Численное решение задачи Коши для одного дифференциального уравнения

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Численное решение задачи Коши для одного дифференциального уравнения"

Транскрипт

1 Лабораторная работа 7 ( часа) Численное решение задачи Коши для одного дифференциального уравнения Цель работы: получение практических навыков построения алгоритмов численного решения обыкновенных дифференциальных уравнений оценки погрешности решения автоматического выбора шага интегрирования программной реализации алгоритмов на компьютере сравнение эффективности различных методов. Краткие теоретические сведения Задачей Коши называют задачу решения дифференциального уравнения: d ( ) d () где ( ) - заданная непрерывная функция двух аргументов с начальным условием: (0). () При численном решении задачи Коши по переменной вводят сетку 0< < <...< n и ищут значения неизвестной функции в узлах сетки.. n. В явном методе Эйлера приближенное решение задачи Коши находится по рекуррентной формуле: 0 ( ) () где = +. Локальная погрешность явного метода Эйлера равна: R ( ). () В неявном методе Эйлера приближенное решение задачи Коши находится в результате решения нелинейного уравнения: ( ). () Локальная погрешность неявного метода Эйлера равна: R ( ). () В классическом методе Рунге-Кутта четвертого порядка приближенное решение задачи Коши находится по рекуррентной формуле: где ( ) ; ( ) (7) Лабораторная работа 7 ( часа)

2 ; ;. При использовании такого метода на каждом шаге вычисляются значения функции (). Метод имеет четвертый порядок точности то есть R =0( ). В самом общем случае метод Рунге-Кутта порядка точности p строится по рекуррентной формуле: где m (8) a ll l (9) a =0 a и константы l элементы нижнетреугольной матрицы такой что каждое получается по предыдущим значениям l. mm Формулы (8) и (9) содержат m коэффициентов подлежащих mm определению: коэффициентов l m коэффициентов a и m коэффициентов. Чтобы определить эти коэффициенты все функции раскладывают в ряд Тейлора в окрестности точки ( ). Эти разложения подставляют в формулу (8) и результат сравнивают с рядом Тейлора для функции ( + ). Поскольку локальная погрешность определяется как разность: R =( + )- + то ставится требование чтобы коэффициенты при всех l l 0 p в разложениях для ( + ) и + были равны. Это требование дает систему уравнений относительно коэффициентов l a и. При этом соответствующие системы уравнений относительно l a и для p= могут быть решены соответственно для m=. Следовательно что для того чтобы построить метод порядка точности p для p= и достаточно m=p обращений к функции (). Однако для p= эта система может быть решена только для m. Следовательно для метода Рунге-Кутта порядка точности требуется по крайней мере вызовов функции на каждом шаге. Аналогично для p= m7. Возможны различные способы выбора коэффициентов приводящие к методам Рунге-Кутта пятого порядка точности. Особый интерес представляют коэффициенты приведенные в таблице 7. которые были впервые найдены Фелбергом поскольку они позволяют при одном и том же выборе но других с построить метод четвертого порядка точности. Как будет показано ниже это дает возможность апостериорно оценить локальную погрешность решения. Позже были найдены и другие наборы коэффициентов Лабораторная работа 7 ( часа)

3 обладающие такой же особенностью (см. например таблицу 7.). Многие современные алгоритмы строятся на этом же принципе но для m=7 имеющие более высокую устойчивость. Таблица 7.. Коэффициенты Фелберга (Felerg) методов Рунге-Кутта и порядков точности. a l l Таблица 7.. Коэффициенты Кеша-Карпа (Cas-Karp) методов Рунге-Кутта и порядков точности. 0 a l l Лабораторная работа 7 ( часа)

4 При использовании какого-либо из методов интегрирования задачи Коши задается точность требуемая в решении. Однако как правило нет информации о величине шага необходимой чтобы достигнуть ее. Более того требования к величине шага обычно меняются в процессе решения. Поэтому существенно чтобы алгоритм включал автоматический выбор шага. Для этого необходимо апостериорно т.е. после проведения вычисления оценить погрешность полученного результата. Существует несколько подходов к практической оценке погрешности численного интегрирования дифференциальных уравнений. Простейший подход основан на применении первого правила Рунге. Для этого на каждом шаге при переходе от к + вычисления проводятся дважды с шагами и q. Полученные значения шаге: q служат для сравнения достигнутой точности на этом R q p q (0) где p порядок точности метода. При использовании неявных методов интегрирования дифференциальных уравнений применение правила Рунге (0) приводит к большим машинным затратам поскольку при измельчении сетки приходится в q раз больше решать нелинейных уравнений. Поэтому в этих случаях стараются применять другие апостериорные оценки погрешности. Например при использовании неявного метода Эйлера учитывают что если шаг мал то можно считать что ( ) ( ). Следовательно как вытекает из формул () и () погрешности явного и неявного методов почти равны по абсолютной величине но противоположны по знаку. Поэтому после получения решения + неявного метода Эйлера можно вычислить значение u + по явной схеме и оценить погрешность как: ( u ) R. () Другой способ оценки погрешности состоит в получении оценки производной входящей в выражение для погрешности. Так например для метода Эйлера необходимо оценить ( ). Для этого можно воспользоваться конечно-разностной аппроксимацией производной функции (): d d d d d d d d где Шаг конечных разностей целесообразно выбирать так чтобы внести возмущение примерно в половину разрядов мантиссы:. маш ; маш. Лабораторная работа 7 ( часа)

