1.Дифференциальные уравнения высших порядков, общие понятия.

Размер: px
Начинать показ со страницы:

Download "1.Дифференциальные уравнения высших порядков, общие понятия."

Транскрипт

1 ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков, общие понятия Дифференциальные уравнения высших порядков простейших типов Линейные дифференциальные уравнения n-го порядка 4Линейные однородные уравнения второго порядка с постоянными коэффициентами 6 5Линейные однородные дифференциальные уравнения высших порядков 7 Дифференциальные уравнения высших порядков, общие понятия В общем виде общие дифференциальные уравнения n-го порядка записываются так: F(,,,,, (n) )=, n () Соотношение () связывает независимую переменную, искомую функцию =() и ее производные,,, (n) Здесь F заданная функция от (n+) переменных в некоторой области (n+)-мерного пространства R n+ Иногда уравнение () можно разрешить относительно старшей производной (n) Тогда оно примет вид: (n) =f(,,,,, (n-) ) (), n, где f заданная функция Частным случаем () являются линейные дифференциальные уравнения n-го порядка a () (n) +a () (n-) + +a n- () +a n ()=r(), где a i () (i=,,, n), r() заданные функции от Определение Решением дифференциального уравнения () называется дифференцируемая n раз функция =(), обращающая уравнение () в тождество, то есть F(, (), (),, (n) ()) При интегрировании дифференциального уравнения n порядка () получается семейство решений, заданное функцией, зависящей от n произвольных постоянных С, С,, С n : =(, C, C,, C n ) Задача Коши для дифференциального уравнения () формулируется так: найти решение =() уравнения (), удовлетворяющее условиям: ( )=, ( )=,, (n-) ( )= (n-) (5), где,,,, (n-) заданные числа f Теорема Пусть в уравнении () функция f и ее частные производные, f,, f ( n ) определены и непрерывны на некотором множестве D Тогда в некоторой окрестности - < точки существует непрерывное решение () задачи Коши (), (5), где (,,,, (n-) )D Это решение единственно Определение Решение уравнения n-го порядка, удовлетворяющее данному начальному условию, называется частным решением, а соответствующий интеграл частным интегралом Определение Общим решением дифференциального уравнения n-го порядка, называется решение (, C, C,, C n- ), из которого по заданным любым начальным условиям ( n) ( n),,, могут быть найдены единственные значения C =C,, C =C,,, C n- =C n-,, такие, что (, C,, C,,, C n-, )= ; (, C,, C,,, C n-, )= ; ; (n-) (, C,, C,,, C n-, )= (n-) Уравнение u(,, C, C,, C n- )=, связывающее независимую переменную и общее решение, называется общим интегралом дифференциального уравнения n-го порядка

2 Дифференциальные уравнения высших порядков простейших типов Рассмотрим простейшие типы дифференциальных уравнений высших порядков, приводимые к уравнениям первого порядка и интегрируемые в квадратурах Дифференциальные уравнения с правой частью, зависящие только от независимой переменной Уравнения вида (n) =f() Решение такого уравнения достигается последовательным интегрированием Так как (n) =( (n-) ), то (n-) = f ( ) d C Далее (n-) = d f ( ) d C ( ) C = d d f ( ) d ( ) ( n )! C n C ( ) ( n )! n C n ( ) C Приложение Дифференциальное уравнение второго порядка =f() встречается часто в динамике Оно дает закон движения в том случае, когда действующая сила может быть задана как функция только времени Дифференциальные уравнения, правая часть которых не содержит искомой функции Это уравнение второго порядка вида =f(, ) () Положим, =p; тогда =p, получим p =f(, p) это уравнение первого порядка Найдя отсюда p, получим искомое решение из равенства =p Аналогичный метод применяется к уравнениям n-го порядка вида: (n) =f(, (n-) ) Полагая (n-) =p, сводим задачу к интегрированию уравнения первого порядка и к последующему интегрированию уравнения вида, рассмотренного раньше Пример - ( ) Начальные условия: ()=; ()=- Решение =p; p p - ( ) ; p dp d C( )( ) p ; ; p C( ); pн у C( )( ) ( ) C ( ) C( ) ( p n C ( ) ()=; C()= C; p ( C)( ); C( ), найдем С, используя по очереди заданные начальные условия: 4 -= C C ; 4 ( ) 4 = ; C ; C = = 8 6 Дифференциальные уравнения, правая часть которых не содержит независимой переменной Уравнение вида =f(, ) () )

