МОДЕЛИРОВАНИЕ ЯДЕРНЫХ РЕАКЦИЙ ПО ЯДРАМ ОТДАЧИ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "МОДЕЛИРОВАНИЕ ЯДЕРНЫХ РЕАКЦИЙ ПО ЯДРАМ ОТДАЧИ"

Транскрипт

1 (Computer Simulation) CS В.В. Дьячков и др. ВИРТУАЛЬНЫЕ ЛАБОРАТОРИИ ПРОЕКТ КОМПЬЮТЕРНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ «МОДЕЛИРОВАНИЕ ЯДЕРНЫХ ФИЗИЧЕСКИХ ПРОЦЕССОВ МЕТОДОМ ДИНАМИКИ ЧАСТИЦ» НА БАЗЕ НЯЦ РК II МОДЕЛИРОВАНИЕ ЯДЕРНЫХ РЕАКЦИЙ ПО ЯДРАМ ОТДАЧИ Алматы 2006

2 1.1. Цель работы Изучение и кинематический анализ протонов отдачи под действием нейтронов на основе модели фотоэмульсионного метода регистрации Краткое теоретическое введение Физические свойства нейтрона Впервые искусственную γ-активность обнаружили в 190 г. Боте и Бекер при облучении α-частицами полония легких элементов лития, бора, бериллия и др. Более детальное изучение реакции Ве+α было проведено Жолио и Кюри. Они впервые обратили внимание на то, что кроме γ-лучей при этом образуется проникающая радиация, которая могла выбивать протоны около МэВ из водородосодержащих веществ. В 192 г. Чадвик предположил, что помимо γ-излучения в такой реакции испускается нейтральная частица с массой, близкой к массе протона. Реакция взаимодействия α-частицы с ядром бериллия была представлена им как: Be +α 6C+ 0n.. (1) Гейзенберг и Иваненко высказали предположение, что ядро содержит только протоны и нейтроны (а не электроны и протоны, как это предполагалось ранее). Масса нейтрона впервые была определена из массы дейтона с учетом энергии связи дейтона ε: m d =m p +m n - ε.. (2) Величина ε может быть найдена с помощью измерения энергии γ-лучей при захвате нейтрона протоном (ε=2,22±0,00 МэВ), а также из пороговой энергии фоторасщепления дейтона (ε=2,227±0,00 МэВ). Таким образом, была вычислена масса нейтрона т п = 1,00866 е. Масса нейтрона на 0, е больше массы протона. Поэтому нейтрон может распадаться на протон, электрон и антинейтрино n p + e + ~ ν. () Такой распад свободного нейтрона впервые наблюдался Снеллом в 1948 г. Период полураспада нейтрона составляет 10,76 мин, т. е. нейтрон частица долгоживущая, в большинстве процессов взаимодействия с веществом может рассматриваться как устойчивая. Спин нейтрона равен 1/2. Магнитный момент нейтрона равен 1,911 магнетона Бора (e h /2m p c). Верхняя граница электрического заряда нейтрона, равная е, была оценена Ферми и Маршаллом в 1947 г Регистрация нейтронов В отличие от заряженных частиц, нейтрон не производит ионизации атомов, поскольку он не имеет кулоновского заряда. Электромагнитное взаимодействие нейтрона с электронами атомов существует только за счет магнитного момента нейтрона. Однако эффективное сечение таких взаимодействий мало (порядка см 2 ). Поэтому регистрация нейтронов происходит только за счет ядерных реакций, в результате которых образуются заряженные частицы (α, р и др.). При столкновении с атомными ядрами нейтроны в зависимости от энергии могут вступать в различные ядерные реакции. При этом различают простое столкновение с ядром, которое приводит к отклонению нейтронов от первоначального направления, т. е. рассеянию, либо захвату нейтрона ядром, при котором поглощение нейтрона сопровождается вторичным излучением. При классификации ядерных реакций нейтроны по энергиям разбиваются на четыре класса: (Е~0,01 эв) тепловые, (Е<1000 эв) медленные, (1 эв<е<00 кэв) 2

3 промежуточные и быстрые (0, МэВ<Е<20 МэВ). Нейтроны, превышающие 20 МэВ, в ядерных реакциях практически отсутствуют. Для регистрации тепловых и медленных нейтронов используются реакции с легкими ядрами (А<2), где сечения взаимодействия нейтронов особенно велики и достигают 1000 б (1 барн=10-24 см 2 ). К ним, в частности, относятся реакции с бором, литием, гелием Сечения B, Li, 2 He имеют энергетическую зависимость, отличную от соответствующей зависимости для других ядер, а именно σ~1/v, т. е. обратно пропорционально скорости движения нейтронов. Это свойство позволяет использовать эти реакции не только для регистрации, но и для определения энергии нейтронов. Рассмотрим подробнее эти реакции. В естественной смеси изотопов бора содержится ,2% B и 19,8% B. Захват нейтрона B происходит по экзотермической реакции (п, α): 10 B 7 Li +α + Li 7 +α 2,79 2,1 7 Li + γ + 0,478 Сечение этой реакции для тепловых нейтронов равно 840±11 б и следует закону 1/v вплоть до энергии нейтронов эв. Изотоп Li, содержание которого в естественной смеси изотопов элемента составляет 7,2%, взаимодействует с нейтроном по схеме 6 1 Li + 0n 2 He + p + 0,764 () Сечение этой реакции для тепловых нейтронов равно 27±10 б. Все приведенные выше реакции используются для регистрации тепловых и медленных нейтронов в таких детекторах, как счетчик Гейгера Мюллера в виде газовых смесей (например, BF и Не), в люминесцентных счетчиках в составе люминесцирующих кристаллов (например, LiI(Eu)) и др. Для регистрации медленных нейтронов используются реакции деления под действием медленных нейтронов ряда тяжелых элементов, таких, как 92 U, 92 U и 94 Pu. При делении ядра осколки деления обладают суммарной кинетической энергией порядка 160 МэВ. Это позволяет создать детекторы нейтронов (так называемые камеры деления), не чувствительные к γ-излучению, что оказывается особенно важным при регистрации нейтронов в ядерном реакторе. Поглощение нейтронов в промежуточной области энергии для разных элементов имеет характер так называемого резонансного поглощения типа (п, γ). (4) Рисунок 1 Зависимость полного сечения родия от энергии нейтрона. Резонансные реакции происходят тогда, когда в результате поглощения нейтрона образуется составное ядро. При этом энергия поглощения нейтрона равна сумме энергии