5 Лабораторная работа 7 ( часа) Другой способ оценки ( ) состоит в использовании полученных значений - +. Дважды дифференцируя интерполяционный полином Лагранжа проходящий через точки ( - - ) ( ) ( + + ) получим ) ( ) ( ) (. Иной способ оценки погрешности состоит в одновременном использовании двух методов разного порядка точности. Предположим что используются два метода с порядками точности р и р+ соответственно. Можно показать что в этом случае локальная погрешность решения задачи Коши может быть оценена как: R () где решения полученные методами с порядками точности р и р+ соответственно. Следует иметь в виду что если используемые методы различных порядков точности используют различные сетки узлов на элементарном отрезке то применение () не имеет преимуществ по сравнение с правилом Рунге поскольку существенно не уменьшает числа обращений к функции (). Поэтому важно использовать такие методы различных порядков которые построены на одной и той же сетке узлов. Так например удобно использовать методы Рунге-Кутта и порядка построенным по формулам: 0 () где ( ) ; a ; a ; a ; a ; a. Коэффициенты l a и для методов Фелберга и Кеша-Карпа приведены в таблицах и. Как было показано выше для вышеприведенных функций могут быть найдены коэффициенты приводящие к методу четвертого порядка т.е.: 0. Следует отметить что на практике значение не вычисляется а погрешность на каждом шаге как это вытекает из () оценивают из выражения: R. ()

6 После оценки погрешности по одному из вышеприведенных способов проверяется выполнение условия: R. () Если оно не выполняется то шаг уменьшают в два раза или в p R раз. Уменьшение шага выполняют до тех пор пока не выполнится условие (). После чего переходят к новому шагу. При этом новый шаг + выбирают по правилу зон: R ; p q () R q p q или из соотношения: p. (7) R При прогнозировании шага по правилу (7) шаг ближе к оптимальному но общее число возвратов обычно больше чем при использовании правила зон (). Следует отметить что для интегрирования дифференциальных уравнений с быстро меняющимися функциями () следует ограничивать шаг интегрирования заданной величиной max. Рабочее задание. Построить алгоритмы численного решения задачи Коши явным неявным методом Эйлера и методом Рунге-Кутта с автоматическим выбором шага интегрирования для достижения заданной локальной относительной погрешности либо локальной абсолютной погрешности. Апостериорную оценку погрешности для явного метода Эйлера провести по правилу Рунге либо по оценке производной входящей в выражение для погрешности. Для неявного метода Эйлера погрешность следует оценивать по формуле () а для метода Рунге-Кутта по формуле ().. Составить рабочую программу с использованием универсальных функций численного решения задачи Коши. Минимальный набор параметров функции решения задачи Коши должен включать: имя функции вычисляющей производную неизвестной функции (правую часть дифференциального уравнения); интервал времени на котором нужно найти решение; начальное условие; погрешность решения; массив временных отсчетов в которых найдено решение; массив решений; максимальное число временных отсчетов; количество фактически полученных временных отсчетов в которых найдены решения с заданной погрешностью. Лабораторная работа 7 ( часа)

7 . Набрать и отладить программу на компьютере. Отладку осуществить с использованием в качестве () функции для которой известно аналитическое решение.. Выбрать задачу в соответствии с вариантом. Для заданной схемы сформулировать задачу Коши.. Провести решение задачи Коши полученной в пункте рабочего задания каждым методом с подсчетом числа элементарных отрезков необходимых для достижения заданной погрешности и требуемого числа обращений к функции ().. Сравнить различные методы по эффективности. Содержание отчета. Название работы. Цель. Рабочее задание. Математические формулировки алгоритмов решения задачи Коши.. Решаемое уравнение.. Текст рабочей программы. 7. Результаты расчетов с подсчетом числа необходимых разбиений заданного отрезка на элементарные и количества вызовов функции () для каждого из методов график решения и входного воздействия в одной системе координат. 8. Выводы. Задачи. Найти напряжение u вых в течение времени 0 end рисунке если переключатель S был разомкнут в течение времени 0 времени = 0 замыкается. для схемы приведенной на а в момент Учесть что ток d протекающий через диод связан с напряжением u d зависимостью: u d d 0 exp mt Лабораторная работа 7 ( часа) 7

8 где 0 обратный ток диода T тепловой потенциал m коэффициент неидеальности диода. Зависимость e() имеет вид: e ( ) E0 sn( ) где E 0 амплитуда частота фаза напряжения источника. Значения параметров напряжения источника E 0 и сопротивления резистора R емкость конденсатора C параметры диода и время end выбрать из таблицы в соответствии с вариантом: E 0 R C варианта В 0 Гц 0 Ом 0 - Ф А m T 0 - В end 0 - / / / / Найти напряжение на диоде u d для схемы приведенной на рисунке. Для этого заменить диод его эквивалентной схемой приведенной на рисунке. Учесть что ток источника описывается уравнением: u pn 0 exp m T где 0 обратный ток диода T тепловой потенциал m коэффициент неидеальности диода. Сопротивление базы диода R зависит от тока: R0 R Iv где R 0 немодулированное сопротивление базы диода I v ток перехода от низких к высоким уровням инжекции. Зависимость входного воздействия e() показана на рисунке. Лабораторная работа 7 ( часа) 8

