В.А. МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В КОНСТРУКЦИЯХ РЭС ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ УДАРНОМ ВОЗБУЖДЕНИИ МОДЕЛИ

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "В.А. МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В КОНСТРУКЦИЯХ РЭС ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ УДАРНОМ ВОЗБУЖДЕНИИ МОДЕЛИ"

Транскрипт

1 Таньков Г.В., Селиванов В.Ф., Трусов В.А. МОДЕЛИРОВАНИЕ НЕСТАЦИОНАРНЫХ ПРОЦЕССОВ В КОНСТРУКЦИЯХ РЭС ЦИЛИНДРИЧЕСКОЙ ФОРМЫ ПРИ УДАРНОМ ВОЗБУЖДЕНИИ МОДЕЛИ Действие динамических внешних нагрузок на радиоэлектронные средства (РЭС) приводит к возникновению в их узлах и блоках переменных напряжений, которые при достаточно интенсивных колебаниях могут привести к отказам в работе РЭС. Сложность конструкций РЭС и нестационарный характер процессов, возникающих при указанных воздействиях, затрудняют, а в большинстве случаев делают невозможным, применение аналитических методов расчѐта конструкций РЭС на прочность и допустимые ускорения. Методы математического моделирования являются достаточно эффективным средством анализа динамического поведения подобных конструкций. Однако в ряде случаев монолитные блоки РЭС имеют цилиндрическую форму, например, различные коаксиальные системы. При этом моделирование обладает рядом характерных особенностей. Если в основу расчѐта положить некоторую приближѐнную модель конструкции модель-сетку, то построение еѐ рационально вести в цилиндрической системе координат. Но данная система характеризуется наличием особой точки полюса. На полюсе сетка сгущается, и ухудшаются условия устойчивости решения. К числу следующих особенностей моделирования в цилиндрических координатах относится необходимость решения разностных уравнений с переменными коэффициентами. При построении разностной модели в цилиндрических координатах конструкция или монолитный блок РЭС разбивается плоскостями, параллельными координатным плоскостям, на элементы (рис.). В центре узле-сетке сосредоточена вся его масса. Узлы соединены между собой упругими связями, определяющими нормальные и касательные напряжения. Рис.. Поведение узла, расположенного в особой точке полюсе, характеризуется деформацией так называемого центрального элемента, принятого в виде n - многогранника (рис.). Центральный узел связан n - числом упругих связей с боковыми элементами (узлами), изображѐнными на рис.. Рис.. Расчѐт нестационарного процесса в конструкции или блоке РЭС основан на решении разностных уравнений, аппроксимирующих дифференциальные уравнения, описывающие протекающий процесс. Эти уравнения представляют собой уравнения равновесия элемента относительно координатных осей,,. Они выводятся с позиций 3-х мерной теории упругости, исходя из физических представлений о деформации непосредственно, и записываются в разностной форме в напряжениях. Для центрального элемента уравнения динамического равновесия имеют вид: 4 cos( ) sin( ) n nh n nh x x ax Xh h, 4 sin( nh ) cos( nh ) a n n Xh h y 4 h. () Xh n a Здесь X - число граней (нормалей) элемента; n - текущий номер нормали (в -ой четверти X рис.); n - нормаль противоположной грани 80 о ; m - нормаль грани 90 о 3 ; M X n 4 - нормаль грани 70 о ; ii и ii ij и ij - касательные напряжения по тем же граням; - нормальные напряжения на передней и задней грани элемента; ii n и ii для противоположных граней в радиальном направлении (рис.); - обозначения нормальных напряжений ij n и ij - обозначения касательных

2 x y напряжений для этих граней; a, a, a - проекции ускорения центрального узла на декартовы оси координат; h, h, h - размеры элемента (рис.); - плотность среды. Аналогичным образом получаются уравнения движения для бокового элемента: a, h h h tg a, h h h tg a, () h h h где: - радиус узла; a, a, a - проекции ускорения узла на оси,,. Для расчѐта вибраций монолитной конструкции РЭС необходимо решать совместно уравнения () и (). В качестве искомых функций при решении берутся перемещения u, v, w узла сетки относительно положения равновесия в направлении,, соответственно. Уравнения динамического равновесия в перемещениях можно получить из () и (), если воспользоваться законом Гука в обобщѐнной форме []. Решение разностных уравнений () и () в перемещениях предлагается вести по явной разностной схеме, которая, например, для перемещения узла в радиальном направлении, имеет вид u( t ) u( t) u( t ) (3) с соответствующими начальными и граничными условиями. Здесь f ( u, v, w ) - левая часть уравнений () или () в перемещениях; - шаг по времени. Пользуясь этой схемой, можно вычислить перемещения узлов в следующий момент времени t по ранее найденным значениям перемещений в предыдущие два момента времени t и t. Начальные условия задаются в виде начальных перемещений всех узлов в два предыдущих момента времени. Граничные условия первого рода задаются в виде перемещений определенных узлов конструкции или блока, например, узлов, связанных с корпусом или вибростендом. Для граничных условий второго рода соответствующие разности в уравнениях () и () на границе заменяются либо значением силы, либо считаются равными нулю (нулевые граничные условия). Изложение методики расчѐта вибраций цилиндрических конструкций РЭС проведено для однородных изотропных сред. В случае, если конструкция или блок РЭС состоит из разнородных материалов, нужно провести усреднение параметров сетки. Наличие в конструкции РЭС материалов с большими потерями энергии на внутреннее трение приводит к необходимости учѐта этих потерь в уравнениях движения. На основе разработанной методики решена задача о продольном ударе сплошного круглого стержня о жѐсткую преграду. На практике подобный удар воспроизводится при испытаниях аппаратуры на падение [3]. Длина стержня принята равной 5 см, диаметр равен 3,5 см, скорость удара (см. рис.3) V 0 = м/сек, шаг по длине h 0,5 см, шаг по времени = 0, сек. Материал стержня сталь с коэффициентом Пуассона v = 0,3. После удара нижний конец стержня принимается защемленным, а верхний конец свободен. Возникающий после удара колебательный процесс просчитан на два периода (58 ) продольных колебаний.