3 Правая часть не содержит независимой переменной Снова положим =p, но будем считать p функцией от Дифференцируя это равенство, получим p ( ) d d dp = p d d d Подставляя в уравнение, имеем: dp p f (, p), то есть получили уравнение первого d порядка относительно p как функции от Найдя для p выражение через, то есть p=(), d искомое решение получим из уравнения с разделяющимися переменными: p (), d d или d ( ) Уравнение n-го порядка (n) =f( (n-), (n-) ) подстановкой (n-) =z преобразуется к уравнению второго порядка вида () Пример + = Пусть =z; dz =z ; +z dz =z d d (+z )d=zdz d zdz z ln = ln z ln C ; C = z ; C =+z ; z= C Возвратимся к переменной : = C ; d= C d d d; ln( C C ) ( C) C C Линейные дифференциальные уравнения n-го порядка Рассмотрим дифференциальное уравнение: () (n) + () (n-) + + n- () + n ()=r() (), где i () (i=,,, n) и r() известные функции, непрерывные при всех допустимых значениях ;,, (n) ее производные по Дифференциальное уравнение () называется линейным, так как искомая функция и ее производные входят в уравнение в первой степени Функция r() называется правой частью Определение Линейное дифференциальное уравнение () называется однородным (или уравнением без правой части), если r() Если же r(), то уравнение () называют неоднородным (или уравнением с правой частью) Запишем уравнение () в другой форме Разделим все члены этого уравнения на () и i ( ) обозначим новые коэффициенты через a i ()= ; (i=,,, n), а новую правую часть ( ) r( ) через f()= Тогда уравнение () будет иметь вид: ( ) (n) +a () (n-) + +a n- () +a n ()=f() (), а соответствующее ему однородное: (n) +a () (n-) + +a n- () +a n ()= ()

4 Замечание Непрерывность коэффициентов и свободного члена, которую мы будем везде предполагать, обеспечивает выполнение условий теоремы существования и единственности решения Основные свойства линейных однородных уравнений второго порядка Рассмотрим уравнение +) +q()= (4), где ) и q() функции, непрерывные при всех допустимых значениях Уравнение (4) является линейным однородным уравнением вида (), где n=, a ()=); a ()=q() Оно имеет тривиальное решение (), для которого =, = и уравнение (4) обращается в тождество Нас будут интересовать ненулевые решения уравнения (4) Пусть = () и = () два решения уравнения (4), отличные от нулевого Определение Два решения и уравнения (4) называются линейно-зависимыми, если существуют постоянные и, не равные одновременно нулю и такие, что при любом значении справедливо соотношение ()+ () (5) Если же таких чисел и не существует, то есть тождество (5) справедливо только при = =, то решения и называются линейно-независимыми О линейной зависимости решений можно судить по определителю Вронского: ( ) ( ) W(, )= ( ) ( ) Теорема Если решения и уравнения (4) линейно зависимы на отрезке [a, b], то W(, )= для любого из [a, b] Доказательство Так как и линейно зависимы, то справедливо тождество +, то есть = Составим вронскиан определитель Вронского, строки которого состоят из функций и их производных W(, )=, откуда W(, ), как определитель с двумя равными столбцами Теорема Остроградского Если () и () два частных решения линейного однородного х) d уравнения (4), то W(, )=W, где W постоянная, равная значению W(, ) при =, а [a, b] фиксированное значение аргумента Доказательство Так как и есть решения уравнения (4), то имеем: +) +q() = +) +q() = умножая первое уравнение на, а второе на и вычитая из второго первое, получим: ( - )+)( - )= Выражение во второй скобке есть W, а в первой скобке производная от W: dw d dw dw Следовательно, ) W, ) d d W Интегрирование по от до дает ln W W ) d, где W =W =W(, ) 4

