают так: X = { x X / P( x) множество точек M ( x, y) I Множества Основные понятия Отображение множеств Множество одно из основных понятий математики, которое не определяется Множество состоит из элементов Всякая совокупность элементов произвольного рода

Подробнее

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь-

2 Лекция 2. n-> 2.1 Последовательности Числовая последовательность. Числа x n называются элементами или членами последователь- Последовательности. Числовая последовательность. Виды последовательностей Предел числовой последовательности Предельный переход в неравенствах Предел монотонной ограниченной последовательности. Число e.

Подробнее

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1

РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ. Построим отрицание для этого определения: f (x) неограничена сверху на 0 ;1 РЕШЕНИЕ ТИПОВЫХ ПРИМЕРОВ Найти область определения D и множество значений Е функции y Р е ш е н и е Функция y определена если те если Поэтому областью определения функции является множество f ; D R Поскольку

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Тема: Предел и непрерывность функции. Лекция 7. Предел функции ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 7 Предел функции СОДЕРЖАНИЕ: Предел функции в точке Предел функции на бесконечности Основные теоремы о пределах функций Бесконечно

Подробнее

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ Пределы Методические указания

Подробнее

, а всю числовую последовательность - y

, а всю числовую последовательность - y Лекции Глава Числовые последовательности Основные понятия Числовую функцию y f N y R заданную на множестве N натуральных чисел называют числовой последовательностью Число f называют -м элементом последовательности

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

ЛЕКЦИЯ 16. Эквивалентные бесконечно малые. Первый и второй замечательные пределы.

ЛЕКЦИЯ 16. Эквивалентные бесконечно малые. Первый и второй замечательные пределы. ЛЕКЦИЯ Эквивалентные бесконечно малые Первый и второй замечательные пределы Сравнение бесконечно больших и бесконечно малых функций Функция f ( ) называется бесконечно малой в точке a (при a ), если (

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Лекция 2.4. Непрерывность функции. Классификация точек разрыва

Лекция 2.4. Непрерывность функции. Классификация точек разрыва Лекция 4 Непрерывность функции Классификация точек разрыва Аннотация: Рассматриваются свойства функции, непрерывной на отрезке Приводится пример использования этих свойств при решении нелинейных уравнений

Подробнее

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики. Занятие. Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.. Вспомнить свойства степени с рациональным показателем. a a a a a для натурального раз

Подробнее

lim f x f x используя обозначения приращений. 0 (2).

lim f x f x используя обозначения приращений. 0 (2). Лекция подготовлена доц Мусиной МВ Непрерывность функции Пусть функция y = f(x) определена в точке x и в некоторой окрестности этой точки Функция y = f(x) называется непрерывной в точке x, если существует

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

Лекция 5. Непрерывность

Лекция 5. Непрерывность Лекция 5 Непрерывность 1 СА Лавренченко 1 Понятие непрерывной функции Физические величины часто моделируются непрерывными функциями Например, скорость автомобиля, температура воздуха или рост человека

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СПЕЦИАЛИЗИРОВАННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР Математика 0 класс ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ Новосибирск Интуитивно

Подробнее

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии.

Геометрическая прогрессия это числовая последовательность с общим членом. ,где q знаменатель геометрической прогрессии. ЛЕКЦИЯ Числовые последовательности Бесконечно большие и бесконечно малые последовательности Основные свойства бесконечно малых последовательностей Числовые последовательности Если каждому из множества

Подробнее

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim

Òåîðåìû î ïðåäåëàõ. 1 Îñíîâíûå òåîðåìû î ïðåäåëàõ. Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè. lim. [f (x) + g (x)] = lim. f (x) + lim Òåîðåìû î ïðåäåëàõ Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Основные теоремы о пределах. Предел числовой последовательности. Первый замечательный предел. Второй замечательный предел. Экспонента. Натуральный логарифм.

Подробнее

ЛЕКЦИЯ N1. 1.Частично упорядоченные множества.

ЛЕКЦИЯ N1. 1.Частично упорядоченные множества. ЛЕКЦИЯ N. Числовые множества. Числовые последовательности. Пределы, свойства. Теорема Больцано-Вейерштрасса. Функции. Способы задания. Элементарные функции. Предел функции в точке..частично упорядоченные

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ФЕДЕРАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Коршикова Т. И., Калиниченко

Подробнее

{ предел последовательности - число e - оценка предел функции - теоремы о пределах - признаки существования пределов - замечательные пределы первый и

{ предел последовательности - число e - оценка предел функции - теоремы о пределах - признаки существования пределов - замечательные пределы первый и { предел последовательности - число e - оценка предел функции - теоремы о пределах - признаки существования пределов - замечательные пределы первый и второй бесконечно малые величины и их свойства - сравнение