3

4 На рис.3 представлены графики деформирования наружной поверхности стержня в радиальном направлении в различные моменты времени: на рис.3,а и 3,б образовавшаяся от удара волна сжатия распространяется вдоль стержня к торцу; на рис 3,в деформация сжатия дошла до свободного торца, и началось отражение. Графики построены с учѐтом симметрии задачи; вторая половина получается зеркальным отображением.

5 После ½ периода колебаний деформация сжатия должна изменить знак на деформацию растяжения [3]. Контроль над сменой знака продольной деформации проводился по колебаниям торцевого сечения (рис.4). Для случая осевого растяжения пример картины радиальной деформации показан на рис.3,г. Литература. Биргер И.А. Прочность, устойчивость, колебания. / И.А.Биргер, Я.Г.Пановко. - М., Машиностроение, 968г. Т... Карпушин В.Б. Вибрации и удары в радиоаппаратуре. М., Советское радио, 97г. 3. Хайкин С.Э. Физические основы механики. М., Физматгиз, 96г.

ДИСКРЕТНАЯ МОДЕЛЬ ПРОЦЕССА РАСПРОСТРАНЕНИЯ ИМПУЛЬСА СМЕЩЕНИЯ В УПРУГОМ СТЕРЖНЕ ПОСТОЯННОГО СЕЧЕНИЯ ПРИ ТОРЦЕВОМ УДАРЕ

ДИСКРЕТНАЯ МОДЕЛЬ ПРОЦЕССА РАСПРОСТРАНЕНИЯ ИМПУЛЬСА СМЕЩЕНИЯ В УПРУГОМ СТЕРЖНЕ ПОСТОЯННОГО СЕЧЕНИЯ ПРИ ТОРЦЕВОМ УДАРЕ УДК 368.3.068 А. В. Затылкин, Г. В. Таньков, Д. В. Ольхов ДИСКРЕТНАЯ МОДЕЛЬ ПРОЦЕССА РАСПРОСТРАНЕНИЯ ИМПУЛЬСА СМЕЩЕНИЯ В УПРУГОМ СТЕРЖНЕ ПОСТОЯННОГО СЕЧЕНИЯ ПРИ ТОРЦЕВОМ УДАРЕ Аннотация. В статье показана

Подробнее

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ УДК 539.3 АНАЛИЗ СОБСТВЕННЫХ ЧАСТОТ И ФОРМ КОЛЕБАНИЙ СВОБОДНО ОПЕРТОЙ УПРУГОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ к.ф.-м.н. 1 Чигарев А.В., асп. 2 Покульницкий А.Р. 1 Белорусский национальный технический университет,

Подробнее

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3)

Лекция 11. Полная система уравнений теории упругости. Уравнения равновесия. Соотношения Коши: (2) z yz. Соотношения Закона Гука (3) Полная система уравнений теории упругости si F () i Лекция Полная система уравнений теории упругости. Уравнения совместности деформаций. Уравнения Бельтрами. Уравнения Ламе. Плоское напряженное и плоское

Подробнее

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ

ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 26. Т. 47, N- 6 129 УДК 539.3 ЭФФЕКТЫ ВТОРОГО ПОРЯДКА И ПРИНЦИП СЕН-ВЕНАНА В ЗАДАЧЕ КРУЧЕНИЯ НЕЛИНЕЙНО-УПРУГОГО СТЕРЖНЯ В. В. Калашников, М. И. Карякин Ростовский

Подробнее

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского

Министерство образования и науки Российской Федерации. Нижегородский государственный университет им. Н.И. Лобачевского Министерство образования и науки Российской Федерации Нижегородский государственный университет им. Н.И. Лобачевского Национальный исследовательский университет Учебно-научный и инновационный комплекс

Подробнее

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов

Л.4 Прочность, жесткость, устойчивость. Силовые нагрузки элементов Л. Прочность, жесткость, устойчивость. Силовые нагрузки элементов Под прочностью понимают способность конструкции, ее частей и деталей выдерживать определенную нагрузку без разрушений. Под жесткостью подразумевают

Подробнее

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов

РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР И. С. Ахмедьянов УДК 59. РАСЧЕТ ОБОЛОЧЕК ВРАЩЕНИЯ ПЕРЕМЕННОЙ ТОЛЩИНЫ ПРИ ОСЕСИММЕТРИЧНОМ НАГРУЖЕНИИ ПО МЕТОДУ КВАДРАТУР 7 И. С. Ахмедьянов Самарский государственный аэрокосмический университет Рассматривается применение

Подробнее

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ

3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3. ВНУТРЕННИЕ СИЛЫ. НАПРЯЖЕНИЯ 3.. Напряжения Уровень оценки прочности по нагрузке отличают простота и доступность. Расчеты при этом чаще всего минимальны - требуется определить только саму нагрузку. Для

Подробнее

ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ ДИНАМИЧЕСКОЙ НАГРУЗКИ КОМПОЗИЦИОННОЙ ОБОЛОЧКИ ПРИ СЛОЖНОМ ТЕРМОСИЛОВОМ НАГРУЖЕНИИ. Е.А.Ларичев, В.С. Сафронов, И.К.

ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ ДИНАМИЧЕСКОЙ НАГРУЗКИ КОМПОЗИЦИОННОЙ ОБОЛОЧКИ ПРИ СЛОЖНОМ ТЕРМОСИЛОВОМ НАГРУЖЕНИИ. Е.А.Ларичев, В.С. Сафронов, И.К. удк:69.7..:6.9() ОПРЕДЕЛЕНИЕ КРИТИЧЕСКОЙ ДИНАМИЧЕСКОЙ НАГРУЗКИ КОМПОЗИЦИОННОЙ ОБОЛОЧКИ ПРИ СЛОЖНОМ ТЕРМОСИЛОВОМ НАГРУЖЕНИИ. Е.А.Ларичев, В.С. Сафронов, И.К.Туркин В статье представлена методика определения

Подробнее

Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции сечения» Лектор: д.т.н., доцент И.Е.

Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции сечения» Лектор: д.т.н., доцент И.Е. Курс лекций: «Прикладная механика» Лекция 5: «Закон Гука. Диаграмма растяжений. Момент инерции Лектор: д.т.н., доцент И.Е.Лысенко Английский ученый Роберт Гук открыл фундаментальную закономерность между

Подробнее

Л-1: ; Л-2: с

Л-1: ; Л-2: с Лекция 8 Волновое движение Распространение колебаний в однородной упругой среде Продольные и поперечные волны Уравнение плоской гармонической бегущей волны смещение, скорость и относительная деформация

Подробнее

Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ»

Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» Аннотация рабочей программы дисциплины «СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ» 1. Цель и задачи освоения дисциплины Для студентов направления подготовки 08.03.01. «Строительство» сопротивление материалов является одной

Подробнее

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6

Тема 5. Напряженное и деформированное состояние в точке. Лекция 6 Тема 5 Напряженное и деформированное состояние в точке. Лекция 6 Объемное напряженное состояние. 6. Главные напряжения и главные площадки. 6. Площадки экстремальных касательных напряжений. 6. Деформированное

Подробнее

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными

Рассмотрим стержень упруго растянутый центрально приложенными сосредоточенными Растяжение (сжатие) элементов конструкций. Определение внутренних усилий, напряжений, деформаций (продольных и поперечных). Коэффициент поперечных деформаций (коэффициент Пуассона). Гипотеза Бернулли и

Подробнее

Экзаменационный билет 3

Экзаменационный билет 3 Экзаменационный билет 1 1. Реальный объект и расчетная схема. Силы внешние и внутренние. Метод сечений. Основные виды нагружения бруса. 2. Понятие об усталостной прочности. Экзаменационный билет 2 1. Растяжение

Подробнее

y 2 x 2 x y ; (3) y + F y = 0. (4) + 2 E y = 0. (5) E y y 2 x = 0, E x x G

y 2 x 2 x y ; (3) y + F y = 0. (4) + 2 E y = 0. (5) E y y 2 x = 0, E x x G ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 200. Т. 42, N- 79 УДК 628.23 РАСЧЕТ ПРОЧНОСТИ ЛОПАТКИ КАК ОРТОТРОПНОЙ ПЛАСТИНКИ ЛИНЕЙНО-ПЕРЕМЕННОЙ ТОЛЩИНЫ В. И. Соловьев Новосибирский военный институт, 6307

Подробнее

Очевидно, что последнее равенство выполняется при условии: (400) Это и есть исходное дифференциальное уравнение для определения закона движения для вт

Очевидно, что последнее равенство выполняется при условии: (400) Это и есть исходное дифференциальное уравнение для определения закона движения для вт 16.22.2. Колебания системы с различными парциальными частотами. В качестве примера колебательной системы с двумя степенями свободы и различными парциальными частями можно рассмотреть модель, представленную

Подробнее

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны

. В этот же момент начинается разгрузка. Напряжения, деформации и перемещения естественно начнут изменяться, но они должны Лекция 9. Теорема о разгрузке. Итак, рассмотрен ряд теорий о поведении материала за пределами упругости. Теперь обратимся к другому вопросу: что будет, если начать разгружать образец, который уже находится

Подробнее

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ

ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ ДИНАМИКА ОБМОЛАЧИВАЕМОЙ МАССЫ В МСУ Профессор, д.т.н. Богус Ш.Н., студент КубГАУ Лысов Д.С., Пономарев Р.В. Кубанский государственный аграрный университет Краснодар, Россия При увеличении пропускной способности

Подробнее

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига.

Кроме деформации растяжения или сжатия (см. лекцию 3) материал нагруженного элемента конструкции может испытывать деформацию сдвига. Сдвиг элементов конструкций Определение внутренних усилий напряжений и деформаций при сдвиге Понятие о чистом сдвиге Закон Гука для сдвига Удельная потенциальная энергия деформации при чистом сдвиге Расчеты

Подробнее

b + a + l + (Рис. 1) (8.2)

b + a + l + (Рис. 1) (8.2) Лекция 8. Теория упругости 8.. Закон Гука и принцип суперпозиции 8.. Однородная деформация. Всестороннее сжатие 8.3.Однородная деформация. Сдвиг 8.4. Деформация зажатого бруска 8.5. Продольный звук 8.6.