5 х) d Отсюда, W=W (6), что и требовалось доказать Эта формула (6) называется формулой Лиувилля Теорема обратная Если решения и уравнения (4) линейно независимы на отрезке [a, b], то W(, ) не обращается в нуль ни в одной точке из [a, b] Пример Показать, что = k k и у е, где k k линейно независимы Решение Составим вронскиан: k k k k k k ( k k ) W(, )= k k ( k k) для любого на [a, b], k k k k так как k k Теорема Если и два линейно-независимых решения уравнения (4), то функция =C +C (7), где C и C произвольные постоянные, является общим решением (4), то есть дает все решения этого уравнения Доказательство Прежде всего убедимся в том, что функция (7) при любых значениях C и C есть решение уравнения (4) Имеем =C +C ; =C +C Подставляя это в (4): C +C +pc +pc +qc +qc =C ( +p +q )+C ( +p +q ) Выражения в скобках представляют собой результат подстановки в левую часть уравнения (4) и, а так как, по условию, они решения, то обе скобки тождественно равны нулю и таким образом, функция (7) действительно удовлетворяет уравнению (4) Убедимся теперь, что функция (7) при произвольных C и C есть действительно общее решение этого уравнения Пусть заданы какие-нибудь начальные условия,, где = допустимое значение Докажем, что при сделанном предположении относительно и, можно выбрать такие значения C и C, что функция (7) удовлетворит назначенным начальным условиям Это и будет означать, что функция (4) является общим решением Мы должны иметь: C C ; C C, где = ( ); = ( ); = ( ); = ( ) Определетелем этой системы служит W Так как по доказанному W, то система имеет определенные конечные значения для C и C : С = ; W С =, что и требовалось доказать W Если частные решения и линейно зависимы, то есть =k, то функция (7) =C +C =(C +kc ) =C фактически будет зависеть от одной произвольной постоянной C В этом случае функция (7) не доставляет общего решения Линейно независимые решения образуют, как говорят, фундаментальную систему решений уравнения (4) Вывод: Итак, для составления общего решения линейного однородного уравнения второго порядка требуется знание фундаментальной системы решений, то есть двух каких-нибудь линейно-независимых частных решений Пример Найдем решение (-) - +=, при начальных условиях ; Здесь нетрудно просто подобрать два решения Проверкой убедимся, что уравнению удовлетворяют = и = Эти решения образуют фундаментальную систему решений, 5

6 так как - не постоянная величина Но при этом ни, ни не удовлетворяют начальному условию Составим общее решение: =C +C Отсюда, =C +C Используем начальные условия: =C ; =C +C Отсюда, C =; C =- Значит, =-+ искомое решение Изложенная теория переносится в неизменном виде на линейные однородные уравнения n-го порядка (n>) 4Линейные однородные уравнения второго порядка с постоянными коэффициентами Общее решение уравнения (4) удается найти не во всех случаях Однако в частном случае, когда уравнение (4) имеет вид +p +q= (8), где p и q постоянные, его общее решение можно найти всегда Уравнение (8) называется однородным линейным с постоянными коэффициентами Будем искать его решение в виде = k, где k некоторое пока неизвестное число действительное или мнимое Тогда, =k k ; =k k Подставив эти выражения в (8) и разделив обе части на k, получим k k +pk k +q k = или k +pk+q= (9) Уравнение (9) называется характеристическим уравнением для уравнения (8) Его p p корни находятся по формуле k, =- q 4 В зависимости от характера корней уравнения (9) получаются различные общие решения уравнения (8) Рассмотрим возможные случаи Корни-действительные и различные: k k В этом случае частными решениями уравнения (8) являются = k ; = k Эти решения линейно-независмы Общее k k решение (8) имеет вид: =C C Корни-действительные и равные: k =k =k В этом случае одно частное решение ~ имеет вид = k Если взять = k, то решения и будут линейно зависимыми В этом случае второе решение, линейно-независимое с первым, можно найти с помощью формулы Лиувилля Рассмотрим производную частного двух решений: ) d d W (, ) W ( ) Интегрируя это соотношение и умножая d ) d на, получим = W d Правая часть формулы содержит только ; поэтому, ее можно использовать для нахождения решения, полагая W =; ) d p p p = k k p k d d d k k p Тогда общее решение имеет вид: =C k +C k = k (C +C ) Пример - -= Характеристическое уравнение: k -k-=; 8 k, = ; Значит общее решение: =C +C - 6 ~