9 Значения параметров напряжения источника E 0 Tp сопротивления резистора R барьерная емкость диода C параметры диода и время end выбрать из таблицы в соответствии с вариантом: E 0 T p R C В 0-0 Ом 0-9 Ф А m T 0 - В R 0 0 Ом I v 0 - А варианта. Найти напряжение u вых в течение времени 0 end рисунке если переключатель S был разомкнут в течение времени 0 времени =0 замыкается. end 0 - для схемы приведенной на а в момент Учесть что ток d протекающий через диод связан с напряжением u d зависимостью: g ud ud 0 d 0 ud 0 где g первеанс диода. Зависимость e() имеет вид: e ( ) E0 sn( ) где E 0 амплитуда частота - фаза напряжения источника. Значения параметров напряжения источника E 0 и сопротивления резистора R емкость конденсатора C параметры диода и время end выбрать из таблицы в соответствии с вариантом: E 0 R C g варианта В 0 Гц 0 Ом 0 - Ф 0 - A/В / end 0-0 / / / /. 8. Лабораторная работа 7 ( часа) 9

10 . Найти напряжение u вых в течение времени 0 end рисунке если переключатель S был разомкнут в течение времени 0 времени =0 замыкается. для схемы приведенной на а в момент Учесть что токи эмиттера e и коллектора с связаны с напряжениями u e и u зависимостями: u e e e0 exp met u 0 exp mt где e0 обратный ток эмиттерного перехода транзистора T тепловой потенциал m e коэффициент неидеальности эмиттерного перехода транзистора 0 обратный ток коллекторного перехода транзистора m коэффициент неидеальности коллекторного перехода транзистора. Зависимость e() имеет вид: e ( ) E0 sn( ) где E 0 амплитуда частота фаза напряжения источника. Значения параметров напряжения источника E 0 и сопротивления резистора R емкость конденсатора C параметры транзистора и время end выбрать из таблицы в соответствии с вариантом: E 0 R C варианта В 0 Гц 0 Ом 0 - Ф I e0 0 - А m e I А m T 0 - В end 0 - / / / / Лабораторная работа 7 ( часа) 0

11 Варианты заданий Номер бригады Номер задачи Номер варианта задачи Лабораторная работа 7 ( часа)

Численное интегрирование функций

Численное интегрирование функций ( часа) Цель работы: получение практических навыков построения алгоритмов интегрирования функций, программной реализации их на компьютере, оценки погрешности решения, сравнение эффективности квадратурных

Подробнее

Методы решения начальных задач для обыкновенных дифференциальных уравнений

Методы решения начальных задач для обыкновенных дифференциальных уравнений Методы решения начальных задач для обыкновенных дифференциальных уравнений Постановка задачи Рассмотрим обыкновенное дифференциальное уравнение сокращенно ОДУ первого порядка f,, [,b ] 6 с начальным условием

Подробнее

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Это можно сделать в виде дифференциальных уравнений ДУ или системы дифференциальных

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.»

Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Министерство образования Республики Беларусь Министерство образования Республики Беларусь Тема5. «Численное интегрирование обыкновенных дифференциальных уравнений.» Кафедра теоретичской и прикладной математики.

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Решение обыкновенных дифференциальных уравнений.

Решение обыкновенных дифференциальных уравнений. Решение обыкновенных дифференциальных уравнений Инженеру часто приходится иметь дело с техническими системами и технологическими процессами, характеристики которых непрерывно меняются со временем t Эти

Подробнее

Приложение А. Комплект оценочных средств (контролирующих материалов) по дисциплине

Приложение А. Комплект оценочных средств (контролирующих материалов) по дисциплине Приложение А. Комплект оценочных средств (контролирующих материалов) по дисциплине Приложение А-1. Тесты текущего контроля СТО БТИ АлтГТУ 15.62.2.0008-2014 Вопросы к модулям (разделам) курса «Вычислительная

Подробнее

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ . ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши

Подробнее

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач.

Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Основные понятия теории разностных схем. Примеры построения разностных схем для начально-краевых задач. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы.

Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. Разностная аппроксимация начально-краевой задачи для уравнения теплопроводности. Понятие явной и неявной схемы. 1 Разностная аппроксимация уравнения теплопроводности Рассмотрим различные варианты разностной

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Лекция 4 8 ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Рассматривается проблема решения систем обыкновенных дифференциальных уравнений первого порядка связывающих

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы.

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Рассмотрим несколько вариантов разностной аппроксимации линейного уравнения колебаний:

Подробнее

Численное решение дифференциальных уравнений 1. Задача Коши

Численное решение дифференциальных уравнений 1. Задача Коши Численное решение дифференциальных уравнений - - Численное решение дифференциальных уравнений Задача Коши Значительное число задач вычислительной математики сводится к решению обыкновенных дифференциальных

Подробнее

7. Алгоритмы Рунге-Кутты

7. Алгоритмы Рунге-Кутты 7. Алгоритмы Рунге-Кутты 1 7. Алгоритмы Рунге-Кутты Наиболее эффективным и часто использующемся методом решения ОДУ остается метод Рунге-Кутты. Большинство расчетов задач Коши для ОДУ, которые не являются

Подробнее

«Численные методы» КОНСПЕКТ ЛЕКЦИЙ. Направление Прикладная информатика Профиль Прикладная информатика в образовании.