4 связи нейтрона и энергии одного из возбужденных состояний составного ядра. Сечение взаимодействия в этом случае имеет характер резко выраженного максимума на фоне медленно изменяющегося сечения упругого рассеяния (рис. 1). Подбор детекторов с разными диапазонами энергий резонансного поглощения позволяет не только регистрировать, но и оценивать их спектральное распределение Детектирование быстрых нейтронов и определение их энергии по протонам отдачи. В том случае, когда образованное при поглощении нейтрона составное ядро испускает нейтрон с той же энергией, что и поглощенный, мы имеем дело с так называемым упругим рассеянием через составное ядро. В системе центра масс нейтрон ядро мишень энергия нейтрона не изменяется. Однако упругое рассеяние нейтрона может происходить и без образования составного ядра. Потенциальное рассеяние нейтрона в поле ядерных сил является простейшим взаимодействием нейтрона с ядром. На основании законов сохранения энергии и импульса можно найти однозначную зависимость энергии рассеянного нейтрона от угла рассеяния: E0 = E1 + EM,, 2 2 (6) PM = P0 2P1 P0 cosϕ где Е 0 Р 0 энергия и импульс нейтрона до столкновения,. E 1, P 1 энергия и импульс ядра отдачи до столкновения, Е М, Р М энергия и импульс ядра отдачи после столкновения. (Энергия ядра до столкновения принимается равной нулю.) φ угол рассеяния нейтрона. Если рассматривать Е М как функцию угла ядра отдачи θ и исключить E 1 и P 1 можно получить зависимость энергии угла отдачи ядра от энергии первичного нейтрона: 4mM 2 E M = E0 cos θ, 2 (7) ( M + m) где М и т соответственно массы ядра и нейтрона. Наиболее простым случаем является рассеяние нейтрона на протоне (ядре водорода). При условии, что массы нейтрона и протона равны, энергия, передаваемая при акте рассеяния, может быть представлена в виде E cos 2 p = E 0 θ, (8) где Е 0 энергия первичного нейтрона, Е р энергия протона отдачи, θ угол между направлением первичного нейтрона и протона отдачи (рис. 2). Максимальная энергия отдачи, когда нейтрон передает всю энергию протону, имеет место при лобовом ударе (θ=0). Рисунок 2 Схема рассеяния нейтрона n 0 на протоне р, где P r n0, 4 p r p и p r n импульсы соответственно первичного нейтрона, протона и вторичного нейтрона, p r суммарный импульс протона и нейтрона после акта рассеяния. С увеличением угла энергия протона убывает и достигает нулевого значения при θ=90. При θ>90 ядер отдачи быть не может. Таким образом, для определения энергии нейтрона необходимо найти энергию протона отдачи и угол рассеяния протона по отношению к направлению пучка первичных нейтронов. Для спектроскопии нейтронов по протонам отдачи используются системы из различных

5 счетчиков. Иногда для определения энергии нейтронов по протонам отдачи применяют пузырьковые камеры и др Определение энергии нейтронов по протонам отдачи в ядерных фотоэмульсиях. Наиболее наглядными способами Регистрации нейтронов по протонам отдачи являются методы пузырьковой камеры и ядерных эмульсий, где следы протонов отдачи непосредственно видны соответственно в виде Цепочки пузырьков или зерен проявленного серебра. 1.. Описание программы Рисунок Образование ядра отдачи в плоскости фотопластинки. На рисунке показано образование ядра отдачи при взаимодействии нейтрона с ядром водорода. Где E n0 энергия первичного нейтрона (нейтрона до взаимодействия с протоном); E n1 энергия вторичного нейтрона (нейтрона после взаимодействия с протоном); E p энергия ядра отдачи (протона). Структура (блок-схема) программы приведена на рис. 4. Рисунок 4 Блок-схема программы.

6 Используя зависимости прохождения заряженных частиц в веществе моделируется поле фотоядерной пластинки, в котором расположены треки от соответствующих частиц. На рис. приведено окно ввода всех необходимых параметров Ввод параметров эксперимента Рисунок Параметры начальных условий для генерации пластинки. Общая плотность образовавшихся ядер отдачи к площади исследуемой пластинки, Ps Число сгенерированных ядер отдачи. Максимальное значение приближенно лежит около 00 шт. Разброс первоначальной энергии нейтронов участвующих в образовании ядер отдачи, den Диапазон первоначальной энергии нейтронов 6,1-18,1 МэВ Разброс глубины образования ядра отдачи в пластинке, dds dds = 0 % взаимодействие произошло на поверхности пластинки dds = 100 % взаимодействие произошло на поверхности пластинки оборотной стороны. 6

7 1..2. Поиск и анализ ядер отдачи После генерации пластинки поиски и анализ ядер отдачи осуществляется на вкладке «Микроскоп» (см. рис.6). Рисунок 6 Параметры начальных условий для генерации пластинки. Рабочее окно условно разделено на две части: первая (верхняя) органы управления микроскопом поле зрения для поиска и анализа ядер отдачи; вторая (нижняя) координатная сетка ядерной фотопластинки с расположением на ней центров образовавшихся ядер отдачи. Фокальная плоскость показывает уровень текущей глубины фокуса в пластинке Яркость интенсивность лампы микроскопа (насыщенность цвета светофильтра) Светофильтр задает цвет одного из пяти цветов поля зрения Поле зрения рабочая область поиска и анализа ядер отдачи Панель управления содержит органы навигации по пластинке и кнопки определения длин треков ядер отдачи 7

8 Рисунок 7 Поле зрения и панель управления микроскопом. Подробнее рассмотрим процесс определения длины и угла отклонения ядра отдачи от первоначального движения потока нейтронов (поток нейтронов направлен горизонтально слева на право) (см. рис.7). Выбрав область для поиска ядер отдачи, в данном примере эта область H1 (левый верхний угол поля зрения), необходимо настроить фокальную плоскость и позицию исследуемого трека ядра отдачи. Фокус изменяет фокальную плоскость в пределах толщины пластинки (толщина пластинки 600 мкм). Поз.X и Поз.Y перемещают столик пластинки относительно поля зрения по горизонтали и вертикали соответственно. Показания значений координат относительные в пределах выбранной области. х увеличение изображения картинки (х10, х00, х600, х1200). После идентификации звезды необходимо щелкнуть левой кнопкой мыши в районе начала трека, чтобы определить позицию взаимодействия нейтрона с протоном. Щелкнув по кнопке 1 и по концу трека программа автоматически определит его длину и угол. Для корректировки длины и угла трека необходимо выбрать его, для этого удерживая Ctrl щелкнуть в начало трека (выбранный трек обозначен двойным кругом, невыбранный - одинарным). Для удаления трека необходимо щелкнуть в его начало удерживая Shift. Кнопка С удаляет все найденные треки ядер отдачи. 8

9 1... Вывод результатов Рисунок 8 «Отчет лабораторной работы». После выполнения лабораторной работы программа формирует полный отчет (рис. 8), в котором отражаются все входные параметры эксперимента и все величины, которые были измерены в ходе виртуальных экспериментов. При необходимости отчет можно сохранить на жесткий диск виде текстового файла и открыть, например, в электронной таблице Microsoft Excel для дальнейших дополнительных вычислений или построения графиков Методика выполнения работы Создать новый проект согласно задав входные параметры; Сгенерировать пластинку, нажав кнопу «Применить начальные условия и сгенерировать пластинку» Поиск ядер отдачи осуществлять в следующем порядке: выбрав на фотоядерной пластинке область А1 начать поиск треков. После просмотра всей области А1 перейти к следующей, щелкнув правой кнопкой мыши по соответствующей области. Выполнить замеры угла проекции следа протона по отношению к направлению первичного пучка нейтронов. За направление пучка нейтронов принимается мысленная линия, соответствующая горизонтальному перемещению предметного столика микроскопа. Часто для определения энергии первичного пучка нейтронов используют случаи упругого рассеяния лобового удара, когда угол рассеяния равен нулю (практически θ = 0 10 ). 9

