Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Размер: px
Начинать показ со страницы:

Download "Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ"

Транскрипт

1 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 4.0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных исследований и инженерных расчетах. В зависимости от свойств функции f() уравнение y = f() = 0 может иметь конечное или бесконечное число решений. Уравнение вида y = f() называется нелинейным, если отсутствует линейная связь переменной и значения функции y. Нелинейные уравнения y=f() можно разделить на два класса: 1) алгебраические уравнения; ) трансцендентные уравнения. Алгебраическим уравнением называется уравнение, содержащее только алгебраические функции (целые, рациональные, иррациональные). Например, к алгебраическим уравнениям можно отнести полином степени n: a + a + a1 + a0 = 0. Уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и пр.), относятся к трансцендентным уравнениям: Например: 1 tg или a b c Методы решения нелинейных уравнений делятся на прямые и итерационные. Прямые методы позволяют записать корни уравнения в виде точных аналитических формул. Для некоторых типов нелинейных уравнений прямые методы решения известны (например, для алгебраических уравнений не выше 4-й степени, для частных случаев тригонометрических и логарифмических уравнений и др.). Однако для большинства нелинейных уравнений найти решение в явном виде невозможно. Для их решения используются итерационные методы, т.е. методы последовательного приближения к точному решению *. Итерационный процесс решения уравнения f() = 0 состоит в последовательном уточнении некоторого начального приближения 0. В результате итераций находится последовательность приближенных значений корня: 1,,, n. Если эти значения с увеличением числа итераций n приближаются к точному значению корня *(т.е. lim ), то говорят, что итерационный процесс решения сходится, в k k противном случае расходится.

2 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -- Определение 1. Дано уравнение Отделение корней f, (1) где f определена и непрерывна в некотором конечном или бесконечном интервале a b. 0 Всякое значение *, обращающее функцию f, называется корнем уравнения (1) или нулем функции f в нуль, то есть такое, что f. Определение. Число * называется корнем k-ой кратности, если при = * вместе с функцией f обращаются в нуль ее производные до (k-1) порядка включительно f k1 f... f 0 Однократный корень называется простым. Приближенное нахождение корней уравнения (1) обычно складывается из двух этапов: 1. Отделение корней, то есть поиск интервалов a, i b i, называемых также отрезками локализации корней, в которых содержится один корень уравнения (1).. Уточнение приближенных корней, то есть доведение их до заданной точности. 0 f() Для отделения корней полезна следующая теорема: a b Теорема 1. Если непрерывная функция f принимает значения разных знаков на концах отрезка [ a, b], то есть f a f b 0, то внутри этого отрезка содержится, по меньшей мере, один корень уравнения f 0, то есть найдется хотя бы одно число a, b, такое, что 0 f. f существует и сохраняет постоян- Корень заведомо единственный, если ный знак внутри интервала [a, b].

3 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -- СПОСОБЫ ОТДЕЛЕНИЯ КОРНЕЙ. 1. Табличный способ отделения корней. В заданном интервале [a, b] задается сетка a 1... n b и вычисляют значения функции f i (достаточно определить лишь знаки в узлах i ). Если окажется, что f i f i1 0, то в силу теоремы 1 в интервале i, i 1 имеется корень уравнения. Пример. Определить корни уравнения 6 0 f. (.) Решение: Составляем таблицу f() Следовательно, уравнение (.) имеет три действительных корня лежащих в интервалах (-,-1), (0,1) и (1,).. Графический способ отделения корней. Пример. lg 1. 1 Решение: Преобразуем уравнение к виду lg, И построим графика как на рисунке. Искомый интервал [a, b] = [, ].. Отделение корней путем исследования функции f() методами математического анализа. 4. Отделение корней путем использования современных систем компьютерной алгебры.

if ($this->show_pages_images && $page_num < DocShare_Docs::PAGES_IMAGES_LIMIT) { if (! $this->doc['images_node_id']) { continue; } // $snip = Library::get_smart_snippet($text, DocShare_Docs::CHARS_LIMIT_PAGE_IMAGE_TITLE); $snips = Library::get_text_chunks($text, 4); ?>

4 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -4- Если итерационный процесс сходится, имеют место следующие определения его скорости сходимости. Определение. Если выполняется неравенство k lim ma k 1 k 1, () то говорят, что последовательность { k } линейно сходится к пределу *. Здесь - коэффициент сходимости. Определение 4. Если существует такое p > 1 что lim ma k k1 k p c 1, () то последовательность { k } имеет сходимость порядка p. Здесь c const. Максимум в () и (4) берется по всем последовательностям { k }.

5 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Метод половинного деления (дихотомии, бисекции) Пусть требуется найти корень уравнения (1) с заданной точностью > 0. Отрезок локализации [a, b], содержащий только один корень, будем считать заданным. Предположим, что f() непрерывна на [a, b] и f()f() < 0. Обозначим a0 = a и b0 = b. Тогда последовательность приближений n1 a n1, b a n n1 bn, n 0,1,, a n, n1, f an f n1 0 n1, bn, f n1 f bn 0 (4) сходится к корню * уравнения (1) с любой заданной точностью. Критерием окончания счета является выполнение неравенства: b n a n При этом в качестве корня выбирается величина 1 b n a n. Примерное количество итераций N, необходимых для вычисления корня с заданной точностью, определяется неравенством b a log. (5) N Это следует из неравенства b a N. Из данного неравенства в частности следует, что за 10 итераций интервал [a, b] уменьшается в раз. За 0 итераций в 10 раз.