7 Пример =; характеристическое уравнение: 6k -4k+9=; k, = Общее решение: = ( C C) 8 4 Корни характеристического уравнения комплексно-сопряженные +i, -i Уравнению удовлетворяют функции (+i), (-i), причем они линейно независимы, так ( i) i как ( i) ( i) const! Общее решение: =C ( i) C Но задавая уравнение в области действительных чисел, стремятся обычно и решение его сохранить в этой же области и не прибегать к комплексным числам Замечание Если уравнению (4) с действительными коэффициентами удовлетворяет какаянибудь комплексная функция = +i, где и действительные функции, то эти функции, каждая в отдельности, являются решениями уравнения (4) ( i) i Итак, = (cos isin ) cos i sin Значит, cos и sin - есть решения уравнения Линейная независимость их очевидна Общее решение: = C cos C sin Второй корень -i дает, не считая знака, те же самые решения: cos и - sin Поэтому, общее решение будет иметь тот же вид Итак, общее решение имеет вид = (C cos+c sin), где - действительная, - мнимая часть комплексного корня характеристического уравнения (9) Пример -4 += Характеристическое уравнение: k -4k+=, k, = 4 =i Общее решение: = (C cos+c sin) Таким образом, интегрирование линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами совершается безо всяких квадратур и полностью завершается посредством решения алгебраических квадратных уравнений 5Линейные однородные дифференциальные уравнения высших порядков Уравнения имеют вид: (n) +a () (n-) + +a n- () +a n ()= () и обладают аналогичными свойствами Определение Частные решения,,, n уравнения () называются линейнонезависимыми, если равенство n n = выполняется только при всех,,, n одновременно равных нулю Если,,, n линейно-независимые решения уравнения (), то общее решение задается формулой: =C +C + +C n n, где С, С,, С n произвольные постоянные Если коэффициенты a, a,, a n уравнения () постоянны, то его частные решения,,, n находятся с помощью характеристического уравнения k n +a k n- + +a n- k+a n = () При этом каждому действительному корню k уравнения (), имеющему кратность m соответствует m частных решений вида k, k,, m- k уравнения (), а каждой паре комплексных корней k=i кратности m соответствует m пар частных решений вида sin, cos, sin, cos,, m- sin, m- cos Пример =; составим характеристическое уравнение: k -5k +8k-4=; (k-)(k -4k+4)=; (k-)(k-) =; его корни k =, k, =; значит общее решение =C +C +C Пример -8=; k -8=; (k-)(k +k+4)=; k =, k =- =- i; =C +C - cos C sin 7


ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков.

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков. ЛЕКЦИЯ 3 Линейные дифференциальные уравнения высших порядков Линейные неоднородные и однородные дифференциальные уравнения второго порядка Интегрирование ЛОДУ и ЛНДУ второго порядка с постоянными коэффициентами

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется

2. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. 1. Основные определения. Нормальная система (2) дифференциальных уравнений называется СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Основные определения Нормальная система дифференциальных уравнений называется линейной если функции f f K f линейны относительно неизвестных функций Из этого

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0

Если мы разделим его относительно производной, то получим уравнение: (1) , что это условие 2 будет удовлетворяться (т.е. ( x0, C0 . Дифференциальные уравнения первого порядка. Опр. Дифференциальным уравнением первого порядка называется уравнение, связывающее независимую переменную, искомую функцию и ее первую производную. В самом

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Понятие об обыкновенном дифференциальном уравнении и его решении Обыкновенным дифференциальным уравнением называется уравнение содержащее независимую

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или (

Уравнения в частных производных первого порядка. Общее уравнение в частных производных первого порядка имеет вид = или ( Глава 8 Уравнения в частных производных первого порядка Лекция 3 Общее уравнение в частных производных первого порядка имеет вид,,,, F x 0,, x z = или ( F x, z,gradz = 0 Проблема существования и единственности

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

1. Интегрирование системы дифференциальных уравнений методом исключения переменных

1. Интегрирование системы дифференциальных уравнений методом исключения переменных Интегрирование системы дифференциальных уравнений методом исключения переменных Один из основных методов интегрирования системы дифференциальных уравнений заключается в следующем: из уравнений нормальной