Подробнее

Тычина К.А. III. К р у ч е н и е

Тычина К.А. III. К р у ч е н и е Тычина К.А. tychina@mail.ru К р у ч е н и е Крутящим называют момент, вектор которого направлен вдоль оси стержня. Кручением называется такое нагружение стержня, при котором в его поперечных сечениях возникает

Подробнее

Деформированное состояние в точке. Связь между деформациями и напряжениями

Деформированное состояние в точке. Связь между деформациями и напряжениями Деформированное состояние в точке. Связь между деформациями и напряжениями. Деформированным состоянием в точке называется (-ются) ОТВТ: ) совокупность деформаций в точке; ) совокупность нормальных и касательных

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 3. НАПРЯЖЕНИЯ В БРУСЬЯХ ПРИ РАСТЯЖЕНИИ- СЖАТИИ, КРУЧЕНИИ,

Подробнее

Чанышев А.И., Белоусова О.Е.

Чанышев А.И., Белоусова О.Е. Четвертая тектонофизическая конференция в ИФЗ РАН "ТЕКТОНОФИЗИКА И АКТУАЛЬНЫЕ ВОПРОСЫ НАУК О ЗЕМЛЕ" -7 октября 6 г Москва Россия БЛОЧНО-ИЕРАРХИЧЕСКАЯ МОДЕЛЬ ДЕФОРМИРОВАНИЯ И РАЗРУШЕНИЯ ГОРНЫХ ПОРОД ЭКСПЕРИМЕНТАЛЬНАЯ

Подробнее

Радченко А.В. 1, Радченко П.А. 2

Радченко А.В. 1, Радченко П.А. 2 Влияние ориентации механических свойств композиционных материалов на динамическое разрушение преград из них при высокоскоростном нагружении Радченко А.В. 1 Радченко П.А. 2 1 Томский государственный архитектурно-строительный

Подробнее

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8

ОТ АВТОРОВ... 3 ВВЕДЕНИЕ... 5 Вопросы и задания для самоконтроля к введению... 8 Допущено Министерством сельского хозяйства Российской Федерации в качестве учебника для студентов высших учебных заведений, обучающихся по направлению 280100 «Природоустройство и водопользование» Сопротивление

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 к практическому занятию по «Прикладной механике» для студентов II курса медико-биологического факультета. МЕТОДИЧЕСКИЕ УКАЗАНИЯ 1 ТЕМА Введение. Инструктаж по технике безопасности. Входной контроль. ВВЕДЕНИЕ В ПРАКТИЧЕСКИЕ ЗАНЯТИЯ ПО КУРСУ «ПРИКЛАДНАЯ МЕХЕНИКА». ИНСТРУКТАЖ ПО ПОЖАРО- И ЭЛЕКТРОБЕЗОПАСНОСТИ.

Подробнее

. После нахождения искомых коэффициентов разложения, определяются дополнительные напряжения на всех контурах по формулам:

. После нахождения искомых коэффициентов разложения, определяются дополнительные напряжения на всех контурах по формулам: Л.А. Данилова ( )() известных коэффициентов c ( ) в нулевой итерации которого полагается ( ) C ( ). После нахождения искомых коэффициентов разложения определяются дополнительные напряжения на всех контурах

Подробнее

ОСОБЕННОСТИ ДИНАМИЧЕСКОГО РАЗРУШЕНИЯ ПРЕГРАДЫ В ЗАВИСИМОСТИ ОТ АНИЗОТРОПИИ ЕЕ МЕХАНИЧЕСКИХ СВОЙСТВ

ОСОБЕННОСТИ ДИНАМИЧЕСКОГО РАЗРУШЕНИЯ ПРЕГРАДЫ В ЗАВИСИМОСТИ ОТ АНИЗОТРОПИИ ЕЕ МЕХАНИЧЕСКИХ СВОЙСТВ ОСОБЕННОСТИ ДИНАМИЧЕСКОГО РАЗРУШЕНИЯ ПРЕГРАДЫ В ЗАВИСИМОСТИ ОТ АНИЗОТРОПИИ ЕЕ МЕХАНИЧЕСКИХ СВОЙСТВ М.Н. Кривошеина ИФПМ СО РАН, г. Томск e-mal: marnа_nkr@mal.ru М.А. Козлова ИФПМ СО РАН, г. Томск e-mal:

Подробнее

РАСЧЕТ ГОФРИРОВАННОЙ ПО ДВУМ КООРДИНАТНЫМ ОСЯМ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

РАСЧЕТ ГОФРИРОВАННОЙ ПО ДВУМ КООРДИНАТНЫМ ОСЯМ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ УДК 64.074.4 РАСЧЕТ ГОФРИРОВАННОЙ ПО ДВУМ КООРДИНАТНЫМ ОСЯМ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ В.Ф. УВАКИН, В.Б. ОЛЬКОВА Институт техники, технологии и управления Балаково При расчете упругой характеристики гофрированная

Подробнее

ВЕРИФИКАЦИЯ ПРОГРАММНОГО КОМПЛЕКСА ANSYS. ЗАДАЧИ МЕХАНИКИ РАЗРУШЕНИЯ

ВЕРИФИКАЦИЯ ПРОГРАММНОГО КОМПЛЕКСА ANSYS. ЗАДАЧИ МЕХАНИКИ РАЗРУШЕНИЯ ВЕРИФИКАЦИЯ ПРОГРАММНОГО КОМПЛЕКСА ANSYS. ЗАДАЧИ МЕХАНИКИ РАЗРУШЕНИЯ Руководитель: Ю. Д. Байчиков Автор доклада: Е. А. Суренский Введение Вопросы хрупкого разрушения конструкции как при проектировании,

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ. 1.Изучить условия возникновения продольной стоячей волны в упругой среде.

ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ. 1.Изучить условия возникновения продольной стоячей волны в упругой среде. Цель работы: ЛАБОРАТОРНАЯ РАБОТА 9 ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА МЕТОДОМ СТОЯЧИХ ВОЛН В СТЕРЖНЕ 1.Изучить условия возникновения продольной стоячей волны в упругой среде..измерить скорость распространения упругих

Подробнее

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЖИДКОСТИ, ЧАСТИЧНО ЗАПОЛНЯЮЩЕЙ ВРАЩАЮЩИЙСЯ ЦИЛИНДР С РАДИАЛЬНО РАСПОЛОЖЕННЫМИ РЕБРАМИ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЖИДКОСТИ, ЧАСТИЧНО ЗАПОЛНЯЮЩЕЙ ВРАЩАЮЩИЙСЯ ЦИЛИНДР С РАДИАЛЬНО РАСПОЛОЖЕННЫМИ РЕБРАМИ 100 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2011. Т. 52, N- 4 УДК 531.3 МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ЖИДКОСТИ, ЧАСТИЧНО ЗАПОЛНЯЮЩЕЙ ВРАЩАЮЩИЙСЯ ЦИЛИНДР С РАДИАЛЬНО РАСПОЛОЖЕННЫМИ РЕБРАМИ И.

Подробнее

ТЕХНИЧЕСКАЯ МЕХАНИКА

ТЕХНИЧЕСКАЯ МЕХАНИКА Белорусский государственный университет Механико-математический факультет Кафедра теоретической и прикладной механики ТЕХНИЧЕСКАЯ МЕХАНИКА Тема 4. ОБЪЕМНОЕ НАПРЯЖЕННОЕ СОСТОЯНИЕ В ТОЧКЕ И ТЕОРИИ ПРОЧНОСТИ

Подробнее

Радченко П.А. 1, РадченкоА.В. 2. государственный архитектурно-строительный университет, г. Томск

Радченко П.А. 1, РадченкоА.В. 2. государственный архитектурно-строительный университет, г. Томск Влияние применения различных критериев прочности на поведение анизотропных материалов при динамическом нагружении Радченко П.А. 1 РадченкоА.В. 2 1 Институт физики прочности и материаловедения СО РАН г.

Подробнее

Оглавление Введение... 3

Оглавление Введение... 3 Оглавление Введение... 3 Глава 1. Основные предпосылки, понятия и определения, используемые в курсе сопротивления материалов - механике материалов и конструкций... 4 1.1. Модель материала. Основные гипотезы

Подробнее

Условия и решения задач III олимпиады Мордовского государственного университета по теоретической механике ( учебный год)

Условия и решения задач III олимпиады Мордовского государственного университета по теоретической механике ( учебный год) Условия и решения задач III олимпиады Мордовского государственного университета по теоретической механике (2014 2015 учебный год) 1. Тело касается шероховатых стенок канала ширины l C L = 20 см в точках

Подробнее

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении

Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе, поперечном сдвиге и кручении Электронный журнал «Труды МАИ». Выпуск 4 www.mai.ru/cience/trudy/ УДК 539.3 Матрица жесткости отсека анизотропной цилиндрической оболочки с произвольным поперечным сечением при изгибе поперечном сдвиге

Подробнее

ПЕРЕСТРОЙКА ГАРМОНИК ПРИ ИЗГИБЕ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ВСЛЕДСТВИЕ ДИНАМИЧЕСКОГО СЖАТИЯ. М. А. Ильгамов

ПЕРЕСТРОЙКА ГАРМОНИК ПРИ ИЗГИБЕ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ВСЛЕДСТВИЕ ДИНАМИЧЕСКОГО СЖАТИЯ. М. А. Ильгамов ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2. Т. 52, N- 67 УДК 54 ПЕРЕСТРОЙКА ГАРМОНИК ПРИ ИЗГИБЕ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ ВСЛЕДСТВИЕ ДИНАМИЧЕСКОГО СЖАТИЯ М. А. Ильгамов Институт механики Уфимского научного

Подробнее

Ульяновский государственный технический университет, Ульяновск

Ульяновский государственный технический университет, Ульяновск 36 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 211. Т. 52, N- 4 УДК 622.233.6 ВЫЧИСЛЕНИЕ КРИТИЧЕСКОЙ СКОРОСТИ СТУПЕНЧАТОЙ СТЕРЖНЕВОЙ СИСТЕМЫ ПРИ ПРОДОЛЬНОМ УДАРЕ А. А. Битюрин Ульяновский государственный