«Численные методы» КОНСПЕКТ ЛЕКЦИЙ. Направление Прикладная информатика Профиль Прикладная информатика в образовании. ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра информатики и методики

Подробнее

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА

ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА 9.5.4. ЧИСЛЕННОЕ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПЕРВОГО ПОРЯДКА Вариант на отрезке [ ; ] с шагом методом Эйлера модифицированным методом Эйлера и методом Рунге-Кутта. Найти точное решение и

Подробнее

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши Глава 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений

Подробнее

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика»

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика» Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники ТУСУР Кафедра

Подробнее

4. Численные методы решения обыкновенных дифференциальных уравнений

4. Численные методы решения обыкновенных дифференциальных уравнений . Численные методы решения обыкновенных дифференциальных уравнений.. Решение задачи Коши... Задача Коши для одного обыкновенного дифференциального уравнения. Рассматривается задача Коши для одного дифференциального

Подробнее

8. Обзор численных методов решения дифференциальных уравнений движения

8. Обзор численных методов решения дифференциальных уравнений движения 8. Обзор численных методов решения дифференциальных уравнений движения Постановка задачи Решение уравнений движения является классической задачей механики. В общем случае это система дифференциальных уравнений

Подробнее

9 Методы численного решения обыкновенных дифференциальных уравнений.

9 Методы численного решения обыкновенных дифференциальных уравнений. 9 Методы численного решения обыкновенных дифференциальных уравнений. Методы численного решения обыкновенных дифференциальных уравнений (ОДУ) применяются когда отсутствует/затруднено/неудобно аналитическое

Подробнее

Лекция 6 ЧИСЛЕННЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ ДИНАМИЧЕСКИХ ЦЕПЕЙ. План

Лекция 6 ЧИСЛЕННЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ ДИНАМИЧЕСКИХ ЦЕПЕЙ. План 57 Лекция 6 ЧИСЛЕННЫЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ ДИНАМИЧЕСКИХ ЦЕПЕЙ План. Численные методы интегрирования уравнений состояния 2. Устойчивость методов численного интегрирования 3. Многошаговые методы

Подробнее

Лабораторная работа 1. Приближенное решение нелинейных уравнений

Лабораторная работа 1. Приближенное решение нелинейных уравнений Лабораторная работа 1 Приближенное решение нелинейных уравнений Приближенно вычислить все корни данного уравнения f(x) = 0 с заданной погрешностью. 1) Для локализации и отделения корней построить график

Подробнее

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы

Численное решение смешанной краевой задачи явным методом сеток. Методическая разработка по курсу Численные методы Численное решение смешанной краевой задачи явным методом сеток Методическая разработка по курсу Численные методы. Постановка задачи Г.К. Измайлов Решить методом сеток смешанную краевую задачу для дифференциального

Подробнее

Применение разностных методов для решения обыкновенных дифференциальных уравнений

Применение разностных методов для решения обыкновенных дифференциальных уравнений А. Ф. Заусаев, В. Е. Зотеев Применение разностных методов для решения обыкновенных дифференциальных уравнений Лабораторный практикум Самара Самарский государственный технический университет МИНИСТЕРСТВО

Подробнее

МОДИФИЦИРОВАННЫЙ МЕТОД ЭЙЛЕРА С ИТЕРАЦИОННЫМ УТОЧНЕНИЕМ И ПЕРЕМЕННЫМ ШАГОМ. С.В. Трубников

МОДИФИЦИРОВАННЫЙ МЕТОД ЭЙЛЕРА С ИТЕРАЦИОННЫМ УТОЧНЕНИЕМ И ПЕРЕМЕННЫМ ШАГОМ. С.В. Трубников УДК. МОДИФИЦИРОВАННЫЙ МЕТОД ЭЙЛЕРА С ИТЕРАЦИОННЫМ УТОЧНЕНИЕМ И ПЕРЕМЕННЫМ ШАГОМ С.В. Трубников Предложен новый численный метод решения задач Коши для обыкновенных дифференциальных уравнений. Ключевые слова:

Подробнее

Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. f f(x, y 1,..., y n ), (x, y) D. y(x 0 ) = y 0. (1.

Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений. f f(x, y 1,..., y n ), (x, y) D. y(x 0 ) = y 0. (1. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений 1. Постановка задачи Пусть в области D = {a x b, y i y i 0 b i } R n+1 Необходимо найти решение удовлетворяющее начальному

Подробнее

функции. многочленов на ошибку степени многочлена степени ростом ошибку? таблицы?

функции. многочленов на ошибку степени многочлена степени ростом ошибку? таблицы? Разработчик методических указаний для выполнения лабораторных работ доцент, к.ф.-м.н. Ласуков В. В. Интерполяция с помощью многочленов Задание 1. С помощью интерполяционных многочленов Лагранжа (илии Ньютона)

Подробнее

Вопросы, выносимые на опрос (для дискуссии) по Введению. Вопросы, выносимые на опрос (для дискуссии) по разделу 1

Вопросы, выносимые на опрос (для дискуссии) по Введению. Вопросы, выносимые на опрос (для дискуссии) по разделу 1 1. Оценочные средства текущего контроля. Вопросы, выносимые на опрос (для дискуссии) по Введению -Назовите виды погрешности. - Как рассчитывается абсолютная погрешность? - Как рассчитывается относительная

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

8. Критерии алгоритмов решения ОДУ

8. Критерии алгоритмов решения ОДУ 8. Критерии алгоритмов решения ОДУ 1 8. Критерии алгоритмов решения ОДУ Теперь, когда мы уже чуть больше знаем об алгоритмах решения задач Коши для ОДУ, продолжим разговор об их классификации. Остановимся

Подробнее

3. Явный алгоритм Эйлера

3. Явный алгоритм Эйлера 3. Явный алгоритм Эйлера 1 3. Явный алгоритм Эйлера Мы надеемся, что сделанные предварительные замечания дали читателю хорошее представление о рассматриваемом круге проблем. Перейдем теперь к обсуждению