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ТРЕТИЙ СЕМЕСТР ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ТРЕТИЙ СЕМЕСТР ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра математического

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

{ общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского -

{ общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского - { общие понятия - теорема Коши - линейный дифференциальный оператор - основные теоремы - линейная независимость решений - определитель Вронского - вронскиан однородного линейного дифференциального уравнения

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации Санкт-Петербургский государственный архитектурно-строительный университет В Б СМИРНОВА, Л Е МОРОЗОВА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Учебное

Подробнее

22. Линейные уравнения с частными производными первого порядка

22. Линейные уравнения с частными производными первого порядка Линейные уравнения с частными производными первого порядка Понятие уравнения с частными производными и его интегрирование Уравнением с частными производными называется соотношение связывающее неизвестную

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

Интегралы и дифференциальные уравнения. Лекции 18-19

Интегралы и дифференциальные уравнения. Лекции 18-19 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 18-19 Линейные

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 43 Аннотация Нормальные системы ДУ Задача и теорема Коши Частные и общее решения Системы линейных ДУ первого

Подробнее

Гл. 11. Дифференциальные уравнения.

Гл. 11. Дифференциальные уравнения. Гл.. Дифференциальные уравнения.. Дифференциальные уравнения. Определение. Дифференциальным уравнением называется уравнение, связывающее независимую переменную, её функцию и производные различных порядков

Подробнее

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ Основные понятия Нормальные Системой называется совокупность в каждое из которых входят независимая переменная искомые функции и их производные Всегда предполагается

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами

21. Системы линейных дифференциальных уравнений с постоянными коэффициентами По условию теоремы L [ ] B ( m Тогда в силу линейности оператора L имеем: m m m L L ] B [ Системы линейных дифференциальных уравнений с постоянными коэффициентами Собственные значения и собственные векторы

Подробнее

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения

Глава 1. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Основные понятия и определения Дифференциальным уравнением называется уравнение связывающее независимую переменную х искомую функцию ( у f (х и производные искомой функции

Подробнее

ГЛАВА III. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ГЛАВА III. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ГЛАВА III СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 7 Задачи приводящие к понятию систем дифференциальных уравнений Рассмотрим систему уравнений m m m F m m m F 7 LLLLLLLLLLLLLLLLLLLLL L L m m m F где независимая

Подробнее

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ РОССИЙСКИЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ МИРЭА ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ВЫСШЕЙ МАТЕМАТИКИ ГЛАВА 3. СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Работа посвящена моделированию динамических систем с использованием элементов

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения.

4. Дифференциальные уравнения высших порядков. Понижение порядка уравнения Основные понятия и определения. 4 Дифференциальные уравнения высших порядков Понижение порядка уравнения 4 Основные понятия и определения Дифференциальными уравнениями высшего порядка называют уравнения порядка выше первого В общем случае

Подробнее

Дифференциальные уравнения (лекция 10)

Дифференциальные уравнения (лекция 10) Дифференциальные уравнения лекция 0 Линейные неоднородные уравнения высших порядков Лектор Шерстнёва Анна Игоревна 6. Линейные неоднородные уравнения -го порядка. Метод вариации произвольных постоянных

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

4. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид

4. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид 4 Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами Линейное дифференциальное уравнение второго порядка имеет вид y p y g y f () (5) где p, g R Дифференциальное уравнение всегда

Подробнее

Интегралы и дифференциальные уравнения. Лекция 22

Интегралы и дифференциальные уравнения. Лекция 22 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция Нормальные

Подробнее

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2) Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия 8 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ 8 Основные понятия Линейным дифференциальным уравнением -го порядка с переменными коэффициентами называется уравнение

Подробнее

Глава 2. Дифференциальные уравнения 1-го порядка

Глава 2. Дифференциальные уравнения 1-го порядка Глава Дифференциальные уравнения -го порядка Основные понятия Определение Дифференциальное уравнение вида ( n) F, ( ),,, 0 () называют обыкновенным дифференциальным уравнением Оно содержит известную функцию

Подробнее

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Интегралы и дифференциальные уравнения Раздел "Дифференциальные уравнения".