Подробнее

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...}

{ z } { 1 2 3, 4,..., ( 1) n = ; ,, n,...} Тема Теория пределов Как мы понимаем слово «предел»? В повседневной жизни мы часто употребляем термин «предел», не углубляясь в его сущность В нашем представлении чаще всего предел отождествляется с понятием

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ. , если выполняются следующие три условия :

Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ. , если выполняются следующие три условия : 57 Глава 4 НЕПРЕРЫВНОСТЬ ФУНКЦИЙ. 1 НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ И НА МНОЖЕСТВЕ Определение 1 Функция = f ( ) называется непрерывной в точке, если выполняются следующие три условия : 1) функция = f (

Подробнее

Предел функции. 4 1 Понятие предела функции

Предел функции. 4 1 Понятие предела функции Глава 4 Предел функции 4 1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

1., 2., 3., где а, d постоянные числа.

1., 2., 3., где а, d постоянные числа. ПЕРЕМЕННЫЕ И ПОСТОЯННЫЕ ВЕЛИЧИНЫ В результате измерения физических величин (время, площадь, объем, масса, скорость и т.д.) определяются их числовые значения. Математика занимается величинами, отвлекаясь

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Введение в математический анализ. Теория пределов

Введение в математический анализ. Теория пределов Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ Р Е

Подробнее

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m Тема Теория пределов Практическое занятие Числовые последовательности Определение числовой последовательности Ограниченные и неограниченные последовательности Монотонные последовательности Бесконечно малые

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется

некотором множестве Х, если каждому значению переменной величины х Х соответствует определённое значение переменной величины y. При этом х называется МАТЕМАТИЧЕСКИЙ АНАЛИЗ 9 ФУНКЦИЯ -ОЙ ПЕРЕМЕННОЙ. ОСНОВНЫЕ ПОНЯТИЯ И ГРАФИКИ. ОПР Величина называется переменной, если в рамках данной задачи она принимает различные числовые значения. ОПР Величина С называется

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Глава 6 Числовые ряды

Глава 6 Числовые ряды Глава 6 Числовые ряды Определение числового ряда и основные теоремы Определение : Последовательностью действительных чисел называется функция f, определённая на множестве всех натуральных чисел Число f

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и

Подробнее

Ответы к заданию

Ответы к заданию Ответы к заданию.. понятия одного аргумента.. Основные элементарные.. элементарных функций.4. предела f в точке. х Х Если каждому элементу х из множества Х поставлен в соответствие определенный элемент

Подробнее

1. Числовой последовательностью называется бесконечное множество чисел

1. Числовой последовательностью называется бесконечное множество чисел 1. Числовой последовательностью называется бесконечное множество чисел (1) следующих одно за другим в определенном порядке и построенных по определенному закону, с помощью которого задается как функция

Подробнее

13. Экспонента и логарифм

13. Экспонента и логарифм 13. Экспонента и логарифм Для завершения доказательства предложения 12.8 нам остается дать одно определение и доказать одно предложение. Определение 13.1. Ряд a i называется абсолютно сходящимся, если

Подробнее

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ Министерство образования и науки Российской Федерации Ярославский государственный университет им ПГ Демидова Кафедра дискретного анализа СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

Подробнее

1 Степенные ряды. Радиус сходимости и интервал

1 Степенные ряды. Радиус сходимости и интервал В.В. Жук, А.М. Камачкин 1 Степенные ряды. Радиус сходимости и интервал сходимости. Характер сходимости. Интегрирование и дифференцирование. 1.1 Радиус сходимости и интервал сходимости. Функциональный ряд

Подробнее

Àáñîëþòíàÿ è óñëîâíàÿ ñõîäèìîñòè

Àáñîëþòíàÿ è óñëîâíàÿ ñõîäèìîñòè Àáñîëþòíàÿ è óñëîâíàÿ ñõîäèìîñòè Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Знакочередующийся ряд. Признак сходимости Лейбница. Знакопеременный ряд. Абсолютная и условная сходимости. Общий комплексный ряд. Теорема

Подробнее

1. Понятие числовой последовательности

1. Понятие числовой последовательности Понятие числовой последовательности В курсе математического анализа изучаются переменные величины и зависимость между ними Простейшими переменными величинами являются числовые последовательности Определение

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Введение в математический анализ Предел последовательности и функции. Раскрытие неопределенностей в пределах. Производная функции. Правила дифференцирования. Применение производной

Подробнее

Функции одной переменной Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Функции одной переменной Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Функции одной переменной Конспект лекций и практикум для

Подробнее

Непрерывность функции

Непрерывность функции Непрерывность функции Непрерывная в точке функция, свойства Непрерывная на множестве функция Теоремы о функциях, непрерывных на отрезке. Обратная функция Метод половинного деления. Односторонние пределы.