10 На основании графика зависимости энергии протонов от длины следа в ядерной эмульсии (см. ПРИЛОЖЕНИЕ А) определить энергию протонов отдачи. По формуле (8) определить энергию первичных протонов. 1.. Контрольные вопросы и задачи 1. Во сколько раз число зерен (пропорциональных плотности ионизации эмульсии), образованных на единице пути протона, больше числа зерен, образованных электронами той же энергии (Е~100 кэв)? 6 2. Определить энергию отдачи ядер, Li, O и 82 Pb при упругом рассеянии нейтрона с энергией 1 МэВ при угле рассеяния 0.. Какова скорость движения теплового нейтрона и быстрого нейтрона с энергией 2 МэВ? 4. Считая среднюю энергию нейтронов, испускаемых в реакции, равной б МэВ, оценить число актов рассеяния на ядрах водорода, после которых энергия нейтронов снизится до тепловой.. Определить верхнюю границу β-спектра при распаде свободного нейтрона Рекомендуемая литература 1. Техническое описание МБИ-9 2. К.Н. Мухин. Введение в ядерную физику. М.: Атомиздат, 196, 88 с.. О.Ф. Немец, Ю.В. Гофман. Справочник по ядерной физике. Киев "Наукова думка", 197, 41 с. 4. Ю.М. Широков, Н.П. Юдин. Ядерная физика. М.: Наука, 1972, 671 с.. А.В. Юшков, В.И. Канашевич, М.А. Жусупов. Ядерная физика. Понятийный аппарат. Алматы: Казахский университет, 2002, 11 с. 10

11 ПРИЛОЖЕНИЕ А Зависимость длины пробега в эмульсии от энергии протонов Энергия протонов Е, МэВ 1 0, Пробег R, мкм 11

ВИРТУАЛЬНЫЕ ЛАБОРАТОРИИ ПРОЕКТ

ВИРТУАЛЬНЫЕ ЛАБОРАТОРИИ ПРОЕКТ (Computer Simulation) CS-01-008 В.В. Дьячков и др. ВИРТУАЛЬНЫЕ ЛАБОРАТОРИИ ПРОЕКТ КОМПЬЮТЕРНЫЙ ЛАБОРАТОРНЫЙ ПРАКТИКУМ «УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ» НА БАЗЕ НЯЦ РК II Исследование спектров ПВА в конструкционных

Подробнее

Министерство образования и науки Российской Федерации. НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.

Министерство образования и науки Российской Федерации. НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им РЕАЛЕКСЕЕВА

Подробнее

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2

ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2 ИНДИВИДУАЛЬНОЕ ДОМАШНЕЕ ЗАДАНИЕ 2 Задача 1. 1. Покоившееся ядро радона 220 Rn выбросило α чаcтицу со скоростью υ = 16 Мм/с. В какое ядро превратилось ядро радона? Какую скорость υ 1 получило оно вследствие

Подробнее

ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ ТРЕКОВ ПОЛОЖИТЕЛЬНЫХ МЮОНОВ

ЛАБОРАТОРНАЯ РАБОТА ИЗУЧЕНИЕ ТРЕКОВ ПОЛОЖИТЕЛЬНЫХ МЮОНОВ ЛАБОРАТОРНАЯ РАБОТА 4.15. ИЗУЧЕНИЕ ТРЕКОВ ПОЛОЖИТЕЛЬНЫХ МЮОНОВ Ц е л ь р а б о т ы : изучение треков элементарных частиц в ядерной фотоэмульсии; измерение пробега и оценка энергии мюона, образующегося

Подробнее

Презентационные материалы онлайн-курса «Основные технологические процессы Upstream-ceктopa нефтегазового комплекса»

Презентационные материалы онлайн-курса «Основные технологические процессы Upstream-ceктopa нефтегазового комплекса» ПАО «Газпром» Российский государственный университет нефти и газа имени И. М. Губкина (Национальный исследовательский университет) Презентационные материалы онлайн-курса «Основные технологические процессы

Подробнее

Радиоактивность. 2. Объяснение α распада с помощью туннельного эффекта. 5. Искусственная радиоактивность. Ядерные реакции.

Радиоактивность. 2. Объяснение α распада с помощью туннельного эффекта. 5. Искусственная радиоактивность. Ядерные реакции. Радиоактивность 1. Естественная радиоактивность. Излучение. Общая характеристика. Закон радиоактивного распада. 2. Объяснение α распада с помощью туннельного эффекта. 3. β распад. Нейтрино. Возбужденное

Подробнее

ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ

ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ ЛЕКЦИЯ 11 ЯДЕРНЫЕ РЕАКЦИИ Продолжаем изучать атомные ядра. 1. Диаграмма стабильности ядер. Долина стабильности На рис. 11.1 показана диаграмма стабильности ядер. Если сдвинуться из этой долины, то тогда

Подробнее

Атомная физика. А) 5. В) 2. С) 4. D) 1.*

Атомная физика. А) 5. В) 2. С) 4. D) 1.* Атомная физика Согласно постулатам Бора, атом в стационарном состоянии A) непрерывно излучает энергию B) находится всегда C) может находиться только определённое время D) излучает свет определённых частот

Подробнее

ИЗМЕРЕНИЕ ВРЕМЕНИ ЖИЗНИ МЮОНА

ИЗМЕРЕНИЕ ВРЕМЕНИ ЖИЗНИ МЮОНА Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

Подробнее

ФИЗИКА Готовимся к ЕГЭ ЕГЭ 2011 А.Н. Москалѐв, Г.А. Никулова М.: Дрофа 2011

ФИЗИКА Готовимся к ЕГЭ ЕГЭ 2011 А.Н. Москалѐв, Г.А. Никулова М.: Дрофа 2011 Кириллов А.М., учитель гимназии 44 г. Сочи (http://generalphysics.ucoz.ru/) ФИЗИКА Готовимся к ЕГЭ ЕГЭ 2011 А.Н. Москалѐв, Г.А. Никулова М.: Дрофа 2011 54. Испускание и поглощение света атомом. Методы

Подробнее

наименьшей постоянной решетки

наименьшей постоянной решетки Оптика и квантовая физика 59) Имеются 4 решетки с различными постоянными d, освещаемые одним и тем же монохроматическим излучением различной интенсивности. Какой рисунок иллюстрирует положение главных

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Ядерные реакции

И. В. Яковлев Материалы по физике MathUs.ru. Ядерные реакции И. В. Яковлев Материалы по физике MathUs.ru Ядерные реакции Энергетический выход ядерной реакции это разность Q кинетической энергии продуктов реакции и кинетической энергии исходных частиц. Если Q > 0,

Подробнее

m 9, 1 10 кг. Частица протон имеет положительный заряд, равный

m 9, 1 10 кг. Частица протон имеет положительный заряд, равный Лабораторная работа 96 ОПРЕДЕЛЕНИЕ ДЛИНЫ ПРОБЕГА БЕТА-ЧАСТИЦ В АЛЮМИНИИ И ИХ МАКСИМАЛЬНОЙ ЭНЕРГИИ Цель работы: ознакомиться с одним из методов измерения энергии -частиц, возникающих при радиоактивном распаде,

Подробнее

Тест по ядерной физике система подготовки к тестам Gee Test. oldkyx.com

Тест по ядерной физике система подготовки к тестам Gee Test. oldkyx.com Тест по ядерной физике система подготовки к тестам Gee Test oldkyx.com Список вопросов по ядерной физике 1. С какой скоростью должен лететь протон, чтобы его масса равнялась массе покоя α-частицы mα =4

Подробнее

Утверждено на заседании Ученого совета факультета Протокол от 2013 г. Декан факультета Ф.И.О.