6 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -6- Сходимость метода дихотомии линейная с коэффициентом Положительные стороны метода: всегда сходится («абсолютно застрахован от неудачи»). Отрицательные стороны метода: довольно медленный; не обобщается на системы уравнений. Данный метод с некоторыми отличиями реализован в Mathcad в процедуре root(f(),, a, b).

7 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Метод итераций Одним из наиболее эффективных способов численного решения уравнений является метод итерации. Сущность этого метода заключается в следующем. Пусть дано уравнение (1) f 0. Заменим его равносильным уравнением. (6) Пример. ln( ) 0 ln( ). Выражение (6) представляет собой отображение Здесь : X Y. R метрическое пространство вещ. чисел с метрикой, y y X a b R, - областью определения отображения ; Y R - множеством значений этого отображения. ; Легко показать, что если отображение - сжимающее, то справедлива следующая теорема. [, b] Теорема. Пусть функция () определена и дифференцируема на отрезке [ a, b и пусть a, причем все ее значения ] q 1 при [ a, b] Тогда 1) процесс итерации n1. (7), n = 1,, (8) n сходится независимо от начального значения [ a, ]; ) предельное значение на отрезке [ a, b]. n n 0 b lim является единственным корнем уравнения Пример. Дано уравнение f ( ) 1. Данное уравнение имеет корень 1,, т.к. f(1) = -1 < 0, f() = 5 > 0. Корень единственный, т.к. f ( ) 1 > 0 на отрезке [1, ]. Данное уравнение можно записать в виде

8 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ на отрезке [1, ]. Следовательно, условия сходимости итерационного процесса n n 1 1 не выполнены. итерационный процесс расходится. Если исходное уравнение записать в виде то 1 1 На отрезке [1, ] ma Следовательно, итерационный процесс где n n 1 1, n = 1,,, 0 1, сходится к корню исходного уравнения.

9 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Сходимость метода итераций Геометрический смысл метода итераций а) 0 1 б) 1 0 На последнем рисунке 1 в) 1 и процесс итерации расходится. Теорема. Пусть выполняются условия теоремы. Тогда критерием окончания итерационного процесса (8) является условие n n 1 q 1, (9) q где - заданная точность вычисления корня уравнения. В качестве корня берется величина n.

10 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -10- Замечание 1. Сходимость метода итерации линейная с коэффициентом сходимости q. С другой стороны. Замечание. Скорость сходимости итерационного процесса тем быстрее, чем меньше величина q. Это непосредственно следует из следствия теоремы Банаха. Замечание. Пусть на отрезке [a, b] производная q. Тогда, знак и выполнено неравенство 1 сохраняет постоянный если положительна, то последовательные приближения сходятся к корню монотонно (рис. а); n n1 если отрицательна, то последовательные приближения колеблются около корня (рис. б). Далее вспомним, что у нас дано уравнение f () = 0, которое нужно преобразовать к виду = () таким образом, чтобы выполнялось условие теоремы.

11 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Алгоритм представление уравнения f () = 0 в форме = (). Заменим уравнение 0 f эквивалентным ему уравнением f. (10) Поскольку нам известна функция f() и соответственно производная данной функции, то нам известны величины m и M, такие, что на отрезке [a, b] выполняется неравенство получим 0 m f M, 0 M f m 0, 0 Выбирая, например, f, f. 1, (11) M m q 1 1. M Замечание 1. Отрезок [a, b] выбирается таким, чтобы производная меняла знак на данном отрезке. f не Замечание. Если 1, то итерационная формула (8) переходит в формулу для метода касательных. f Замечание. В лабораторной работе приведен еще один способ выбора параметра. Пример. Привести уравнение f ( ) 1 к виду, пригодному для его решения методом простых итераций на отрезке [1, ] и определить условие окончания итерационного процесса. Решение. В примере раздела 4. мы уже показали, что данное уравнение имеет ровно один корень на отрезке [1, ]. Представим уравнение в форме Найдем 1. Т.е. 1.

12 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- Тогда 1) f ( ) 1 > 0 на отрезке [1, ]; ) ) M ma f 1, m min f 1, 1 1 ; M 11 f 11 f 1 m 9 q 1 1 ; M q q Т.о., получаем n n1 n1 n1, 11 n n ;

13 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Метод Ньютона (касательных) Предположим, отделение корней произведено и на отрезке [a, b] расположен один корень, который необходимо уточнить с точностью. Ньютона: Пусть задано начальное приближение a, b Если f 0. Расчетная формула метода n n1 n. (1) f n 1, (1) n n то значение n1 считается приближенным значением корня уравнения (1). f() Геометрическая иллюстрация { n, f( n )} * n+ n+1 n Теорема 4. Если f a f b 0, причем функция ab и производная f дважды дифференцируема на отрезке [, ] f отлична от нуля на отрезке [ a, b], то при любом начальном приближении [ a, ], удовлетворяющему условию 0 b f f q 1 (14) f итерационный процесс (1) сходится к корню уравнения (1) * с любой заданной точностью.