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

x - заданные непрерывные функции от х (или

x - заданные непрерывные функции от х (или ЛЕКЦИЯ 3 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Определение: Линейным уравнением -го порядка называет уравнение, линейное относительно неизвестной функции и ее производной. Оно имеет вид:

Подробнее

X = O. В этом случае любое решение системы ( A λ E)

X = O. В этом случае любое решение системы ( A λ E) В заключение этого пункта заметим что говорят также о собственных векторах матрицы порядка имея при этом ввиду собственные векторы оператора -мерного пространства имеющего своей матрицей в некотором базисе

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ.

КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. КУРС ЛЕКЦИЙ ПО ОБЫКНОВЕННЫМ ДИФФЕРЕНЦИАЛЬНЫМ УРАВНЕНИЯМ. ЛЕКЦИЯ Вводные замечания Дифференциальные уравнения занимают в математике особое место. Математическое исследование разнообразных природных явлений

Подробнее

Линейные неоднородные уравнения n-го порядка. Метод Лагранжа

Линейные неоднородные уравнения n-го порядка. Метод Лагранжа Линейные неоднородные уравнения n-го порядка. Метод Лагранжа Лекция 6 В. Н. Задорожный, В. Ф. Зальмеж, А. Ю. Трифонов, А. В. Шаповалов Курс: Дифференциальные уравнения Семестр 3, 2009 год portal.tpu.ru

Подробнее

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ОВ Сорокина Учебное пособие для студентов нематематических направлений подготовки

Подробнее

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы.

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы. Памятка для практических занятий по теме «Обыкновенные дифференциальные уравнения» Решение различных задач методом математического моделирования сводится к отысканию неизвестной функции из уравнения, содержащего

Подробнее

Дифференциальные уравнения высших порядков. Лекции 2-3

Дифференциальные уравнения высших порядков. Лекции 2-3 Дифференциальные уравнения высших порядков Лекции 2-3 Дифференциальным уравнением порядка n называется уравнение вида F( x, y, y,..., y() n ) 0, () в котором обязательно наличие n-ой производной. Будем

Подробнее

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами

Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Нижегородский государственный

Подробнее

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

Глава 2 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Глава ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Введем основные понятия теории дифференциальных уравнений первого порядка Если искомая функция зависит от одной переменной то

Подробнее

Лекция 14. Дифференциальные уравнения первого порядка

Лекция 14. Дифференциальные уравнения первого порядка Лекция 4 Дифференциальные уравнения первого порядка Общие понятия Дифференциальными уравнениями называются уравнения, в которых неизвестными являются функции одной или нескольких переменных, и в уравнения

Подробнее

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения

ГЛАВА 4. Системы обыкновенных дифференциальных уравнений 1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ. 1. Основные определения ГЛАВА 4 Системы обыкновенных дифференциальных уравнений ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ Основные определения Для описания некоторых процессов и явлений нередко требуется несколько функций Отыскание этих функций

Подробнее

6. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА Решения линейного однородного уравнения в частных производных первого порядка

6. УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА Решения линейного однородного уравнения в частных производных первого порядка 6 УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ ПЕРВОГО ПОРЯДКА 6 Решения линейного однородного уравнения в частных производных первого порядка Линейным однородным уравнением первого порядка в частных производных называется

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 4 Аннотация Однородные ЛДУ (ОЛДУ) с постоянными коэффициентами Характеристическое уравнение ОЛДУ Построение

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

Модуль 4. Линейные дифференциальные уравнения и системы. Лекция 4.1. Аннотация

Модуль 4. Линейные дифференциальные уравнения и системы. Лекция 4.1. Аннотация Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 41 Аннотация Линейные дифференциальные уравнения (ЛДУ) -го порядка, однородные и неоднородные Теорема о существовании

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 4 Аннотация Линейные дифференциальные уравнения (ЛДУ) -го порядка, однородные и неоднородные Теорема о существовании

Подробнее

Интегралы и дифференциальные уравнения. Лекции 20-21

Интегралы и дифференциальные уравнения. Лекции 20-21 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 20-21 Линейные

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

Решением дифференциального уравнения называется функция y y(x)

Решением дифференциального уравнения называется функция y y(x) Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или нескольких

Подробнее

1. Линейные неоднородные дифференциальные уравнения высших порядков. Основные свойства линейных неоднородных уравнений второго порядка.