Утверждено на заседании Ученого совета факультета Протокол от 2013 г. Декан факультета Ф.И.О. КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ им.аль-фараби Факультет физико-технический Образовательная программа по специальности Утверждено на заседании Ученого совета факультета Протокол от 2013 г. Декан факультета

Подробнее

Ионизация атомов гелия под действием магнитного момента антинейтрино. В.Г. Циноев НИЦ КИ

Ионизация атомов гелия под действием магнитного момента антинейтрино. В.Г. Циноев НИЦ КИ Ионизация атомов гелия под действием магнитного момента антинейтрино В.Г. Циноев НИЦ КИ Результаты экспериментов на многих детекторах убедительно подтверждают гипотезу нейтринных осцилляций, а это означает,

Подробнее

Физический факультет

Физический факультет Московский Государственный Университет им. М.В. Ломоносова Физический факультет Кафедра Общей ядерной физики Москва 005 г. Взаимодействие гамма-излучения с веществом Аспирант Руководитель : Чжо Чжо Тун

Подробнее

МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 для студентов 2 курса медико-биологического факультета. Тема 1. Законы теплового излучения. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ:

МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 для студентов 2 курса медико-биологического факультета. Тема 1. Законы теплового излучения. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ: МЕТОДИЧЕСКОЕ УКАЗАНИЕ 2 Тема 1. Законы теплового излучения. 1. Равновесное тепловое излучение. 2. Энергетическая светимость. Испускательная и поглощательная способности. Абсолютно черное тело. 3. Закон

Подробнее

Решение задач ЕГЭ часть С: Физика атома и атомного ядра

Решение задач ЕГЭ часть С: Физика атома и атомного ядра C11 На рисунке показаны два трека заряженных частиц в камере Вильсона, помещенной в однородное магнитное поле, перпендикулярное плоскости рисунка Трек I принадлежит протону Какой из частиц (протону, электрону

Подробнее

Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР

Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Лекция 3 СТАТИЧЕСКИЕ СВОЙСТВА АТОМНЫХ ЯДЕР Атомные ядра условно принято делить на стабильные и радиоактивные. Условность состоит в том что, в сущности, все ядра подвергаются радиоактивному распаду, но

Подробнее

Ядерные реакции. e 1/2. p n n

Ядерные реакции. e 1/2. p n n Ядерные реакции 197 Au 197 79 79 14 N 17 7 8 O 9 Be 1 4 6 C 7 Al 30 13 15 30 P e 30 15 T.5мин 14 1/ P p n n Si Au Ядерные реакции ВХОДНОЙ И ВЫХОДНОЙ КАНАЛЫ РЕАКЦИИ Сечение реакции и число событий N dn(,

Подробнее

ИЗМЕРЕНИЕ УГЛОВОГО РАСПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ

ИЗМЕРЕНИЕ УГЛОВОГО РАСПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ КОСМИЧЕСКОГО ИЗЛУЧЕНИЯ Министерство образования Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» ИЗМЕРЕНИЕ УГЛОВОГО РАСПРЕДЕЛЕНИЯ

Подробнее

КВАНТОВАЯ ФИЗИКА. Лекция 4. Атомное ядро. Элементарные частицы. Характеристики атомного ядра.

КВАНТОВАЯ ФИЗИКА. Лекция 4. Атомное ядро. Элементарные частицы. Характеристики атомного ядра. КВАНТОВАЯ ФИЗИКА Лекция 4. Атомное ядро. Элементарные частицы Характеристики атомного ядра. Атом состоит из положительно заряженного ядра и окружающих его электронов. Атомные ядра имеют размеры примерно

Подробнее

Нуклонная модель ядра Гейзенберга Иваненко. Заряд ядра. Массовое число ядра. Изотопы

Нуклонная модель ядра Гейзенберга Иваненко. Заряд ядра. Массовое число ядра. Изотопы 531 Нуклонная модель ядра Гейзенберга Иваненко Заряд ядра Массовое число ядра Изотопы 28 (С1)1 На рисунке показаны два трека заряженных частиц в камере Вильсона, помещенной в однородное магнитное поле,

Подробнее

Ядро атома. Ядерные силы. Структура атомного ядра

Ядро атома. Ядерные силы. Структура атомного ядра Ядро атома. Ядерные силы. Структура атомного ядра На основе опытов Резерфорда была предложена планетарная модель атома: r атома = 10-10 м, r ядра = 10-15 м. В 1932 г. Иваненко и Гейзенберг обосновали протон-нейтронную

Подробнее

Естественный фон. Рентгеновское и гаммаизлучения. Быстрые нейтроны. Альфаизлучение. Медленные нейтроны. k 1 1-1,

Естественный фон. Рентгеновское и гаммаизлучения. Быстрые нейтроны. Альфаизлучение. Медленные нейтроны. k 1 1-1, Тема: Лекция 54 Строение атомного ядра. Ядерные силы. Размеры ядер. Изотопы. Дефект масс. Энергия связи. Радиоактивность. Закон радиоактивного распада. Свойства ионизирующих излучений. Биологическое действие

Подробнее

Кое-что о ядерном взаимодействии Модели строения атомного ядра. Ядерные силы. Нуклонная модель ядра. Дефект массы и энергия связи. Ядерные спектры.

Кое-что о ядерном взаимодействии Модели строения атомного ядра. Ядерные силы. Нуклонная модель ядра. Дефект массы и энергия связи. Ядерные спектры. 1 Кое-что о ядерном взаимодействии Модели строения атомного ядра. Ядерные силы. Нуклонная модель ядра. Дефект массы и энергия связи. Ядерные спектры. Состав ядер Открытие радиоактивности А. Беккерелем,

Подробнее

ИЗУЧЕНИЕ ОСНОВНЫХ ЗАКОНОМЕРНОСТЕЙ РАДИОАКТИВНОГО РАСПАДА

ИЗУЧЕНИЕ ОСНОВНЫХ ЗАКОНОМЕРНОСТЕЙ РАДИОАКТИВНОГО РАСПАДА Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра физики ИЗУЧЕНИЕ ОСНОВНЫХ ЗАКОНОМЕРНОСТЕЙ РАДИОАКТИВНОГО РАСПАДА Методические указания к лабораторной

Подробнее

Лекция Атомное ядро. Дефект массы, энергия связи ядра.