14 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -14- Главная трудность применения метода Ньютона заключается в выборе начального приближения, удовлетворяющего условию (14), которое должно находиться на отрезке локализации. Поэтому иногда целесообразно использовать смешанный алгоритм. Он состоит в том, что вначале применяется всегда сходящийся метод (например, метод дихотомии или золотого сечения), а после некоторого числа итераций быстро сходящийся метод касательных. Замечание 1. Формула (1) справедлива и для комплексных корней. Замечание. Скорость сходимости метода Ньютона квадратичная. Замечание. Скорость сходимости будет наибольшей, если выполнены условия: 1) Начальное приближение выбрано достаточно близким к корню уравнения. ) Первая производная f не слишком близка к нулю. ) Вторая производная f не принимает больших значений. Замечание 4. В общем случае критерий окончания итерационного процесса (1) не гарантирует, что с той же точностью совпадет n и * (см. теорему ). По- f. этому иногда целесообразно дополнительно проверять также условие f n

15 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Модификации метода Ньютона Упрощенный метод Ньютона Заключается в замене производной n f ( 0 в точке 0, т.е. полагаем f n f 0 f n n 1 n ( n 0,1,... ). f f в точке n в формуле (1) на произ-.в результате получим водную ) 0 Геометрически этот способ означает, что мы заменяем касательные в точках n прямыми, параллельными касательной к кривой y f в точке 0 (см. рис). f() * 1 0 Здесь не требуется вычислять каждый раз производную f n. Замечание 1. Условия сходимости метода и критерий окончания итерационного процесса те же, что и в методе Ньютона. Замечание. Скорость сходимости упрощенного метода Ньютона линейная m линейной с коэффициентом сходимости 1 < 1. Здесь M M ma f, m f [ a, b] min. [ a, b] Т.е. скорость сходимости существенно уступает методу Ньютона.

16 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Метод секущих Если итерации n и n1 расположены достаточно близко друг к другу, то производную f n в алгоритме Ньютона можно заменить ее приближенным значением 1 f n f n f n1. n Таким образом, из формулы метода Ньютона получим формулу секущих n1 n1 n n1 n f n. f f n n1 Геометрический смысл такого изменения алгоритма Ньютона состоит в том, что от аппроксимации f касательной мы переходим к секущей прямой, проходящей через точки. f() * Замечание 1. Здесь в начале итерационного процесса задаются две точки 0 и Замечание. Условия сходимости метода и критерий окончания итерационного процесса те же, что и в методе Ньютона.

17 Тема 4. ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -17- Замечание. Метод секущих имеет сходимость порядка p (см. определение 4), т.е. уступает методу Ньютона в скорости сходимости, однако не требует вычисления производной. Тем не менее именно данный метод с несущественными отличиями реализован в Mathcad в процедуре root(f(), ).

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ -1- ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 0. Постановка задачи Задача нахождения корней нелинейного уравнения вида y=f() часто встречается в научных исследований

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных) уравнений f = ) заключается в нахождении значений,

Подробнее

Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Лекция 9 3. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Пусть дано нелинейное уравнение ( 0, (3.1 где ( функция, определенная и непрерывная на некотором промежутке. В некоторых случаях

Подробнее

Математическое моделирование объектов теплоэнергетики

Математическое моделирование объектов теплоэнергетики Математическое моделирование объектов теплоэнергетики Лекция 1 Нелинейные алгебраические и трансцендентные уравнения. Термины и понятия 2 Моделирование это исследование объекта или системы объектов путем

Подробнее

2. Решение нелинейных уравнений.

2. Решение нелинейных уравнений. Решение нелинейных уравнений Не всегда алгебраические или трансцендентные уравнения могут быть решены точно Понятие точности решения подразумевает: ) возможность написания «точной формулы», а точнее говоря

Подробнее

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

2. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ 2.1. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ . РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ И СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.. РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ вида Численное решение нелинейных алгебраических или трансцендентных уравнений. заключается в нахождении значений

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ - --1 1.57.5-5-.5 РЕШЕНИЕ УРАВНЕНИЙ С ОДНОЙ ПЕРЕМЕННОЙ Задание: Найти решение уравнения с точностью 0. 0001 следующими методами: дихотомии; пропорциональных частей (хорд); касательных (Ньютона); модифицированным

Подробнее

Лабораторная работа по теме «Тема 1.2. Методы решения нелинейных уравнений»

Лабораторная работа по теме «Тема 1.2. Методы решения нелинейных уравнений» Лабораторная работа по теме «Тема.. Методы решения нелинейных уравнений» Перейти к Теме. Теме. Огл.... Вопросы, подлежащие изучению. Постановка задачи численного решения нелинейных уравнений.. Этапы численного

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ»

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ» Методические указания к лабораторной работе «Вычисления корней трансцендентных уравнений»

Подробнее

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции

Лабораторная работа 2. Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Лабораторная работа Методы минимизации функций одной переменной, использующие информацию о производных целевой функции Постановка задачи: Требуется найти безусловный минимум функции одной переменной (