Подробнее

Численные методы Тема 2. Интерполяция

Численные методы Тема 2. Интерполяция Численные методы Тема 2 Интерполяция В И Великодный 2011 2012 уч год 1 Понятие интерполяции Интерполяция это способ приближенного или точного нахождения какой-либо величины по известным отдельным значениям

Подробнее

9. Вопросы устойчивости и численной реализации решения задачи Коши для линейных дифференциальных уравнений и систем

9. Вопросы устойчивости и численной реализации решения задачи Коши для линейных дифференциальных уравнений и систем Варианты задания 9. Вопросы устойчивости и численной реализации решения задачи Коши для линейных дифференциальных уравнений и систем 9.1. Задача Коши для обыкновенного дифференциального уравнения 1-го

Подробнее

5. Определение коррекно поставленной задачи. Является ли решение уравнения x 2 3x+

5. Определение коррекно поставленной задачи. Является ли решение уравнения x 2 3x+ 0.1 Погрешность, устойчивость, числа с плавающей запятой 1. Абсолютная и относительная погрешности. Дано уравнение 0,134x+2,824 = 0. С какой погрешностью можно вычислить его корень? 2. Абсолютная и относительная

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЗАДАЧА КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЗАДАЧА КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЗАДАЧА КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Томск 205 ОДОБРЕНО методической комиссией факультета прикладной

Подробнее

3.Транзисторные усилительные каскады (расчет по переменному току)

3.Транзисторные усилительные каскады (расчет по переменному току) 3.Транзисторные усилительные каскады (расчет по переменному току) Введение Приведенные ниже задачи связаны с расчетом параметров усилительных каскадов, схемы которых рассчитаны по постоянному току в предыдущей

Подробнее

ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши

ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ. 1. Численные методы решения задачи Коши ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И ИХ СИСТЕМ В этой главе рассматриваются основные численные методы решения задачи Коши для обыкновенных дифференциальных уравнений (ОДУ) первого

Подробнее

М е т о д и ч е ские указания для п р о в едения семинарских занятий

М е т о д и ч е ские указания для п р о в едения семинарских занятий МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Подробнее

Рыжиков Александр Вячеславович. Исследование явных методов решения задачи Коши основанных на разложении Лагранжа Бюрмана

Рыжиков Александр Вячеславович. Исследование явных методов решения задачи Коши основанных на разложении Лагранжа Бюрмана Санкт-Петербургский государственный университет Кафедра моделирования электромеханических и компьютерных систем Рыжиков Александр Вячеславович Выпускная квалификационная работа бакалавра Исследование явных

Подробнее

Билеты по курсу «Введение в численные методы» (2 ой поток) (2013)

Билеты по курсу «Введение в численные методы» (2 ой поток) (2013) Билеты по курсу «Введение в численные методы» (2 ой поток) (2013) Билет 1. Прямые методы решения СЛАУ. Метод Гаусса. Билет 2. Трехдиагональные системы линейных алгебраических уравнений. Метод прогонки.

Подробнее

Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. 6-е изд. М. : БИНОМ. Лаборатория знаний, с. : ил.

Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. 6-е изд. М. : БИНОМ. Лаборатория знаний, с. : ил. Печатается по решению Ученого совета Московского университета Бахвалов Н. С. Численные методы / Н. С. Бахвалов, Н. П. Жидков, Г. М. Кобельков. 6-е изд. М. : БИНОМ. Лаборатория знаний, 2008. 636 с. : ил.

Подробнее

( ) ( ) Контрольная работа по численным методам с решением. f (2) f ''(2) = > 0, значит, метод Ньютона сходится. x x ε = 2 1.

( ) ( ) Контрольная работа по численным методам с решением. f (2) f ''(2) = > 0, значит, метод Ньютона сходится. x x ε = 2 1. Контрольная работа по численным методам с решением Задание На отрезке [;] методом Ньютона найти корень уравнения + = с точностью, График функции Условие сходимости метода Ньютона: f f ''(, ( > где = начальное

Подробнее

ВВЕДЕНИЕ , (1) Простейшая прямая задача состоит в нахождении функции, удовлетворяющей уравнению (1) и условиям

ВВЕДЕНИЕ , (1) Простейшая прямая задача состоит в нахождении функции, удовлетворяющей уравнению (1) и условиям РЕФЕРАТ Выпускная квалификационная работа по теме «Численная идентификация правой части параболического уравнения» содержит 45 страниц текста 4 приложения 6 использованных источников 4 таблицы ОБРАТНАЯ

Подробнее

5. Теор. задача. Доказать, что среди явных многошаговых методов ( k=0

5. Теор. задача. Доказать, что среди явных многошаговых методов ( k=0 Прием заданий производится как правило в часы семинарских занятий ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА 3 курс 6 семестр 6 Жесткие ОДУ Участки решения характеризующиеся быстрым его изменением Понятие методов Гира

Подробнее

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г.

В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В. Ф. Апельцин МЕТОДИЧЕСКОЕ ПОСОБИЕ ПО КУРСОВОЙ РАБОТЕ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ AKF3.RU г. В курсовой работе предполагается построить приближенное решение краевой задачи для обыкновенного

Подробнее

Краткие теоретические сведения Пусть значения некоторой функции f (x) заданы в виде таблицы: x y

Краткие теоретические сведения Пусть значения некоторой функции f (x) заданы в виде таблицы: x y 3 Интерполирование функций полиномом Лагранжа Цель: формирование навыков интерполирования таблично заданных функций полиномом Лагранжа; оценка погрешности полинома Лагранжа Краткие теоретические сведения

Подробнее

Институт радиоэлектроники и информационных технологий

Институт радиоэлектроники и информационных технологий Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.