Лекция Атомное ядро. Дефект массы, энергия связи ядра. 35 Лекция 6. Элементы физики атомного ядра [] гл. 3 План лекции. Атомное ядро. Дефект массы энергия связи ядра.. Радиоактивное излучение и его виды. Закон радиоактивного распада. 3. Законы сохранения при

Подробнее

Свойства атомных ядер. N Z диаграмма атомных ядер

Свойства атомных ядер. N Z диаграмма атомных ядер Лабораторная работа 1 Свойства атомных ядер Цель работы: научиться пользоваться современными базами данных в научно-исследовательской работе, получить более углубленное представление о материале, изучаемом

Подробнее

Т15. Строение ядра (элементы физики ядра и элементарных частиц)

Т15. Строение ядра (элементы физики ядра и элементарных частиц) Т5. Строение ядра (элементы физики ядра и элементарных частиц). Строение ядра. Протоны и нейтроны. Понятие о ядерных циклах. Энергия связи, дефект массы.. Естественная радиоактивность. Радиоактивность.

Подробнее

Механизмы ядерных реакций. Прямые реакции. Составное ядро.

Механизмы ядерных реакций. Прямые реакции. Составное ядро. Московский государственный университет имени М.В.Ломоносова Физический факультет РЕФЕРАТ по дисциплине: Физика ядра и частиц Механизмы ядерных реакций. Прямые реакции. Составное ядро. Банниковой Ирины

Подробнее

Приложение 4. Взаимодействие частиц с веществом

Приложение 4. Взаимодействие частиц с веществом Приложение 4. Взаимодействие частиц с веществом Взаимодействие частиц с веществом зависит от их типа, заряда, массы и энергии. Заряженные частицы ионизуют атомы вещества, взаимодействуя с атомными электронами.

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 51 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АЛЬФА-ЧАСТИЦ ПО ДЛИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ

ЛАБОРАТОРНАЯ РАБОТА 51 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АЛЬФА-ЧАСТИЦ ПО ДЛИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ ЛАБОРАТОРНАЯ РАБОТА 51 ОПРЕДЕЛЕНИЕ ЭНЕРГИИ АЛЬФА-ЧАСТИЦ ПО ДЛИНЕ ИХ ПРОБЕГА В ВОЗДУХЕ 1. ЦЕЛЬ РАБОТЫ Целью работы является изучение нергетических характеристик альфа( )-частиц и механизмов их взаимодействия

Подробнее

Методические указания к решению задач по ядерной физике

Методические указания к решению задач по ядерной физике Санкт-Петербургский Государственный Политехнический Университет Физико-Механический Факультет Кафедра Экспериментальной Ядерной Физики Методические указания к решению задач по ядерной физике Н.И.Троицкая

Подробнее

ЛАБОРАТОРНАЯ РАБОТА N Элементарная теория эффекта Комптона.

ЛАБОРАТОРНАЯ РАБОТА N Элементарная теория эффекта Комптона. 3 ЛАБОРАТОРНАЯ РАБОТА N11. 1. Элементарная теория эффекта Комптона. Рассеяние рентгеновских и γ - лучей в веществе относится к числу явлений, в которых отчетливо проявляется двойственная природа излучения.

Подробнее

Рис.6. ZX A Z+1 Y A + -1 e 0, т. е. выполняются те же законы сохранения.

Рис.6. ZX A Z+1 Y A + -1 e 0, т. е. выполняются те же законы сохранения. Конспект лекций по курсу общей физики. Часть III Оптика. Квантовые представления о свете. Атомная физика и физика ядра Лекция 14 9. СТРОЕНИЕ ЯДРА (продолжение) 9.5. Радиоактивность Радиоактивностью называется

Подробнее

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 Теория атома Бора. Элементы квантовой механики

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 Теория атома Бора. Элементы квантовой механики ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3 Теория атома Бора. Элементы квантовой механики Вариант 1 1. Определите скорость электрона на второй орбите атома водорода. [1,09 Мм/c]. Максимальная длина волны спектральной водородной

Подробнее

Примеры решения задач

Примеры решения задач 8 Примеры решения задач Задача Абсолютно черное тело нагрето от температуры до 3 С Во сколько раз изменилась мощность суммарного излучения при этом Дано: Т С373К; Т 3 С573К; σ 5,67-3 Вт м К Найти: N /N

Подробнее

Атомная физика и физика твердого тела. Индивидуальное домашнее задание. Вариант 1.

Атомная физика и физика твердого тела. Индивидуальное домашнее задание. Вариант 1. Вариант 1. 1.Фотон рассеялся под углом 120 на покоившемся свободном электроне, в результате чего электрон получил кинетическую энергию 0,45 МэВ. Найдите энергию фотона до рассеяния. 2.Электрон находится

Подробнее

Семинар 12. Деление атомных ядер

Семинар 12. Деление атомных ядер Семинар 1. Деление атомных ядер На устойчивость атомного ядра влияют два типа сил: короткодействующие силы притяжения между нуклонами, дальнодействующие электромагнитные силы отталкивания между протонами.

Подробнее

8 Ядерная физика. Основные формулы и определения. В физике известно четыре вида фундаментальных взаимодействий тел:

8 Ядерная физика. Основные формулы и определения. В физике известно четыре вида фундаментальных взаимодействий тел: 8 Ядерная физика Основные формулы и определения В физике известно четыре вида фундаментальных взаимодействий тел: 1) сильное или ядерное взаимодействие обусловливает связь между нуклонами атомного ядра.

Подробнее

Кафедра вычислительной физики ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ ПРОВЕРКИ ОСТАТОЧНЫХ ЗНАНИЙ СТУДЕНТОВ

Кафедра вычислительной физики ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ ПРОВЕРКИ ОСТАТОЧНЫХ ЗНАНИЙ СТУДЕНТОВ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Казанский (Приволжский) федеральный университет» Кафедра вычислительной физики ТЕСТОВЫЕ ЗАДАНИЯ

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 16 Общие закономерности ядерных

Подробнее

«Свойства нуклон-нуклонного взаимодействия

«Свойства нуклон-нуклонного взаимодействия Московский государственный университет имени М. В. Ломоносова Физический факультет Реферат на тему: «Свойства нуклон-нуклонного взаимодействия Выполнил: студент 214 группы Припеченков Илья Москва 2016

Подробнее

превращается в 206 изотоп свинца 82Pb

превращается в 206 изотоп свинца 82Pb Вариант 1. 1. В излучении АЧТ максимум излучательной способности падает на длину волны 680 нм. Сколько энергии излучает это тело площадью 1см 2 за 1 с и какова потеря его массы за 1 с вследствие излучения.