Подробнее

Численное решение нелинейных уравнений

Численное решение нелинейных уравнений Постановка задачи Метод половинного деления Метод хорд (метод пропорциональных частей 4 Метод Ньютона (метод касательных 5 Метод итераций (метод последовательных приближений Постановка задачи Пусть дано

Подробнее

Лекция 2. Решение нелинейных уравнений. Постановка задачи: Найти коэффициент погрешности прибора σ при проведении геодезических измерений из

Лекция 2. Решение нелинейных уравнений. Постановка задачи: Найти коэффициент погрешности прибора σ при проведении геодезических измерений из Лекция 2. Решение нелинейных уравнений. Постановка задачи: Найти коэффициент погрешности прибора σ при проведении геодезических измерений из уравнения: δ cos σ υ σ 2 + η = 0 Значения δ = 0,186, υ = 4,18,

Подробнее

Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы Иванов И.И. Вариант 1.

Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы Иванов И.И. Вариант 1. Задание: Вариант #1 x 11x + 36x 36 = 0 Расчетно-графическая работа по курсу «Теория оптимизации и численные методы». Выполнил студент группы 04-06 Иванов И.И. Вариант 1 Этап 5. Тема: Методы решения алгебраических

Подробнее

2 Численные методы решения уравнений.

2 Численные методы решения уравнений. 2 Численные методы решения уравнений. 2.1 Классификация уравнений, их систем и методов решения. Уравнения и системы уравнений делятся на: 1) алгебраические: уравнение называется алгебраическим, если над

Подробнее

1. Численные методы решения уравнений

1. Численные методы решения уравнений 1. Численные методы решения уравнений 1. Системы линейных уравнений. 1.1. Прямые методы. 1.2. Итерационные методы. 2. Нелинейные уравнения. 2.1. Уравнения с одним неизвестным. 2.2. Системы уравнений. 1.

Подробнее

НЕЛИНЕЙНЫЕ УРАВНЕНИЯ

НЕЛИНЕЙНЫЕ УРАВНЕНИЯ Г Л А В А НЕЛИНЕЙНЫЕ УРАВНЕНИЯ. Понятия и определения. Постановка задачи. Решение нелинейных уравнений с одним неизвестным является одной из важных математических задач, возникающих в различных разделах

Подробнее

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности.

Корень Итераций Корень Итераций. -- вывод о качестве методов после их сравнения по количеству выполненных итераций для достижения заданной точности. Methods.doc Методы приближенных вычислений Стр.1 из 6 Общее условие задачи: Двумя заданными численными методами вычислить приближенное значение корня 1 функционального уравнения вида f()=0 для N значений

Подробнее

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ

ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ. ЗАДАЧА ОПТИМИЗАЦИИ ЛЕКЦИЯ 11 МНОГОМЕРНАЯ ИНТЕРПОЛЯЦИЯ ЗАДАЧА ОПТИМИЗАЦИИ На прошлой лекции были рассмотрены методы решения нелинейных уравнений Были рассмотрены двухточечные методы, которые используют локализацию корня,

Подробнее

Численные методы линейной и нелинейной алгебры

Численные методы линейной и нелинейной алгебры ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского» А.И. Зинина В.И. Копнина Численные методы линейной и нелинейной алгебры Учебное пособие Саратов

Подробнее

Лектор Ст. преподаватель Купо А.Н.

Лектор Ст. преподаватель Купо А.Н. Лекция 2 Решение линейных и нелинейных уравнений в средах MS Excel и Mthcd Лектор Ст. преподаватель Купо А.Н. 1.Решение уравнений с одним неизвестным. Дихотомия. 2.Метод хорд. Метод касательных. Метод

Подробнее

Нелинейные алгебраические уравнения Системы алгебраических уравнений. Скалько Юрий Иванович Цыбулин Иван

Нелинейные алгебраические уравнения Системы алгебраических уравнений. Скалько Юрий Иванович Цыбулин Иван Системы алгебраических уравнений Скалько Юрий Иванович Цыбулин Иван Скалярные уравнения Постановка задачи Дана функция f (x). Найти решение уравнения f (x) = 0 В отличие от случая линейного уравнения,

Подробнее

Лекция3. 3. Метод Ньютона (касательных).

Лекция3. 3. Метод Ньютона (касательных). Лекция3. 3. Метод Ньютона (касательных. Зададим некоторое начальное приближение [,b] и линеаризуем функцию f( в окрестности с помощью отрезка ряда Тейлора f( = f( + f '( ( -. (5 Вместо уравнения ( решим

Подробнее

Pascal 13. Решение нелинейных уравнений.

Pascal 13. Решение нелинейных уравнений. Pascal 13. Решение нелинейных уравнений. Нелинейные уравнения можно разделить на 2 класса - алгебраические и трансцендентные. Алгебраическими уравнениями называют уравнения, содержащие только алгебраические

Подробнее

А. П. Иванов. Методические указания. Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений. факультет ПМ ПУ СПбГУ 2007 г.