Подробнее

Численные методы вычисления определенного интеграла

Численные методы вычисления определенного интеграла Глава 1 Численные методы вычисления определенного интеграла Цель работы изучение численных методов интегрирования и их практическое применение для приближенного вычисления однократных интегралов. Продолжительность

Подробнее

2. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Общие замечания

2. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Общие замечания . ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ КОШИ ДЛЯ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ.. Общие замечания Математическое моделирование многих задач механики, физики, химии и других областей науки и техники

Подробнее

Численное интегрирование

Численное интегрирование Численное интегрирование - - Численное интегрирование. Постановка задачи Задача вычисления интегралов возникает во многих областях прикладной математики. Требуется вычислить определенный интеграл I d.

Подробнее

9. Устойчивость . (66)

9. Устойчивость . (66) 9. Устойчивость 1 9. Устойчивость В прошлом разделе мы разобрали основные критерии разностных схем для ОДУ, но пока не касались, пожалуй, основного их свойства устойчивости. В качестве примера при рассмотрении

Подробнее

4. Перечень разделов и (или) тем дисциплины и их дидактическое содержание

4. Перечень разделов и (или) тем дисциплины и их дидактическое содержание 1. Целью изучения дисциплины является: подготовка высокопрофессионального специалиста медицинского кибернетика, владеющего математическими знаниями, умениями и навыками применять математику как инструмент

Подробнее

Интерполирование функций

Интерполирование функций Постановка задачи, основные понятия Конечные разности и их свойства Интерполяционные многочлены Оценка остаточного члена интерполяционных многочленов Постановка задачи, основные понятия Пусть, то есть

Подробнее

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Расчетные задания Варианты

Подробнее

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ ММСП

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ ММСП МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СИСТЕМ И ПРОЦЕССОВ ММСП 1 Содержание Введение. 3 1. Приближение табличных данных конкретной системой базисных функций по методу наименьших квадратов. 4. Численное решение задачи

Подробнее

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Лабораторная работа Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Постановка задачи: Требуется найти безусловный минимум функции одной переменной (

Подробнее

Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость.

Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость. Понятие разностной схемы. Аппроксимация. Устойчивость. Сходимость. Большое количество задач физики и техники приводит к краевым либо начальнокраевым задачам для линейных и нелинейных дифференциальных уравнений

Подробнее

ГЛАВА: Метод конечных разностей. Лекция 2: Формулы аппроксимаций производных (7 слайдов, 2 рисунка)

ГЛАВА: Метод конечных разностей. Лекция 2: Формулы аппроксимаций производных (7 слайдов, 2 рисунка) ГЛАВА: Метод конечных разностей. Лекция 2: Формулы аппроксимаций производных (7 слайдов, 2 рисунка) Слайд 1: Основные понятия. Геометрическая интерпретация задачи Если независимых переменных всего две

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений

Численные методы решения обыкновенных дифференциальных уравнений Численные методы решения обыкновенных дифференциальных уравнений Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции

Подробнее

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 8

ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 8 ОГЛАВЛЕНИЕ ВВЕДЕНИЕ... 8 1. ЗАДАЧИ ПО РАЗРАБОТКЕ АЛГОРИТМОВ И ПРОГРАММ... 10 1.1. Линейные вычислительные процессы... 10 1.2. Циклические вычислительные процессы... 11 1.3. Вычислительные процессы с использованием

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М. В. ЛОМОНОСОВА. Научно-исследовательский вычислительный центр. О. Б. Арушанян, С.Ф.

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М. В. ЛОМОНОСОВА. Научно-исследовательский вычислительный центр. О. Б. Арушанян, С.Ф. МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М. В. ЛОМОНОСОВА Научно-исследовательский вычислительный центр О. Б. Арушанян, С.Ф. Залеткин РЕШЕНИЕ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ МЕТОДАМИ РУНГЕ

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ В ГОРНОМ ПРОИЗВОДСТВЕ. Математические модели и численные методы

ЧИСЛЕННЫЕ МЕТОДЫ В ГОРНОМ ПРОИЗВОДСТВЕ. Математические модели и численные методы ЧИСЛЕННЫЕ МЕТОДЫ В ГОРНОМ ПРОИЗВОДСТВЕ Математические модели и численные методы Математические модели содержат соотношения, составленные на основе теоретического анализа изучаемых процессов или полученные

Подробнее

Рассмотрим в качестве функциональной зависимости многочлен., тогда

Рассмотрим в качестве функциональной зависимости многочлен., тогда Лекция 5. Аппроксимация функций по методу наименьших квадратов. В инженерной деятельности часто возникает необходимость описать в виде функциональной зависимости связь между величинами, заданными таблично

Подробнее

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра прикладной математики М.В. Лукина МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

Квадратурные и кубатурные формулы

Квадратурные и кубатурные формулы ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Пензенский государственный университет» Квадратурные и кубатурные формулы Методические

Подробнее

Воронежская государственная технологическая академия, Воронеж

Воронежская государственная технологическая академия, Воронеж ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 009. Т. 50, N- 6 19 УДК 59.; 5; 517.946 РЕШЕНИЕ ЗАДАЧИ О КРУЧЕНИИ УПРУГОГО СТЕРЖНЯ s-угольного СЕЧЕНИЯ МЕТОДОМ РАСШИРЕНИЯ ГРАНИЦ А. Д. Чернышов Воронежская государственная

Подробнее

Министерство образования и науки Российской Федерации. Рыбинская государственная авиационная технологическая академия имени П.А.