Подробнее

4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ 4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ По роду взаимодействия с веществом радиоактивное излучение можно разделить на три группы: 1.Заряженные частицы: -излучение, -излучение, протоны, дейтроны, различные

Подробнее

t T N N 2 В данных формулах X исходный элемент, Y элемент после радиоактивного превращения, Z зарядовое число, А массовое число.

t T N N 2 В данных формулах X исходный элемент, Y элемент после радиоактивного превращения, Z зарядовое число, А массовое число. «АТОМ И АТОМНОЕ ЯДРО». Радиоактивность способность некоторых элементов к спонтанному (самопроизвольному) излучению. Радиоактивный распад подчиняется закону: N 0 количество активных атомов в начале наблюдения,

Подробнее

Контрольная работа кг м

Контрольная работа кг м Контрольная работа 4 Вариант 0 1. Невозбужденный атом водорода поглощает квант излучения с длиной волны 97,2 нм. Вычислите, пользуясь теорией Бора, радиус электронной орбиты возбужденного атома водорода

Подробнее

1 2. вероятность пребывания частицы в области

1 2. вероятность пребывания частицы в области Вариант 1. 1. В излучении АЧТ максимум излучательной способности падает на длину волны 680 нм. Сколько энергии излучает это тело площадью 1см 2 за 1 с и какова потеря его массы за 1 с вследствие излучения.

Подробнее

Тестовые задания по квантовой физике

Тестовые задания по квантовой физике МИНОБРНАУКИ РОССИИ Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ) Тестовые задания по квантовой физике для слушателей

Подробнее

Лабораторная работа 10 Определение коэффициента поглощения радиоактивного излучения

Лабораторная работа 10 Определение коэффициента поглощения радиоактивного излучения Ярославский государственный педагогический университет им. К. Д. Ушинского Лабораторная работа 10 Определение коэффициента поглощения радиоактивного излучения Ярославль 2006 Оглавление 1. Краткая теория...........................

Подробнее

Раздел 4 Атомные ядра и элементарные частицы

Раздел 4 Атомные ядра и элементарные частицы Раздел 4 Атомные ядра и элементарные частицы Тема 1. Атомное ядро. Радиоактивность 1.1. Строение ядра. Размеры ядер. Модели ядра Протонно-нейтронная модель ядра Иваненко и Гейзенберг 1932 г. Пример: Модель

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Д. И. Вайсбурд А. В. Макиенко ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО АТОМНОЙ ФИЗИКЕ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Д. И. Вайсбурд А. В. Макиенко ЛАБОРАТОРНЫЙ ПРАКТИКУМ ПО АТОМНОЙ ФИЗИКЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Д. И. Вайсбурд А. В. Макиенко ЛАБОРАТОРНЫЙ ПРАКТИКУМ

Подробнее

Минимум по физике для учащихся 9-х классов за 4 - ю четверть.

Минимум по физике для учащихся 9-х классов за 4 - ю четверть. Минимум по физике для учащихся 9-х классов за 4 - ю четверть. Учебник: Перышкин А. В.Физика.9 класс. Учебник для общеобразовательных учреждений. М.: Дрофа, 2013. Виды и формы контроля: 1) предъявление

Подробнее

4. ДОЗА ОТ НЕЙТРОНОВ 4.1. Преобразование энергии нейтронов в веществе

4. ДОЗА ОТ НЕЙТРОНОВ 4.1. Преобразование энергии нейтронов в веществе 4. ДОЗА ОТ НЕЙТРОНОВ Как было показано выше, в случае γ-излучения одинаковым поглощенным дозам соответствуют практически одинаковые эффекты в широком диапазоне энергий γ-квантов. Для нейтронов это не так.

Подробнее

Длина волны, соответствующая «красной границе» фотоэффекта, λ кр Максимальная кинетическая энергия фотоэлектронов

Длина волны, соответствующая «красной границе» фотоэффекта, λ кр Максимальная кинетическая энергия фотоэлектронов КВАНТОВАЯ ФИЗИКА, АТОМ И ЯДРО задания типа В Страница 1 из 5 1. Монохроматический свет с длиной волны λ падает на поверхность фотокатода, вызывая фотоэффект. Как изменится энергия падающего фотона, работа

Подробнее

Основные законы и формулы. hc ε = hν =, λ. c λ. I h

Основные законы и формулы. hc ε = hν =, λ. c λ. I h 4. Квантовые свойства света. Строение атома. Основные законы и формулы Квант электромагнитного поля фотон, обладает энергией, массой и импульсом. Энергия фотона hc ε = hν =, λ 34 где h = 6,6 1 Дж с постоянная

Подробнее

ФИЗИКА, ч. 3 ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 2-1

ФИЗИКА, ч. 3 ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 2-1 ФИЗИКА, ч. 3 ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 2-1 Вариант 1 1. Максимальная длина волны спектральной водородной линии серии Лаймана равна 0,12 мкм. Предполагая, что постоянная Ридберга неизвестна, определите максимальную

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 63 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВОБОДНОГО ПРОБЕГА И ЭНЕРГИИ АЛЬФА-ЧАСТИЦ. 1. Цель работы. 2. Краткая теория

ЛАБОРАТОРНАЯ РАБОТА 63 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВОБОДНОГО ПРОБЕГА И ЭНЕРГИИ АЛЬФА-ЧАСТИЦ. 1. Цель работы. 2. Краткая теория ЛАБОРАТОРНАЯ РАБОТА 63 ОПРЕДЕЛЕНИЕ ДЛИНЫ СВОБОДНОГО ПРОБЕГА И ЭНЕРГИИ АЛЬФА-ЧАСТИЦ 1. Цель работы Целью работы является изучение свойств α-частиц, закона радиоактивного распада, определение периода полураспада

Подробнее

Тема: Радиоактивность (радиоактивный распад) Авторы: А.А. Кягова, А.Я. Потапенко

Тема: Радиоактивность (радиоактивный распад) Авторы: А.А. Кягова, А.Я. Потапенко Тема: Радиоактивность (радиоактивный распад) Авторы: А.А. Кягова, А.Я. Потапенко I. Понятие радиоактивности. Типы радиоактивного распада. Гамма-излучение атомных ядер Радиоактивность это самопроизвольный

Подробнее

ПРЕДСТАВЛЕНИЯ О СВОЙСТВАХ ЯДЕР. Сопоставление атомов и ядер

ПРЕДСТАВЛЕНИЯ О СВОЙСТВАХ ЯДЕР. Сопоставление атомов и ядер ПРЕДСТАВЛЕНИЯ О СВОЙСТВАХ ЯДЕР Е. П. Григорьев Сопоставление атомов и ядер Атомы Все стабильные атомы составляют основу окружающих нас веществ, материалов и предметов. Их размеры определяются радиусом

Подробнее

6-9. Исследование поглощения радиоактивного излучения в веществе Методические указания

6-9. Исследование поглощения радиоактивного излучения в веществе Методические указания МИНОБРНАУКИ РОССИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный университет» (ФГБОУ ВПО «ИГУ») 6-9 Исследование поглощения

Подробнее

1

1 5.3 Физика атомного ядра 5.3.1 Нуклонная модель ядра Гейзенберга-Иваненко. Заряд ядра. Массовое число ядра. Изотопы. В 1911 году Резерфорд произвел опыт по «рассеиванию альфа и бета частиц». Резерфорд

Подробнее

3.4 ИЗУЧЕНИЕ ЗАКОНА РАДИОАКТИВНОГО РАСПАДА

3.4 ИЗУЧЕНИЕ ЗАКОНА РАДИОАКТИВНОГО РАСПАДА Лабораторная работа 3.4 ИЗУЧЕНИЕ ЗАКОНА РАДИОАКТИВНОГО РАСПАДА Цель работы: изучение закономерностей радиоактивного распада путем компьютерного моделирования; определение постоянной распада и периода полураспада

Подробнее

9. Определение периода полураспада. Введение

9. Определение периода полураспада. Введение 9. Определение периода полураспада Введение Период полураспада радиоактивного нуклида является одной из его основных характеристик. Определению периода полураспада нескольких радиоактивных нуклидов и посвящена

Подробнее

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ. Окунев Дмитрий Олегович Кафедра физики, 216н

РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ. Окунев Дмитрий Олегович Кафедра физики, 216н РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ Окунев Дмитрий Олегович Кафедра физики, 216н Н.А. ОПАРИНА, О.Н. ПЕТРОВИЧ РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ КОНСПЕКТ ЛЕКЦИЙ для студентов технических специальностей, Новополоцк 2003 1.