А. П. Иванов. Методические указания. Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений. факультет ПМ ПУ СПбГУ 2007 г. А. П. Иванов Методические указания Тема 4: Метод Ньютона решения нелинейных уравнений и систем уравнений факультет ПМ ПУ СПбГУ 2007 г. Оглавление 1. Решение скалярных уравнений...........................

Подробнее

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА

А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Факультет прикладной математики процессов управления А. П. ИВАНОВ ПРАКТИКУМ ПО ЧИСЛЕННЫМ МЕТОДАМ МЕТОД НЬЮТОНА Методические указания Санкт-Петербург 2013

Подробнее

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.

Занятие 3.1 Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики. Занятие. Степень с произвольным действительным показателем, её свойства. Степенная функция, её свойства, графики.. Вспомнить свойства степени с рациональным показателем. a a a a a для натурального раз

Подробнее

Лабораторная работа 2

Лабораторная работа 2 Лабораторная работа Цель работы: Закрепление навыков работы с основными синтаксическими конструкциями языка Си и умения организовывать циклы и выполнять вычисления.. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ.. Методы решения

Подробнее

Ассистент кафедры ХТТиХК, к.т.н. Белинская Наталия Сергеевна

Ассистент кафедры ХТТиХК, к.т.н. Белинская Наталия Сергеевна Дисциплина «Углубленный курс информатики» Лекция 2 Приближенные методы решения нелинейных уравнений Ассистент кафедры ХТТиХК, к.т.н. Белинская Наталия Сергеевна 2016 План лекции Нелинейные уравнения Определение

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Ф И Л И А Л «С Е В М А Ш В Т У З» Г О С У Д А Р С Т В Е Н Н О Г О О Б Р А З О В А Т Е Л Ь Н О Г О У Ч Р Е Ж Д Е Н И Я В Ы С Ш Е Г О П Р О Ф Е С С И О Н А Л Ь Н О Г

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x;

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. 1 Функции двух переменных.. Соответствие f, которое каждой паре чисел ( x; ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести

Подробнее

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей)

МАТЕМАТИКА ЕГЭ Задания С5. Аналитические методы ЗАДАЧИ С ПАРАМЕТРАМИ. 27. Неравенства (метод областей) МАТЕМАТИКА ЕГЭ Задания С5 7 Неравенства (метод областей) Указания и решения Справочный материал Источники Корянов А Г г Брянск Замечания и пожелания направляйте по адресу: korynov@milru ЗАДАЧИ С ПАРАМЕТРАМИ

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Спец. Разделы основ ИТ и программирования Лабораторная работа 1 ТЕМА: ЭЛЕКТРОННАЯ ТАБЛИЦА EXCEL. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ.

Спец. Разделы основ ИТ и программирования Лабораторная работа 1 ТЕМА: ЭЛЕКТРОННАЯ ТАБЛИЦА EXCEL. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. ТЕМА: ЭЛЕКТРОННАЯ ТАБЛИЦА EXCEL. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. ЦЕЛЬ РАБОТЫ: научиться решать нелинейные уравнения средствами EXCEL методом половинного деления; с помощью инструмента «Подбор

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ) Кафедра прикладной математики М.В. Лукина МЕТОДЫ ПРИБЛИЖЁННЫХ ВЫЧИСЛЕНИЙ

Подробнее

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций»

МОДУЛЬ 5 «Применение непрерывности и производной. Применение производной к исследованию функций» МОДУЛЬ «Применение непрерывности и производной. Применение производной к исследованию функций». Применение непрерывности.. Метод интервалов.. Касательная к графику. Формула Лагранжа. 4. Применение производной

Подробнее

1 Элеметарная теория погрешностей. 2

1 Элеметарная теория погрешностей. 2 Содержание Элеметарная теория погрешностей. Решение СЛАУ. 4. Нормы в конечномерных пространствах... 4. Обусловленность СЛАУ............ 5.3 Итерационные методы решения линейных систем......................

Подробнее

А.П.Попов. Методы оптимальных решений. Пособие для студентов экономических специальностей вузов

А.П.Попов. Методы оптимальных решений. Пособие для студентов экономических специальностей вузов А.П.Попов Методы оптимальных решений Пособие для студентов экономических специальностей вузов Ростов-на-Дону 01 1 Введение В прикладной математике имеется несколько направления, нацеленных в первую очередь

Подробнее

Лекция 2.4. Непрерывность функции. Классификация точек разрыва

Лекция 2.4. Непрерывность функции. Классификация точек разрыва Лекция 4 Непрерывность функции Классификация точек разрыва Аннотация: Рассматриваются свойства функции, непрерывной на отрезке Приводится пример использования этих свойств при решении нелинейных уравнений

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC.

ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC. ЧИСЛЕННЫЕ МЕТОДЫ НАХОЖДЕНИЯ КОРНЯ УРАВНЕНИЯ. КОМБИНИРОВАННЫЙ МЕТОД. ЕГО РЕАЛИЗАЦИЯ В СРЕДЕ ПАКЕТА ПАСКАЛЬ-ABC. Машкова Е.Г., Покришка О.И. Донской Государственный Технический Университет (ДГТУ) Ростов-на-Дону,

Подробнее

Решение уравнения с одним неизвестным

Решение уравнения с одним неизвестным 1 Решение уравнения с одним неизвестным Дано уравнение в виде f(x)=0, где f(x) некоторая функция переменной x. Число x * называется корнем или решением данного уравнения, если при подстановке x=x * в уравнение

Подробнее

Некоторые численные методы решения. алгебраических и трансцендентных уравнений

Некоторые численные методы решения. алгебраических и трансцендентных уравнений С.В. Овчинников, В.Н. Шевцов Некоторые численные методы решения алгебраических и трансцендентных уравнений Методическое пособие по учебной дисциплине «Вычислительные методы» для студентов физического факультета

Подробнее

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ После изучения данной темы вы сможете: проводить численное решение задач линейной алгебры. К решению систем линейных уравнений сводятся многочисленные практические задачи, решение

Подробнее

x 4 ; x log 6 - логарифмические неравенства

x 4 ; x log 6 - логарифмические неравенства Вопрос. Неравенства, система линейных неравенств Рассмотрим выражения, которые содержат знак неравенства и переменную:. >, - +х -это линейные неравенств с одной переменной х.. 0 - квадратное неравенство.

Подробнее

y отличны от нуля, то частным последовательностей

y отличны от нуля, то частным последовательностей Раздел 2 Теория пределов Тема Числовые последовательности Определение числовой последовательности 2 Ограниченные и неограниченные последовательности 3 Монотонные последовательности 4 Бесконечно малые и

Подробнее

МЕТОДЫ БЕЗУСЛОВНОЙ ОДНОМЕРНОЙ ОПТИМИЗАЦИИ

МЕТОДЫ БЕЗУСЛОВНОЙ ОДНОМЕРНОЙ ОПТИМИЗАЦИИ Министерство образования Российской федерации Новокузнецкий филиал институт Кемеровского государственного университета Кафедра информационных систем и управления МЕТОДЫ БЕЗУСЛОВНОЙ ОДНОМЕРНОЙ ОПТИМИЗАЦИИ

Подробнее

Исследование областей сходимости численных методов второго порядка

Исследование областей сходимости численных методов второго порядка Электронный научный журнал «Вестник Омского государственного педагогического университета» Выпуск 6 www.oms.edu А.Т. Когут, Н.Ю. Безбородова Омский государственный университет путей сообщения Исследование

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

Государственное бюджетное образовательное учреждение среднего профессионального образования

Государственное бюджетное образовательное учреждение среднего профессионального образования Государственное бюджетное образовательное учреждение среднего профессионального образования «Владимирский авиамеханический колледж» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению лабораторных работ по дисциплине ЧИСЛЕННЫЕ

Подробнее

Расчетно-графическая работа по информатике

Расчетно-графическая работа по информатике Министерство образования Российской Федерации ФГБОУ ВПО «ЮжноУральский государственный университет» (НИУ) Филиал ФГБОУ ВПО ЮУрГУ (НИУ) в г. УстьКатаве Кафедра Машиноведение Расчетнографическая работа по

Подробнее

3. Дифференцирование функций

3. Дифференцирование функций lim 3 Дифференцирование функций 3 Производная функции Производной функции f в точке называют следующий предел f f df f ' d, где f ' и df d условные обозначения производной Операция нахождения производной

Подробнее

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход.

Если существует предел y этой последовательности, она и будет решением исходной задачи, так как будет законен предельный переход. Метод Ритца Выделяют два основных типа методов решения вариационных задач. К первому типу относятся методы, сводящие исходную задачу к решению дифференциальных уравнений. Эти методы очень хорошо развиты

Подробнее

ОБОБЩЕННЫЙ ОПЕРАТОР ЦИКЛА 4.6. РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ. Синтаксис оператора:

ОБОБЩЕННЫЙ ОПЕРАТОР ЦИКЛА 4.6. РЕШЕНИЕ АЛГЕБРАИЧЕСКИХ И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ. Синтаксис оператора: Синтаксис оператора: ОБОБЩЕННЫЙ ОПЕРАТОР ЦИКЛА DO [{ WHILE UNTIL } ] [] []... [] LOOP [{ WHILE UNTIL } ] где ключевые слова переводятся следующим

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Предел. Непрерывность.

Предел. Непрерывность. Функция. 1 1. Какие числа образуют множество действительных чисел? 2. Что называется числовой осью? 3. Что называется интервалом? 4. Определить понятие окрестности точки. 5. Что называется абсолютной величиной?

Подробнее

Численные методы решения алгебраических уравнений и систем уравнений

Численные методы решения алгебраических уравнений и систем уравнений Краевой конкурс учебно-исследовательских и проектных работ учащихся «Прикладные вопросы математики» Алгебра Численные методы решения алгебраических уравнений и систем уравнений Булычев Сергей, МОУ «Лицей

Подробнее

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» МА Бодунов, СИ Бородина, ВВ Показеев, БЭ Теуш ОИ Ткаченко, ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ Практикум

ЧИСЛЕННЫЕ МЕТОДЫ Практикум Алексеева О.А. ЧИСЛЕННЫЕ МЕТОДЫ Практикум Челябинск УДК 59.6 ББК.9 А-47 Алексеева О.А. Численные методы: практикум. Челябинск: НОУВПО РБИУ,. 77 с. Рассматриваются наиболее распространенные методы численного

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности

Математический анализ. (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности Математический анализ (греч. ανάλυσις -разрешать, разлагать) Лекция 1. Предел последовательности 1 Предварительные сведения о действительных (вещественных) числах Рациональное число m Q, m, -целые числа.