1. Линейные неоднородные дифференциальные уравнения высших порядков. Основные свойства линейных неоднородных уравнений второго порядка. ЛЕКЦИЯ N. Линейные неоднородные дифференциальные уравнения высших порядков, ЛНДУ с постоянными коэффициентами. Системы Д.У. Применение дифференциальных уравнений в экономической динамике.. Линейные неоднородные

Подробнее

Министерство образования и науки Российской Федерации. Кафедра высшей математики

Министерство образования и науки Российской Федерации. Кафедра высшей математики Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Сибирский государственный индустриальный университет»

Подробнее

I. Дифференциальные уравнения 1-го порядка

I. Дифференциальные уравнения 1-го порядка Пособие предназначено для студентов - курсов МАТИ-РГТУ, изучающих в рамках курса высшей математики тему «Дифференциальные уравнения». В нем рассматриваются основные приемы решения обыкновенных дифференциальных

Подробнее

А. Н. Филиппов, Т. С. Филиппова,

А. Н. Филиппов, Т. С. Филиппова, Министерство образования и науки Российской Федерации РГУ нефти и газа имени И.М.Губкина Кафедра «Высшая математика» А. Н. Филиппов, Т. С. Филиппова, Методические указания к выполнению типового расчета

Подробнее

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 1 Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 3.1 Линейное однородное уравнение Дифференциальное уравнение вида y (n) + a n 1 y (n 1) +... + a 1 y + a 0 y = 0, (3.1) где a

Подробнее

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы.

Раздел 2. Дифференциальные уравнения Модуль 4. Линейные дифференциальные уравнения и системы. Раздел Дифференциальные уравнения Модуль 4 Линейные дифференциальные уравнения и системы Лекция 4 Аннотация Однородные ЛДУ (ОЛДУ) с постоянными коэффициентами Характеристическое уравнение ОЛДУ Построение

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ. ДУ линейные однородные (ДУЛО)

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ. ДУ линейные однородные (ДУЛО) ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВЫСШИХ ПОРЯДКОВ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ) ВЫСШИХ ПОРЯДКОВ ДУ допускающие понижение ДУ линейные однородные (ДУЛО) ДУ линейные неоднородные (ДУЛН) ДУ линейные однородные

Подробнее

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений»

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» Задание Выясните, являются ли функции ( ) e и e решениями дифференциального уравнения d ( ) d 0 на промежутке ( ; )..

Подробнее

Электронная библиотека

Электронная библиотека ГОСУДАРСТВЕННОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «БЕЛОРУССКО-РОССИЙСКИЙ УНИВЕРСИТЕТ» Кафедра «Высшая математика» В Ы С Ш А Я М А Т Е М А Т И К А Методические указания к практическим занятиям

Подробнее

(иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные можно рассматривать как равноправные

(иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные можно рассматривать как равноправные Основные типы ДУ 1. Уравнения с разделенными переменными ДУ (3) всегда можно записать в виде M (, d N(, d 0 (иногда эту форму записи называют дифференциальной формой уравнения) Удобна тем, что переменные

Подробнее

Интегралы и дифференциальные уравнения. Лекция 15

Интегралы и дифференциальные уравнения. Лекция 15 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса -го семестра специальностей РЛ1,,3,6, БМТ1, Лекция 15 Решение

Подробнее

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции.

Решение типового варианта ИДЗ «Дифференциальные уравнения». Найдём производную данной функции. Решение типового варианта ИДЗ «Дифференциальные уравнения» Задание Убедиться, что функция = (ln + C) удовлетворяет уравнению = Найдём производную данной функции = ln + C + = ln + C + Подставим данное выражение

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Дифференциальное уравнение n-го порядка называется линейным, если оно первой степени относительно функции y и её производных y..., y (n) т. е. имеет вид a 0 y (n) + a 1 y (n 1) +... + a ny = f (x), где

Подробнее

V. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Теоретические вопросы

V. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. Теоретические вопросы V ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Теоретические вопросы 1 Основные понятия теории дифференциальных уравнений Задача Коши для дифференциального уравнения первого порядка Формулировка теоремы существования и

Подробнее

Алашеева Е.А. Дифференциальные уравнения КОНСПЕКТ ЛЕКЦИЙ

Алашеева Е.А. Дифференциальные уравнения КОНСПЕКТ ЛЕКЦИЙ ФЕДЕРАЛЬНОЕ АГЕНСТВО СВЯЗИ Федеральное государственное образовательное бюджетное учреждение высшего профессионального образования ПОВОЛЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ Кафедра

Подробнее

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя.