Подробнее

Семинар 11. Ядерные реакции

Семинар 11. Ядерные реакции Семинар 11. Ядерные реакции Ядерные реакции являются не только эффективным методом изучения свойств атомных ядер, но и способом, с помощью которого было получено большинство радиоактивных изотопов. 11.1.

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 16 Общие закономерности ядерных

Подробнее

Тема 22. Физика атомного ядра и элементарных частиц. 1. Общие сведения об атомных ядрах

Тема 22. Физика атомного ядра и элементарных частиц. 1. Общие сведения об атомных ядрах Тема 22. Физика атомного ядра и элементарных частиц 1. Общие сведения об атомных ядрах В 1932 г. была открыта новая элементарная частица с массой примерно равной массе протона, но имеющая электрического

Подробнее

М инистер ство образования Респ уб лики Белар усь. «П ол оцкий гос ударств енный универ ситет» М Е Т О Д И Ч Е С К И Е У К А З А Н И Я

М инистер ство образования Респ уб лики Белар усь. «П ол оцкий гос ударств енный универ ситет» М Е Т О Д И Ч Е С К И Е У К А З А Н И Я М инистер ство образования Респ уб лики Белар усь У ч р е ж д е н и е о б р а з о в а н и я «П ол оцкий гос ударств енный универ ситет» М Е Т О Д И Ч Е С К И Е У К А З А Н И Я к выполн ению лабор атор

Подробнее

Лекция 12. Теория атома водорода по Бору

Лекция 12. Теория атома водорода по Бору 5 Лекция Теория атома водорода по Бору План лекции Модели атома Опыт Резерфорда Постулаты Бора Теория одноэлектронного атома Бора 3Спектр атома водорода [] гл7 Модели атома Опыт Резерфорда До конца XIX

Подробнее

Радиоактивность. Ядерная физика Физика 11

Радиоактивность. Ядерная физика Физика 11 Ядерная физика Физика 11 2006 г. Радиоактивность Историю ядерной физики принято отсчитывать с 1896 г., когда А. Беккерель обнаружил, что минералы содержащие уран самопроизвольно испускают лучи, вызывающие

Подробнее

В приложении Радиоактивный распад. В приложении Задание Цепные ядерные реакции. Ядерный реактор

В приложении Радиоактивный распад. В приложении Задание Цепные ядерные реакции. Ядерный реактор Календарно-тематическое планирование по ФИЗИКЕ для 11 класса (заочное обучение) на II полугодие 2016-2017 учебного года Базовый учебник: ФИЗИКА 11, Г.Я. Мякишев и др., М.:«Просвещение», 2004 Учитель: Горев

Подробнее

Дидактическое пособие по теме «Квантовая физика» учени 11 класса

Дидактическое пособие по теме «Квантовая физика» учени 11 класса Задачи «Квантовая физика» 1 Дидактическое пособие по теме «Квантовая физика» учени 11 класса Тема I. Фотоэлектрический эффект и его законы. Фотон. Уравнение Эйнштейна для фотоэффекта c Wф, Wф, где W ф

Подробнее

некоторых лёгких элементов. одинаковые осколки; 3) ядра атомов гелия (альфа-частицы), протоны, нейтроны и ядра

некоторых лёгких элементов. одинаковые осколки; 3) ядра атомов гелия (альфа-частицы), протоны, нейтроны и ядра Радиоактивность это испускание атомными ядрами излучения вследствие перехода ядер из одного энергетического состояния в другое или превращения одного ядра в другое. Атомные ядра испускают: 1)электромагнитные

Подробнее

электрона. Упругое рассеяние может быть разделено на следующие виды: однократное рассеяние ( х << 1/(σ N))

электрона. Упругое рассеяние может быть разделено на следующие виды: однократное рассеяние ( х << 1/(σ N)) Лабораторная работа 2. Обратное рассеяние β- излучения Цель работы: выявить закономерности отражения β-частиц, испускаемых радионуклидами. Теоретическая часть Основные закономерности процесса обратного

Подробнее

Атом водорода. Теория атома водорода по Бору

Атом водорода. Теория атома водорода по Бору Атом водорода Теория атома водорода по Бору Атом наименьшая частица химического элемента. Атом водорода простейшая атомная система, содержащая 1 электрон. Водородоподобные ионы содержат 1 электрон: He

Подробнее

ПРАКТИЧЕСКАЯ РАБОТА 5 Цель работы: Теоретическое введение Основные свойства радиоактивного излучения Активность источника Единица измерений:

ПРАКТИЧЕСКАЯ РАБОТА 5 Цель работы: Теоретическое введение Основные свойства радиоактивного излучения Активность источника Единица измерений: ПРАКТИЧЕСКАЯ РАБОТА 5 Оценка влияния ионных излучений на состояния здоровья работника. Цель работы: знакомство с видами радиоактивного излучения и основами дозиметрического контроля. Теоретическое введение

Подробнее

Элементы физики атомного ядра и элементарных частиц. 1. Состав, размер и характеристика атомного ядра.

Элементы физики атомного ядра и элементарных частиц. 1. Состав, размер и характеристика атомного ядра. Элементы физики атомного ядра и элементарных частиц.. Состав, размер и характеристики атомного ядра. Работы Иваненко и Гейзенберга. 2. Дефект массы и энергия связи ядра. 3. Ядерные взаимодействия. 4. Радиоактивный

Подробнее

И протон, и нейтрон обладают полуцелым спином

И протон, и нейтрон обладают полуцелым спином Конспект лекций по курсу общей физики. Часть III Оптика. Квантовые представления о свете. Атомная физика и физика ядра Лекция 1 9. СТРОЕНИЕ ЯДРА 9.1. Состав атомного ядра Теперь мы должны обратить наше

Подробнее

17.1. Основные понятия и соотношения.

17.1. Основные понятия и соотношения. Тема 7. Волны де Бройля. Соотношения неопределенностей. 7.. Основные понятия и соотношения. Гипотеза Луи де Бройля. Де Бройль выдвинул предложение, что корпускулярно волновая двойственность свойств характерна

Подробнее

14. Атомная и ядерная физика.