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике

2 Тестовые задания Тест предназначен для проверки общей подготовки студента по вычислительной математике Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов 1 Расчетные задания Варианты

Подробнее

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций

Тема 1. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Тема. Функция. Способы задания. Неявная функция. Обратная функция. Классификация функций Элементы теории множеств. Основные понятия Одним из основных понятий современной математики является понятие множества.

Подробнее

Лекция 2.5. Производные основных элементарных функций

Лекция 2.5. Производные основных элементарных функций Лекция 5 Производные основных элементарных функций Аннотация: Даются физическая и геометрическая интерпретации производной функции одной переменной Рассматриваются примеры дифференцирования функции и правила

Подробнее

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n)

Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( x, y, y, y,..., y ( n) Численные методы решения обыкновенных дифференциальных уравнений Дифференциальное уравнение: F( ( ) ) - обыкновенное (зависимость только от ) Общий интеграл - зависимость между независимой переменной зависимой

Подробнее

5. Определение коррекно поставленной задачи. Является ли решение уравнения x 2 3x+

5. Определение коррекно поставленной задачи. Является ли решение уравнения x 2 3x+ 0.1 Погрешность, устойчивость, числа с плавающей запятой 1. Абсолютная и относительная погрешности. Дано уравнение 0,134x+2,824 = 0. С какой погрешностью можно вычислить его корень? 2. Абсолютная и относительная

Подробнее

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim

П.01. Производная. . Тогда производной функции в данной точке называется следующее отношение: lim П0 Производная Рассмотрим некоторую функцию f ( ), зависящую от аргумента Пусть эта функция определена в точке 0 и некоторой ее окрестности, непрерывна в этой точке и ее окрестностях Рассмотрим небольшое

Подробнее

Тема 1. Элементы теории погрешностей

Тема 1. Элементы теории погрешностей - 1 - Тема 1 Элементы теории погрешностей 11 Источники и классификация погрешностей Численное решение любой задачи, как правило, осуществляется приближенно, те с некоторой точностью Это может быть обусловлено

Подробнее

16.2.Н. Производная.

16.2.Н. Производная. 6..Н. Производная 6..Н. Производная. Оглавление 6..0.Н. Производная Введение.... 6..0.Н. Производная сложной функции.... 5 6..0.Н. Производные от функций с модулями.... 7 6..0.Н. Возрастание и убывание

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

Численные методы Тема 2. Интерполяция

Численные методы Тема 2. Интерполяция Численные методы Тема 2 Интерполяция В И Великодный 2011 2012 уч год 1 Понятие интерполяции Интерполяция это способ приближенного или точного нахождения какой-либо величины по известным отдельным значениям

Подробнее

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции

3.1. ИНТЕРПОЛЯЦИЯ задано множество несовпадающих точек. (интерполяционных узлов), в которых известны значения функции ПРИБЛИЖЕНИЕ ФУНКЦИЙ ЧИСЛЕННЫЕ ДИФФЕРЕНЦИРОВАНИЕ И ИНТЕГРИРОВАНИЕ В настоящем разделе рассмотрены задачи приближения функций с помощью многочленов Лагранжа и Ньютона с использованием сплайн интерполяции

Подробнее

x 1 x 2 x 3 x k y 1 y 2 y 3 y k

x 1 x 2 x 3 x k y 1 y 2 y 3 y k ЛЕКЦИИ ПО ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКЕ Е. С. Тверская МГТУ им. Н.Э. Баумана Москва Методы аппроксимации функции. Постановка задачи приближения функции. Задачи, приводящие к задаче приближения функций. Функция

Подробнее

Неравенства с параметром на едином государственном экзамене В.В. Сильвестров

Неравенства с параметром на едином государственном экзамене В.В. Сильвестров Неравенства с параметром на едином государственном экзамене ВВ Сильвестров Задания единого государственного экзамена (ЕГЭ) непременно содержат задачи с параметрами Планом экзаменационной работы 008 года

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ ПРИБЛИЖЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ Отделение корней Пусть дано уравнение f ( 0, () где функция f ( C[ a; Определение Число f ( ) 0 x называется корнем уравнения () или нулем функции f (,

Подробнее

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА)

Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Олемской И.В. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫЧИСЛИТЕЛЬНОМУ ПРАКТИКУМУ. (ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА) Постановка задачи. Рассматривается задача о вычислении однократного интеграла J(F ) = F (x) dx. ()

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

1. Числовые последовательности

1. Числовые последовательности ТЕОРИЯ ПРЕДЕЛОВ И НЕПРЕРЫВНОСТЬ 1. Числовые последовательности Определение 1. Отображение a: N R множества натуральных, принимающее свои значения в множестве действительных чисел, называется числовой последовательностью.