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Линейные и нелинейные уравнения физики Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич

Подробнее

x 1 = a 11 (t)x 1 + a 12 (t)x a 1n (t)x n + b 1 (t) x 2 = a 21 (t)x 1 + a 22 (t)x a 2n (t)x n + b 2 (t) (1)

x 1 = a 11 (t)x 1 + a 12 (t)x a 1n (t)x n + b 1 (t) x 2 = a 21 (t)x 1 + a 22 (t)x a 2n (t)x n + b 2 (t) (1) ЛЕКЦИИ ПО КУРСУ «Линейная алгебра, системы ДУ с устойчивостью» 2 курс, 2 семестр Лекторы: Мельников Ю.Б., Мельникова Н.В. Оглавление 1. Системы линейных дифференциальных уравнений 4 1.1. Определения................................

Подробнее

Семинар 5. ОПИСАНИЕ И АНАЛИЗ НЕПРЕРЫВНЫХ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ ПЕРЕХОДНЫХ ФУНКЦИЙ

Семинар 5. ОПИСАНИЕ И АНАЛИЗ НЕПРЕРЫВНЫХ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ ПЕРЕХОДНЫХ ФУНКЦИЙ Семинар 5 ОПИСАНИЕ И АНАЛИЗ НЕПРЕРЫВНЫХ ЛИНЕЙНЫХ СИСТЕМ С ПОМОЩЬЮ ПЕРЕХОДНЫХ ФУНКЦИЙ Описание сигналов Для описания сигналов используются функции времени Выделяют два специальных сигнала: импульсное воздействие

Подробнее

Уравнения в полных дифференциалах

Уравнения в полных дифференциалах [Ф] Филиппов АВ Сборник задач по дифференциальным уравнениям Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика» 00 URL: http://librarbsaz/kitablar/846pf [М] Матвеев НМ Сборник задач и упражнений по

Подробнее

Тема 9. Обыкновенные дифференциальные уравнения

Тема 9. Обыкновенные дифференциальные уравнения Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный морской технический университет» (СПбГМТУ) Кафедра

Подробнее

Уравнения в частных производных первого порядка

Уравнения в частных производных первого порядка Уравнения в частных производных первого порядка Некоторые задачи классической механики, механики сплошных сред, акустики, оптики, гидродинамики, переноса излучения сводятся к уравнениям в частных производных

Подробнее

y x dy dx dy dx arctg 2 arctg x = 2 C. 2

y x dy dx dy dx arctg 2 arctg x = 2 C. 2 МГАПИ ТИПОВОЙ РАСЧЕТ Задание на домашнюю контрольную работу Раздел «Дифференциальные уравнения» Вариант 6 Задача Найти общий интеграл дифференциального уравнения ' = + 4 + Решение Разделяем переменные:

Подробнее

Интегралы и дифференциальные уравнения. Лекция 24

Интегралы и дифференциальные уравнения. Лекция 24 кафедра «Математическое моделирование» проф П Л Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов -го курса -го семестра специальностей РЛ,,3,6, БМТ, Лекция 4 Однородные системы

Подробнее

Теоретические вопросы

Теоретические вопросы V ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Теоретические вопросы 1 Основные понятия теории дифференциальных уравнений Задача Коши для дифференциального уравнения первого порядка Формулировка теоремы существования и

Подробнее

sin 2x. систему решений и, следовательно, общее решение системы имеет вид + 1. Возможны два случая.

sin 2x. систему решений и, следовательно, общее решение системы имеет вид + 1. Возможны два случая. sin cos R Z cos ImZ cos sin sin Найденные таким образом решения образуют фундаментальную систему решений и следовательно общее решение системы имеет вид или подробнее sin cos cos sin cos cos cos sin sin

Подробнее

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика

Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Интегралы и дифференциальные уравнения Раздел "Дифференциальные уравнения".

Подробнее