14. Атомная и ядерная физика. 14. Атомная и ядерная физика. 2005 1. β-излучение это А) Поток протонов. В) Поток фотонов. С) Поток ядер атома гелия. D) Поток электронов. Е) Поток нейтронов. 2.В реакторах на медленных тепловых нейтронах

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 4.14 ИССЛЕДОВАНИЕ ДОЛГОЖИВУЩЕГО ИЗОТОПА КАЛИЯ

ЛАБОРАТОРНАЯ РАБОТА 4.14 ИССЛЕДОВАНИЕ ДОЛГОЖИВУЩЕГО ИЗОТОПА КАЛИЯ 1 ЛАБОРАТОРНАЯ РАБОТА 4.14 ИССЛЕДОВАНИЕ ДОЛГОЖИВУЩЕГО ИЗОТОПА КАЛИЯ Ц е л ь р а б о т ы : Экспериментальное определение периода полураспада 19 К 4 0 ; оценка β активности исследуемого источника и человеческого

Подробнее

4.4. Исходя из того, что энергия ионизации атома водорода Е = 13,6 эв, определить первый потенциал возбуждения ϕ 1 этого атома.

4.4. Исходя из того, что энергия ионизации атома водорода Е = 13,6 эв, определить первый потенциал возбуждения ϕ 1 этого атома. КВАНТОВАЯ ФИЗИКА 1.1. Вычислить лучистый поток, испускаемый кратером дуги с простыми углями, имеющим температуру 4200 К. Диаметр кратера 7 мм. Излучение угольной дуги составляет приблизительно 80 % излучения

Подробнее

РЕФЕРАТ. «Странность. Рождение и распад странных частиц»

РЕФЕРАТ. «Странность. Рождение и распад странных частиц» ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА» ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ РЕФЕРАТ «Странность. Рождение и распад

Подробнее

Московский государственный университет им. М.В. Ломоносова Физический факультет

Московский государственный университет им. М.В. Ломоносова Физический факультет Московский государственный университет им. М.В. Ломоносова Физический факультет Реферат на тему: «Гамма-переходы в ядрах. Электрические и магнитные гаммапереходы» Трифонова Виктория 209 группа Преподаватель:

Подробнее

Семинар 2. Квантовые свойства излучения и частиц

Семинар 2. Квантовые свойства излучения и частиц Семинар. Квантовые свойства излучения и частиц Представления о дискретной структуре материи зародилось в XIX веке. В 1811 г. Авогадро предположил, что в равных объемах различных газов при одинаковой температуре

Подробнее

ЛЕКЦИЯ 9 АТОМНОЕ ЯДРО

ЛЕКЦИЯ 9 АТОМНОЕ ЯДРО ЛЕКЦИЯ 9 АТОМНОЕ ЯДРО Мы рассматривали атом в магнитном поле и его влияние на спектр излучения. Впервые эти процессы рассмотрел Зееман, поэтому расщепление уровней энергии в магнитном поле называется эффектом

Подробнее

Институт Естественных Наук и Экологии ПРОГРАММА. по курсу ЯДЕРНАЯ ФИЗИИКА. для студентов 4 курса ( I семестр )

Институт Естественных Наук и Экологии ПРОГРАММА. по курсу ЯДЕРНАЯ ФИЗИИКА. для студентов 4 курса ( I семестр ) Институт Естественных Наук и Экологии "УТВЕРЖДАЮ" Ректор ИНЕСНЭК С.Т.Беляев " "августа 2003 г. ПРОГРАММА по курсу ЯДЕРНАЯ ФИЗИИКА для студентов 4 курса ( I семестр ) Лекции 42 часа Практические (семинарские)

Подробнее

ТЕОРЕТИЧЕСКИЙ ПРАКТИКУМ ПО ФИЗИКЕ ЯДРА И ЧАСТИЦ

ТЕОРЕТИЧЕСКИЙ ПРАКТИКУМ ПО ФИЗИКЕ ЯДРА И ЧАСТИЦ 1 Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» В.С. Малышевский ТЕОРЕТИЧЕСКИЙ ПРАКТИКУМ

Подробнее

3. Взаимодействие альфа-частиц с веществом. Введение

3. Взаимодействие альфа-частиц с веществом. Введение 3. Взаимодействие альфа-частиц с веществом Введение Альфа-частицы представляют собой ядра гелия 4 2He, имеют заряд +2e, состоят из 4 нуклонов 2 протонов и 2 нейтронов. Альфа-частицы возникают при радиоактивном

Подробнее

1. Начальный уровень (0,5 балла)

1. Начальный уровень (0,5 балла) Фамилия, имя Д ата АТОМНОЕ ЯДРО. ЯДЕРНЫЕ СИЛЫ. РАДИОАКТИВНОСТЬ Самостоятельная работа О Вариант. Начальный уровень (0,5 балла) У различных изотопов одного и того же химического элемента... А.... одинаковое

Подробнее

радиоактивности Анри Беккерелем

радиоактивности Анри Беккерелем РАДИОАКТИВНОСТЬ Открытие рентгеновских лучей дало толчок новым исследованиям. Их изучение привело к новым открытиям, одним из которых явилось открытие радиоактивности. Примерно с середины XIX стали появляться

Подробнее

Экспериментальная ядерная физика

Экспериментальная ядерная физика Национальный исследовательский ядерный университет «МИФИ» Кафедра 7 экспериментальной ядерной физики и космофизики А.И. Болоздыня Экспериментальная ядерная физика Лекция 23 Ядерные силы в нуклон-нуклонных

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ. для студентов II курса IV семестра всех факультетов

ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ. для студентов II курса IV семестра всех факультетов 1 ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ Варианты домашнего задания по физике для студентов II курса IV семестра всех факультетов Вариант Номера задач 1 1 13 5 37

Подробнее

Спонтанное деление 252 Cf

Спонтанное деление 252 Cf Лабораторная работа 15 Спонтанное деление Cf Целью работы является изучение энергетического спектра осколков спонтанного деления различным каналам. Cf и определение отношения вероятностей распада Cf по

Подробнее

Лабораторная работа 18 Опыт Резерфорда

Лабораторная работа 18 Опыт Резерфорда I II III Лабораторная работа 18 Опыт Резерфорда Цель работы Теоретическая часть 1 Введение 2 Рассеяние α -частиц 3 Дифференциальное сечение рассеяния 4 Формула Резерфорда Экспериментальная часть 1 Методика

Подробнее

На рисунке представлен фрагмент Периодической системы химических элементов.

На рисунке представлен фрагмент Периодической системы химических элементов. Задание B6A602 1) Ядро кислорода с массовым числом 17 содержит 9 нейтронов 2) Ядро кислорода с массовым числом 17 содержит 17 протонов 3) Положительный ион лития содержит 4 электрона 4) Нейтральный атом

Подробнее

Взаимодействие излучения с веществом (наименование дисциплины) Направление подготовки физика

Взаимодействие излучения с веществом (наименование дисциплины) Направление подготовки физика Аннотация рабочей программы дисциплины Взаимодействие излучения с веществом (наименование дисциплины) Направление подготовки 03.03.02 физика Профиль подготовки «Фундаментальная физика», «Физика атомного

Подробнее