Подробнее

МОДУЛЬ 7 «Показательная и логарифмическая функции»

МОДУЛЬ 7 «Показательная и логарифмическая функции» МОДУЛЬ 7 «Показательная и логарифмическая функции». Обобщение понятия степени. Корень й степени и его свойства.. Иррациональные уравнения.. Степень с рациональным показателем.. Показательная функция..

Подробнее

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических

Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических Под численным интегрированием понимают набор численных методов для нахождения значения определенного интеграла. При решении инженернотехнических задач порой бывает необходимо вычислить среднее значение

Подробнее

Лекция 4 МЕТОДЫ ПЕРВОГО ПОРЯДКА А. МЕТОД ГРАДИЕНТНОГО СПУСКА С ПОСТОЯННЫМ ШАГОМ. Стратегия поиска

Лекция 4 МЕТОДЫ ПЕРВОГО ПОРЯДКА А. МЕТОД ГРАДИЕНТНОГО СПУСКА С ПОСТОЯННЫМ ШАГОМ. Стратегия поиска Лекция 4 МЕТОДЫ ПЕРВОГО ПОРЯДКА Постановка задачи Пусть дана функция f ( ), ограниченная снизу на множестве R n и имеющая непрерывные частные производные во всех его точках. Требуется найти локальный минимум

Подробнее

Фонд оценочных средств

Фонд оценочных средств ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е. АЛЕКСЕЕВА» ИНСТИТУТ РАДИОЭЛЕКТРОНИКИ И ИНФОРМАЦИОННЫХ

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

5. Нелинейные уравнения и системы в MathCAD

5. Нелинейные уравнения и системы в MathCAD 5. Нелинейные уравнения и системы в MathCAD Рассмотрим возможности численного и символьного решения уравнений средствами MathCAD. 5.1. Решение нелинейных уравнений В общем случае аналитическое решение

Подробнее

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю):

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю): Общие сведения. Кафедра Математики и математических методов в экономике. Направление подготовки 05000

Подробнее

Лимонникова Е.В. ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА. Методические указания по выполнению курсовой работы

Лимонникова Е.В. ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА. Методические указания по выполнению курсовой работы Министрество образования Российской Федерации Филиал Санкт-Петербургского государственного морского Технического университета СЕВМАШВТУЗ Кафедра «Прикладной математики» Лимонникова Е.В. ВЫЧИСЛИТЕЛЬНАЯ

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ АНАЛИЗА ИЗДАТЕЛЬСТВО ГОУ ВПО ТГТУ

ЧИСЛЕННЫЕ МЕТОДЫ АНАЛИЗА ИЗДАТЕЛЬСТВО ГОУ ВПО ТГТУ ЧИСЛЕННЫЕ МЕТОДЫ АНАЛИЗА ИЗДАТЕЛЬСТВО ГОУ ВПО ТГТУ Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «Тамбовский государственный

Подробнее

Глава 6 Числовые ряды

Глава 6 Числовые ряды Глава 6 Числовые ряды Определение числового ряда и основные теоремы Определение : Последовательностью действительных чисел называется функция f, определённая на множестве всех натуральных чисел Число f

Подробнее

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ. Интегральные суммы и определённый интеграл Пусть дана функция y = f (), определённая на отрезке [, b ], где < b. Разобьём отрезок [, b ] с помощью точек деления на n элементарных

Подробнее

Численные методы и моделирование на ЭВМ

Численные методы и моделирование на ЭВМ Министерство образования и науки, молодежи и спорта Донбасская государственная машиностроительная академия Составитель Костиков А.А. Численные методы и моделирование на ЭВМ Методические указания к выполнению

Подробнее

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика»

Методические указания к выполнению лабораторных работ по дисциплине «Вычислительная математика» Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования Томский государственный университет систем управления и радиоэлектроники ТУСУР Кафедра

Подробнее

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной

РАЗДЕЛ 5 Интегральное исчисление функций одной переменной РАЗДЕЛ 5 Интегральное исчисление функций одной переменной Материалы подготовлены преподавателями математики кафедры общеобразовательных дисциплин для системы электронного дистанционного обучения Содержание

Подробнее

Этап 5 Тема: Методы отыскания корней алгебраического уравнения. = 0. Стационарные точки. < 0, то. а) Отделить корни алгебраического уравнения

Этап 5 Тема: Методы отыскания корней алгебраического уравнения. = 0. Стационарные точки. < 0, то. а) Отделить корни алгебраического уравнения р. Этап 5 Тема: Методы отыскания корней алгебраического уравнения Дано: + 6 6 = а) Отделить корни алгебраического уравнения Алгоритм отделения проых корней с помощью исследования функций и пороения графиков.

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m

Тема 2 Теория пределов. , каждый элемент которой равен произведению соответствующего элемента последовательности. вается последовательность m Тема Теория пределов Практическое занятие Числовые последовательности Определение числовой последовательности Ограниченные и неограниченные последовательности Монотонные последовательности Бесконечно малые

Подробнее

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Лекция ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Лекция 4 8 ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ПОСТАНОВКА ЗАДАЧИ Рассматривается проблема решения систем обыкновенных дифференциальных уравнений первого порядка связывающих

Подробнее