Министерство образования и науки Российской Федерации. Рыбинская государственная авиационная технологическая академия имени П.А. Министерство образования и науки Российской Федерации Рыбинская государственная авиационная технологическая академия имени П.А. Соловьева Кафедра МПО ЭВС РАБОЧАЯ ПРОГРАММА УТВЕРЖДАЮ Декан факультета РЭИ

Подробнее

Дифференциально-разностный метод исследования процессов диффузии материалов.

Дифференциально-разностный метод исследования процессов диффузии материалов. УДК 6780153083 Дифференциально-разностный метод исследования процессов диффузии материалов Мартышенко ВА (Военная академия радиационной, химической и бактериологической защиты и инженерных войск) Процессы

Подробнее

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА 4 Интерполяция табличных данных

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА 4 Интерполяция табличных данных РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА 4 Интерполяция табличных данных. Краткие теоретические сведения Задачей приближения или аппроксимации функций (от лат. approimo приближаюсь) называется задача замены одних математических

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

Министерство образования и науки РФ Алтайский государственный университет Рубцовский институт (филиал) ЧИСЛЕННЫЕ МЕТОДЫ.

Министерство образования и науки РФ Алтайский государственный университет Рубцовский институт (филиал) ЧИСЛЕННЫЕ МЕТОДЫ. Министерство образования и науки РФ Алтайский государственный университет Рубцовский институт (филиал) ЧИСЛЕННЫЕ МЕТОДЫ Учебное пособие Барнаул Рубцовск Барнаул Издательство Алтайского государственного

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ Часть вторая ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

ЧИСЛЕННЫЕ МЕТОДЫ Часть вторая ЧИСЛЕННОЕ РЕШЕНИЕ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Московский государственный университет леса ВИ Мышенков ЕВ Мышенков ЧИСЛЕННЫЕ МЕТОДЫ

Подробнее

Задача Коши для обыкновенного дифференциального уравнения. Скалько Юрий Иванович Цыбулин Иван

Задача Коши для обыкновенного дифференциального уравнения. Скалько Юрий Иванович Цыбулин Иван Задача Коши для обыкновенного дифференциального уравнения Скалько Юрий Иванович Цыбулин Иван Задача Коши Задача Коши для ОДУ Дано обыкновенное дифференциальное уравнение 1го порядка и начальное условие

Подробнее

8. Численное решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядка

8. Численное решение задачи Коши для обыкновенного дифференциального уравнения 1-го порядка Варианты задания 8. Численное решение задачи Коши для обыкновенного дифференциального уравнения -го порядка 8.. Постановка задачи Рассмотрим задачу Коши для обыкновеннго дифференциального уравнения y =

Подробнее

«НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.Е. АЛЕКСЕЕВА» (НГТУ)

«НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. Р.Е. АЛЕКСЕЕВА» (НГТУ) Министерство образования и науки Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Вычислительные системы и технологии (наименование кафедры)

Вычислительные системы и технологии (наименование кафедры) Кафедра Вычислительные системы и технологии (наименование кафедры) УТВЕРЖДЁН на заседании кафедры "4" марта 2016 г. протокол 6 Заведующий кафедрой Кондратьев В. В. (подпись) Фонд оценочных средств по учебной

Подробнее

МЕТОДЫ ВЫЧИСЛЕНИЙ В ЭКОНОМИКЕ

МЕТОДЫ ВЫЧИСЛЕНИЙ В ЭКОНОМИКЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Бизнес - информатика»

Подробнее

Лекция 5 АНАЛИЗ ДИНАМИЧЕСКИХ ЦЕПЕЙ

Лекция 5 АНАЛИЗ ДИНАМИЧЕСКИХ ЦЕПЕЙ 4 Лекция 5 АНАЛИЗ ДИНАМИЧЕСКИХ ЦЕПЕЙ План Уравнения состояния электрических цепей Алгоритм формирования уравнений состояния 3 Примеры составления уравнений состояния 4 Выводы Уравнения состояния электрических

Подробнее

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса.

Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Разностные схемы для нелинейных задач. Квазилинейное уравнение переноса. Для численного решения нелинейных задач в различных ситуациях используют как линейные, так и нелинейные схемы. Устойчивость соответствующих

Подробнее

Решение систем обыкновенных дифференциальных уравнений

Решение систем обыкновенных дифференциальных уравнений Нижегородский государственный университет им. Н.И.Лобачевского Факультет Вычислительной математики и кибернетики Решение систем обыкновенных дифференциальных уравнений При поддержке компании Intel Баркалов

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

Однородные разностные схемы. Консервативность.

Однородные разностные схемы. Консервативность. Однородные разностные схемы. Консервативность. Достаточно часто на практике встречаются задачи, которые содержат дифференциальные операторы с переменными коэффициентами. При построении разностных схем

Подробнее

БИЛЕТ КОЛЛОКВИУМА (образец ) 1 ПО КУРСУ «Численные методы», Обязательная часть

БИЛЕТ КОЛЛОКВИУМА (образец ) 1 ПО КУРСУ «Численные методы», Обязательная часть БИЛЕТ КОЛЛОКВИУМА (образец 10.04.2016 ) 1 1. (2 балла) Абсолютная и относительная погрешности. Чему равна абсолютная и относительная погрешности записанного в память компьютера числа π (ответ обосновать).