Подробнее

Вестник КРСУ Том 15. 9

Вестник КРСУ Том 15. 9 МЕХАНИКА УДК 5313:5341/ ВЛИЯНИЕ ПАРАМЕТРОВ УДАРНОЙ СИСТЕМЫ НА НАПРЯЖЕННОЕ СОСТОЯНИЕ ПЛАСТИНЫ ПРИ ЕЕ ВИБРОУДАРНОЙ ОЧИСТКЕ ВЭ Еремьянц ВВ Ню Рассматривается изменение напряженного состояния пластины со слоем

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов

Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Предисловие Часть I ТЕКСТЫ ЛЕКЦИЙ Лекция 1 Основные понятия Простейшие типы конструкций Нагрузки Гипотезы, принимаемые в сопротивлении материалов Деформации и перемещения Метод сечений Частные случаи нагружения

Подробнее

ЧИСЛЕННО-АНАЛИТИЧЕСКИЙ МЕТОД РАСЧЕТА КОЛЕБАНИЙ УПРУГОГО ДИСКА ПЕРЕМЕННОЙ ТОЛЩИНЫ 1. Бураго Н.Г., Никитин И.С., Юшковский П.А.

ЧИСЛЕННО-АНАЛИТИЧЕСКИЙ МЕТОД РАСЧЕТА КОЛЕБАНИЙ УПРУГОГО ДИСКА ПЕРЕМЕННОЙ ТОЛЩИНЫ 1. Бураго Н.Г., Никитин И.С., Юшковский П.А. ЧИСЛЕННО-АНАЛИТИЧЕСКИЙ МЕТОД РАСЧЕТА КОЛЕБАНИЙ УПРУГОГО ДИСКА ПЕРЕМЕННОЙ ТОЛЩИНЫ 1 Бураго Н.Г., Никитин И.С., Юшковский П.А. Целью исследования является расчет напряженно-деформированного состояния упругого

Подробнее

РАСПРОСТРАНЕНИЕ УПРУГИХ ВОЛН В ОДНОРОДНЫХ ПО СЕЧЕНИЮ КРУГЛЫХ СТЕРЖНЯХ. Е. В. Баянов, А. И. Гулидов

РАСПРОСТРАНЕНИЕ УПРУГИХ ВОЛН В ОДНОРОДНЫХ ПО СЕЧЕНИЮ КРУГЛЫХ СТЕРЖНЯХ. Е. В. Баянов, А. И. Гулидов ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 211. Т. 52, N- 5 155 УДК 539.3 РАСПРОСТРАНЕНИЕ УПРУГИХ ВОЛН В ОДНОРОДНЫХ ПО СЕЧЕНИЮ КРУГЛЫХ СТЕРЖНЯХ Е. В. Баянов, А. И. Гулидов Новосибирский государственный

Подробнее

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА М-18 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ ЛАБОРАТОРНАЯ РАБОТА М-8 ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА И МОМЕНТА ИНЕРЦИИ МЕТОДОМ КОЛЕБАНИЙ Цель работы: определение модуля сдвига и момента инерции диска методом крутильных колебаний. Приборы и принадлежности:

Подробнее

Предельная нагрузка для стержневой системы

Предельная нагрузка для стержневой системы Л е к ц и я 18 НЕУПРУГОЕ ДЕФОРМИРОВАНИЕ Ранее, в первом семестре, в основном, использовался метод расчета по допускаемым напряжениям. Прочность изделия считалась обеспеченной, если напряжение в опасной

Подробнее

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ ЛЕКЦИЯ 7 Элементы теории напряженного состояния. 1 Напряженное состояние в точке (НС)

В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ ЛЕКЦИЯ 7 Элементы теории напряженного состояния. 1 Напряженное состояние в точке (НС) В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 7 Элементы теории напряженного состояния 1 Напряженное состояние в точке (НС) Как было сказано ранее, НС в точке это совокупность напряжений,

Подробнее

Тема 2 Основные понятия. Лекция 2

Тема 2 Основные понятия. Лекция 2 Тема 2 Основные понятия. Лекция 2 2.1 Сопротивление материалов как научная дисциплина. 2.2 Схематизация элементов конструкций и внешних нагрузок. 2.3 Допущения о свойствах материала элементов конструкций.

Подробнее

УДК Сергеева А. М. МОДЕЛИРОВАНИЕ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА. (Институт машиноведения и металлургии ДВО РАН)

УДК Сергеева А. М. МОДЕЛИРОВАНИЕ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА. (Институт машиноведения и металлургии ДВО РАН) ВЕСТНИК ЧГПУ им. И. Я. ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 59. Сергеева А. М. МОДЕЛИРОВАНИЕ РАЗРУШЕНИЯ ЛЕДЯНОГО ПОКРОВА (Институт машиноведения и металлургии ДВО РАН) Применяя теорию малых упругопластических

Подробнее

А. А. Семенов, А. А. Овчаров. Математическая модель деформирования ортотропных конических оболочек

А. А. Семенов, А. А. Овчаров. Математическая модель деформирования ортотропных конических оболочек А. А. Семенов, А. А. Овчаров Математическая модель деформирования ортотропных конических оболочек Введение Наиболее широкое применение конические оболочки находят в авиационной технике и машиностроении.