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

( ) ( ( ) ) ( ) 0. ( x) M. α. Тогда. α называется. ϕ ограничена в ( ) Лекция 7.БЕСКОНЕЧНО МАЛЫЕ И БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ

( ) ( ( ) ) ( ) 0. ( x) M. α. Тогда. α называется. ϕ ограничена в ( ) Лекция 7.БЕСКОНЕЧНО МАЛЫЕ И БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ Лекция 7БЕСКОНЕЧНО МАЛЫЕ И БЕСКОНЕЧНО БОЛЬШИЕ ФУНКЦИИ Определение и свойства бесконечно малых функций Основные теоремы о пределах Замечательные пределы 4 Сравнение асимптотического поведения функций Определение

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Глава 3. Исследование функций с помощью производных

Глава 3. Исследование функций с помощью производных Глава 3. Исследование функций с помощью производных 3.1. Экстремумы и монотонность Рассмотрим функцию y = f (), определённую на некотором интервале I R. Говорят, что она имеет локальный максимум в точке

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости).

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости). «Ряды» Тесты для самопроверки Необходимый признак сходимости ряда Теорема необходимый признак сходимости Если ряд сходится то lim + Следствие достаточное условие расходимости ряда Если lim то ряд расходится

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

Пределы. 6.1 Определение предела последовательности и

Пределы. 6.1 Определение предела последовательности и Студент должен знать: определение предела функции; свойства пределов; понятие бесконечно малых функций; понятие ограниченных и бесконечно больших функций; определение непрерывности функции в точке; сравнение

Подробнее

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей

ФУНКЦИЯ И ЕЕ ПРЕДЕЛ Методические указания к самостоятельному изучению соответствующего раздела курса математики для студентов всех специальностей ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КУЗБАССКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра математики ФУНКЦИЯ И ЕЕ

Подробнее

1.Последовательности комплексных чисел. Предел.

1.Последовательности комплексных чисел. Предел. ЛЕКЦИЯ N33. Функции комплексного переменного. Пределы. Непрерывность. Элементарные функции. Дифференцирование ФКП. Свойства производных. 1.Последовательности комплексных чисел. Предел.... 1.Ограниченные

Подробнее

Â. Ë. Ôàéíøìèäò. Ñàíêò-Ïåòåðáóðã. «ÁÕÂ-Ïåòåðáóðã»

Â. Ë. Ôàéíøìèäò. Ñàíêò-Ïåòåðáóðã. «ÁÕÂ-Ïåòåðáóðã» Â. Ë. Ôàéíøìèäò Рекомендовано Научно-методическим cоветом по математике вузов Северо-Запада РФ в качестве учебника для студентов инженерных специальностей технических вузов Ñàíêò-Ïåòåðáóðã «ÁÕÂ-Ïåòåðáóðã»

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

Лекция 2.5. Производные основных элементарных функций

Лекция 2.5. Производные основных элементарных функций Лекция 5 Производные основных элементарных функций Аннотация: Даются физическая и геометрическая интерпретации производной функции одной переменной Рассматриваются примеры дифференцирования функции и правила

Подробнее

Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные

Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Глава 1. Пределы и непрерывность 1. Числовые множества 1 0. Действительные числа Из школьной математики Вы знаете натуральные N целые Z рациональные Q и действительные R числа Натуральные и целые числа

Подробнее

} сходятся и, начиная с некоторого номера выполняется неравенство x y. Тогда lim xn. lim yn

} сходятся и, начиная с некоторого номера выполняется неравенство x y. Тогда lim xn. lim yn ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ Тема: Предел и непрерывность функции Лекция 6 Предел числовой последовательности СОДЕРЖАНИЕ: Предельный переход в неравенствах Подпоследовательности Фундаментальные последовательности

Подробнее

Методические указания по подготовке к экзамену по математическому анализу

Методические указания по подготовке к экзамену по математическому анализу Министерство образования Российской федерации Ярославский государственный университет им. П.Г. Демидова Кафедра дискретного анализа Методические указания по подготовке к экзамену по математическому анализу

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

Лекция 2.7. Производные и дифференциалы высших порядков

Лекция 2.7. Производные и дифференциалы высших порядков 1 Лекция 7 Производные и дифференциалы высших порядков Аннотация: Вводится понятие дифференцируемой функции, дается геометрическая интерпретация первого дифференциала и доказывается его инвариантность

Подробнее

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения:

которые представимы как, где p целое, а q натуральное (Q = ; p Z, Операции сложения: Q Операция умножения: p m pm Q. Свойства сложения: МНОЖЕСТВА Множество В математике понятие множество используется для описания совокупности предметов или объектов При этом предполагается, что предметы (объекты) данной совокупности можно отличить друг

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО.

ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО. ФУНКЦИЯ ОДНОГО ПЕРЕМЕННОГО Понятие функции Понятие функции связано с установлением зависимости между элементами двух множеств Пример: А множество натуральных чисел а В множество квадратов натуральных чисел

Подробнее

Определение 1. Степенным рядом называется функциональный ряд вида

Определение 1. Степенным рядом называется функциональный ряд вида . Радиус сходимости Определение. Степенным рядом называется функциональный ряд вида c 0 + c (t a) + c 2 (t a) 2 + + c (t a) + = c (t a), () где c 0, c, c 2,..., c,... C называются коэффициентами степенного

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1 "САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ КИНО И ТЕЛЕВИДЕНИЯ" Кафедра математики и физики ВГ Галкина, МВ Макарова МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть У ч е б н о е п о с о б и е Санкт-Петербург 05 УДК 5 Галкина

Подробнее

ЛЕКЦИЯ N1. 1.Частично упорядоченные множества.

ЛЕКЦИЯ N1. 1.Частично упорядоченные множества. ЛЕКЦИЯ N1 Числовые множества Числовые последовательности Пределы, свойства Теорема Больцано-Вейерштрасса Функции Способы задания Элементарные функции Предел функции в точке 1Частично упорядоченные множества

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Московский государственный университет экономики статистики и информатики Московский международный институт эконометрики, информатики, финансов и права Геворкян

Подробнее

PDF created with FinePrint pdffactory trial version

PDF created with FinePrint pdffactory trial version Лекция 7 Комплексные числа их изображение на плоскости Алгебраические операции над комплексными числами Комплексное сопряжение Модуль и аргумент комплексного числа Алгебраическая и тригонометрическая формы

Подробнее

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 1 Определения Сформулируйте определение: 2 ноября 2013 г. 1. ограниченного

Подробнее

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности Математический анализ (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности 1 Предварительные сведения о действительных (вещественных) числах Рациональное число m Q, m, -целые числа.

Подробнее

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ.

Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Лекция 20 ТЕОРЕМА О ПРОИЗВОДНОЙ СЛОЖНОЙ ФУНКЦИИ. Пусть y = f(u), а u= u(x). Получаем функцию y, зависящую от аргумента x: y = f(u(x)). Последняя функция называется функцией от функции или сложной функцией.

Подробнее

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия 35 Глава 2 Дифференциальное и интегральное исчисление функции одной переменной 1 Основные понятия Пусть D некоторое множество чисел Если задан закон, по которому каждому числу из множества D ставится в

Подробнее

Вопросы и задачи к экзамену по математическому анализу I семестр,

Вопросы и задачи к экзамену по математическому анализу I семестр, Вопросы и задачи к экзамену по математическому анализу I семестр, - Тема Числовые множества и последовательности Определения Сформулируйте определение: ограниченного множества вещественных чисел ограниченного

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры.

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры. Математический анализ, 27/28 Группы БПМ7 75 Промежуточный экзамен, модули 2 На устном экзамене студент получает два теоретических вопроса и две задачи ВОПРОСЫ К ЭКЗАМЕНУ Расскажите о числах: натуральных,

Подробнее

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ.

Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. Лекция 19 ПРОИЗВОДНАЯ И ЕЕ ПРИЛОЖЕНИЯ. ОПРЕДЕЛЕНИЕ ПРОИЗВОДНОЙ. Пусть имеем некоторую функцию y=f(x), определенную на некотором промежутке. Для каждого значения аргумента xиз этого промежутка функция y=f(x)

Подробнее

Глава 1. Теория пределов

Глава 1. Теория пределов Глава. Теория пределов.. Числовые последовательности Пусть дано некоторое множество Х. Сопоставим каждому натуральному числу какой-либо определенный элемент X. Получится функция = f: X. () Такая функция

Подробнее

Повторение Алгебра 7 8. Вопросы. 1. Раскрытие скобок 2. Умножение многочленов. 3. График линейной функции. 4. Разложение многочлена на множители. 5.

Повторение Алгебра 7 8. Вопросы. 1. Раскрытие скобок 2. Умножение многочленов. 3. График линейной функции. 4. Разложение многочлена на множители. 5. Повторение Алгебра 7 8. Вопросы.. Раскрытие скобок. Умножение многочленов.. График линейной функции. 4. Разложение многочлена на множители. 5. Свойство степени с натуральным показателем. 6. Формулы сокращенного

Подробнее