Подробнее

II. СОДЕРЖАНИЕ ПРОГРАММЫ

II. СОДЕРЖАНИЕ ПРОГРАММЫ I. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Данная программа предназначена для подготовки к вступительному собеседованию в магистратуру по направлению 01.04.02 «Прикладная математика и информатика» по программе «Вычислительные

Подробнее

Решение. По условию: Вычисляем: По формуле Лагранжа абсолютная погрешность вычисляется по формуле: Относительная погрешность: Ответ.

Решение. По условию: Вычисляем: По формуле Лагранжа абсолютная погрешность вычисляется по формуле: Относительная погрешность: Ответ. www.reshuzdch.ru Задание.5. Найти произведение приближенных чисел и указать его погрешности (Δ и δ), если считать в исходных данных все значащие цифры верными.,8,55, Решение. По условию:,8, b, 55, c,,,,

Подробнее

Аналогично можно заключить, что напряжение на ёмкостном элементе не может измениться скачкообразно, т.к. в этом случае ток в ёмкости

Аналогично можно заключить, что напряжение на ёмкостном элементе не может измениться скачкообразно, т.к. в этом случае ток в ёмкости Переходные процессы «на ладони». Вам уже известны методы расчета цепи, находящейся в установившемся режиме, то есть в таком, когда токи, как и падения напряжений на отдельных элементах, неизменны во времени.

Подробнее

Решение задачи 2. Ответ. Амперметр покажет 0,1 А. Решение задачи 3. E В цепи будет протекать ток, равный I

Решение задачи 2. Ответ. Амперметр покажет 0,1 А. Решение задачи 3. E В цепи будет протекать ток, равный I Олимпиада для студентов и выпускников вузов 03 г. Направление «Электроника и телекоммуникация» Профили: «Инжиниринг в электронике» «Измерительные технологии наноиндустрии» I. ОБЩАЯ ЧАСТЬ Решение задачи.

Подробнее

оглавление 222 ОГЛАВЛеНИе

оглавление 222 ОГЛАВЛеНИе оглавление Введение...3 глава. Статические системы...8.. Ошибки моделирования...9.2. Аппроксимация функций...9.3. Адекватность математической модели...7 глава 2. Линейные системы с бесконечным временем...22

Подробнее

ОСНОВЫ ВЫЧИСЛИТЕЛЬНОЙ ФИЗИКИ

ОСНОВЫ ВЫЧИСЛИТЕЛЬНОЙ ФИЗИКИ ОСНОВЫ ВЫЧИСЛИТЕЛЬНОЙ ФИЗИКИ доцент Александр Иванович Черных Программа курса лекций (7-й семестр, лекции 36 ч., семинары 36 ч., диф. зач.) 1. Решение уравнений f(x) = 0. Методы деления пополам, простых

Подробнее

y(t n+1 ) = y(t n ) + hy (t n ) + h2 y n+1 = y n + hy n + h2 2 y n + O(h 3 ) = y n + hf(y n, t n ) + h2 df(y n, t n ) dt + O(h 3 ). (4.

y(t n+1 ) = y(t n ) + hy (t n ) + h2 y n+1 = y n + hy n + h2 2 y n + O(h 3 ) = y n + hf(y n, t n ) + h2 df(y n, t n ) dt + O(h 3 ). (4. Глава 4 Численное интегрирование обыкновенных дифференциальных уравнений (продолжение)! " $# &%' '()*!(+ ',.-/102 3 %45', 6 5&%'7 8 9:, ?,>@ " BADC, ()&E"FGC, /> 4.1 Методы с использованием ряда

Подробнее

Пирумов У. Г. Численные методы: Учеб. пособие для студ. втузов. 2-е изд., перераб. и доп. М.: Дрофа, с.: ил.

Пирумов У. Г. Численные методы: Учеб. пособие для студ. втузов. 2-е изд., перераб. и доп. М.: Дрофа, с.: ил. Рецензенты: проф., д. ф.-м. н. В. Б. Миносцев (зав. каф. общей и прикладной математики Московского государственного индустриального университета); проф., д. ф.-м. н., действ, чл. РАЕН Ю. И. Яламов Пирумов

Подробнее

А.А. Дегтярев ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Тесты для самоконтроля знаний студентов

А.А. Дегтярев ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Тесты для самоконтроля знаний студентов МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П. КОРОЛЕВА

Подробнее

Задания на практические занятия по дисциплине «Вычислительная математика» Практическое занятие по теме Теория погрешностей

Задания на практические занятия по дисциплине «Вычислительная математика» Практическое занятие по теме Теория погрешностей Задания на практические занятия по дисциплине «Вычислительная математика» Практическое занятие по теме Теория погрешностей Контрольные вопросы Дайте определение вычислительного эксперимента Нарисуйте схему

Подробнее

Разностные схемы для уравнения колебаний в многомерном случае

Разностные схемы для уравнения колебаний в многомерном случае Разностные схемы для уравнения колебаний в многомерном случае Для многомерных уравнений колебаний можно составить аналог схемы «крест» и неявной схемы. При этом явная схема «крест» так же, как и в одномерном

Подробнее

Численные методы и моделирование на ЭВМ

Численные методы и моделирование на ЭВМ Министерство образования и науки, молодежи и спорта Донбасская государственная машиностроительная академия Составитель Костиков А.А. Численные методы и моделирование на ЭВМ Методические указания к выполнению

Подробнее