Подробнее

Часть 1 Сопротивление материалов

Часть 1 Сопротивление материалов Часть Сопротивление материалов Рисунок Правило знаков Проверки построения эпюр: Эпюра поперечных сил: Если на балке имеются сосредоточенные силы, то на эпюре, должен быть скачок на величину и по направлению

Подробнее

Рис. 5. А.К. Попов ОСЕВОЕ РАСТЯЖЕНИЕ СТЕРЖНЯ В РАМКАХ МОМЕНТНОЙ ТЕОРИИ УПРУГОСТИ

Рис. 5. А.К. Попов ОСЕВОЕ РАСТЯЖЕНИЕ СТЕРЖНЯ В РАМКАХ МОМЕНТНОЙ ТЕОРИИ УПРУГОСТИ Рис. 5 Данные фильмы позволяют преподавателю сократить время изложения данного материала, повысить наглядность, и, в конечном счете, помогает студентам усвоить материал, ведь в нужное время масштабируемый

Подробнее

1. Теоретическая механика 1.1. Статика

1. Теоретическая механика 1.1. Статика Программа вступительного испытания по специальной дисциплине сформирована на основе федеральных государственных образовательных стандартов высшего образования по программам специалитета и магистратуры

Подробнее

Лабораторная работа ) Экспериментальное определение модуля Юнга и модуля сдвига

Лабораторная работа ) Экспериментальное определение модуля Юнга и модуля сдвига Лабораторная работа 1.17-18 1) Экспериментальное определение модуля Юнга и модуля сдвига Введение В области упругих деформаций напряжение, возникающее в деформированном теле, пропорционально относительной

Подробнее

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение

1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Решение 1. Электростатика 1 1. Электростатика Урок 5 Уравнение Пуассона и Лапласа Уравнение для потенциала с источниками зарядами) уравнение Пуассона и уравнение без источников уравнение Лапласа Уравнение Пуассона

Подробнее

Майер Р.В., г. Глазов Метод компьютерного моделирования при изучении физических явлений

Майер Р.В., г. Глазов Метод компьютерного моделирования при изучении физических явлений Майер РВ, г Глазов Метод компьютерного моделирования при изучении физических явлений Часто аналитические методы не позволяют исследовать эволюцию сложных систем, или их применение связано со сложными математическими

Подробнее

и q 2 находятся в точках с радиус-векторами r 1 и радиус-вектор r 3

и q 2 находятся в точках с радиус-векторами r 1 и радиус-вектор r 3 1. Два положительных заряда q 1 и q 2 находятся в точках с радиус-векторами r 1 и r 2. Найти отрицательный заряд q 3 и радиус-вектор r 3 точки, в которую его надо поместить, чтобы сила, действующая на

Подробнее

Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ

Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ Вестник ПГТУ. Механика. 9. 5 УДК 539.3: 534. Н.А. ШЕВЕЛЕВ, И.В. ДОМБРОВСКИЙ Пермский государственный технический университет ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ ДИНАМИЧЕСКОГО ПОВЕДЕНИЯ ВРАЩАЮЩИХСЯ КОНСТРУКЦИЙ Предлагается

Подробнее

Воронежская государственная технологическая академия, Воронеж

Воронежская государственная технологическая академия, Воронеж ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 009. Т. 50, N- 6 19 УДК 59.; 5; 517.946 РЕШЕНИЕ ЗАДАЧИ О КРУЧЕНИИ УПРУГОГО СТЕРЖНЯ s-угольного СЕЧЕНИЯ МЕТОДОМ РАСШИРЕНИЯ ГРАНИЦ А. Д. Чернышов Воронежская государственная

Подробнее

Варианты домашнего задания ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ

Варианты домашнего задания ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ Варианты домашнего задания ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ВОЛНЫ Вариант 1. 1. На рисунке а приведен график колебательного движения. Уравнение колебаний x = Asin(ωt + α o ). Определить начальную фазу. x О t

Подробнее

ЛЕКЦИЯ 25 Устойчивость продольно сжатых стержней

ЛЕКЦИЯ 25 Устойчивость продольно сжатых стержней В.Ф. ДЕМЕНКО МЕХАНИКА МАТЕРИАЛОВ И КОНСТРУКЦИЙ 013 1 ЛЕКЦИЯ 5 Устойчивость продольно сжатых стержней 1 Понятие об устойчивости форм равновесия. Критическая сила Под устойчивостью механической системы вообще

Подробнее

7.4. Удар материальной точки о неподвижную поверхность

7.4. Удар материальной точки о неподвижную поверхность ЛЕКЦИЯ 6 74 Удар материальной точки о неподвижную поверхность 74 Прямой удар Удар называется прямым если скорость точки перед ударом направлена по нормали к поверхности в точке удара М (рис 77) Для оценки

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ

ЛАБОРАТОРНАЯ РАБОТА 1-11: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Доц. Кузьменко В.С. ЛАБОРАТОРНАЯ РАБОТА -: ОПРЕДЕЛЕНИЕ МОДУЛЯ СДВИГА ПРИ ПОМОЩИ КРУТИЛЬНЫХ КОЛЕБАНИЙ Студент группы Допуск Выполнение Защита Цель работы: изучить виды деформации твердого тела и определить

Подробнее

Исследование процессов гидроупругости ребристой трубы кольцевого профиля при воздействии вибрации

Исследование процессов гидроупругости ребристой трубы кольцевого профиля при воздействии вибрации Электронный журнал «Труды МАИ». Выпуск 78.ai./science/d/ УДК 57.958:6.5:6.5 Исследование процессов гидроупругости ребристой трубы кольцевого профиля при воздействии вибрации Кондратов Д.В., * Калинина

Подробнее

ОСОБЕННОСТИ РАЗРУШЕНИЯ ТЕЛ С ПРЕИМУЩЕСТВЕННОЙ ОРИЕНТАЦИЕЙ ПРОЧНОСТНЫХ СВОЙСТВ ПРИ УДАРЕ

ОСОБЕННОСТИ РАЗРУШЕНИЯ ТЕЛ С ПРЕИМУЩЕСТВЕННОЙ ОРИЕНТАЦИЕЙ ПРОЧНОСТНЫХ СВОЙСТВ ПРИ УДАРЕ ОСОБЕННОСТИ РАЗРУШЕНИЯ ТЕЛ С ПРЕИМУЩЕСТВЕННОЙ ОРИЕНТАЦИЕЙ ПРОЧНОСТНЫХ СВОЙСТВ ПРИ УДАРЕ П.А. РАДЧЕНКО 1 А.В. РАДЧЕНКО 1 2 1 Институт физики прочности и материаловедения СО РАН г. Томск Россия 2 Томский

Подробнее

3.2. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА. РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА-БОЛЬЦМАНА

3.2. МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА. РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА-БОЛЬЦМАНА МОЛЕКУЛЯРНО-КИНЕТИЧЕСКАЯ ТЕОРИЯ ИДЕАЛЬНОГО ГАЗА РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА-БОЛЬЦМАНА Системой рассматриваемой в классической молекулярно-кинетической теории газов является разреженный газ состоящий из N молекул

Подробнее

Институт машиноведения и металлургии ДВО РАН, Комсомольск-на-Амуре

Институт машиноведения и металлургии ДВО РАН, Комсомольск-на-Амуре ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 008. Т. 9, N- УДК 59. ЭВОЛЮЦИЯ ПРОЦЕССА НАРУШЕНИЯ СПЛОШНОСТИ ПРИ РАЗРУШЕНИИ ЛЕДЯНОГО ПОКРОВА В. И. Одиноков, А. М. Сергеева Институт машиноведения и металлургии

Подробнее

Итоговый тест, Прикладная механика (сопромат) (2579) 9. (70c.) Под прочностью элемента конструкции понимается (несколько ответов) 1)

Итоговый тест, Прикладная механика (сопромат) (2579) 9. (70c.) Под прочностью элемента конструкции понимается (несколько ответов) 1) Итоговый тест, Прикладная механика (сопромат) (2579) 9. (70c.) Под прочностью элемента конструкции понимается 1) сопротивление 2) внешнему воздействию 3) вплоть до 4) возникновения больших деформаций 5)

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра физики МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ ПО ФИЗИКЕ для студентов

Подробнее

1. Рассматривается оболочка вращения, срединная поверхность которой представляет собой катеноид поверхность, образуемую вращением цепной линии.

1. Рассматривается оболочка вращения, срединная поверхность которой представляет собой катеноид поверхность, образуемую вращением цепной линии. УДК 59.7 НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ КАТЕНОИДНОЙ ОБОЛОЧКИ ВРАЩЕНИЯ ИЗ ОРТОТРОПНОГО МАТЕРИАЛА М.С. Ганеева З.В. Скворцова ganeeva@kfti.knc.ru ara.skvortsova@mail.ru Для катеноидной оболочки из

Подробнее

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика»

Вопросы к вступительным экзаменам в аспирантуру по специальности « Строительная механика» Вопросы к вступительным экзаменам в аспирантуру по специальности «05.23.17 Строительная механика» СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Основные понятия 1. Задачи сопротивления материалов. Стержень. Основные гипотезы

Подробнее

МЕХАНИКА И СЕЙСМОСТОЙКОСТЬ СООРУЖЕНИЙ

МЕХАНИКА И СЕЙСМОСТОЙКОСТЬ СООРУЖЕНИЙ МЕХАНИКА И СЕЙСМОСТОЙКОСТЬ СООРУЖЕНИЙ УДК 538 УРАВНЕНИЕ КОЛЕБАНИЙ СТРУНЫ Тарабара ИЮ Перешиткин КА студенты группы ПГС Бородачева ТИ ст преп Национальная академия природоохранного и курортного строительства

Подробнее

КОНЕЧНО-ЭЛЕМЕНТНАЯ МОДЕЛЬ РАСЧЕТА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ УПРУГОГО МАССИВА, СОДЕРЖАЩЕГО ОСЕСИММЕТРИЧНУЮ ПОЛОСТЬ

КОНЕЧНО-ЭЛЕМЕНТНАЯ МОДЕЛЬ РАСЧЕТА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ УПРУГОГО МАССИВА, СОДЕРЖАЩЕГО ОСЕСИММЕТРИЧНУЮ ПОЛОСТЬ УДК 6.0.43 КОНЕЧНО-ЭЛЕМЕНТНАЯ МОДЕЛЬ РАСЧЕТА НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ УПРУГОГО МАССИВА, СОДЕРЖАЩЕГО ОСЕСИММЕТРИЧНУЮ ПОЛОСТЬ Аршинов Г. А. к. ф.-м. н. Кубанский государственный аграрный университет

Подробнее

Ю.Н.ЛОГИНОВ, М.П.ПУЗАНОВ FINITE ELEMENTS MODELING OF THE UPSETTING OF AN ANISOTROPIC CYLINDRICAL WORKPIECE

Ю.Н.ЛОГИНОВ, М.П.ПУЗАНОВ FINITE ELEMENTS MODELING OF THE UPSETTING OF AN ANISOTROPIC CYLINDRICAL WORKPIECE Ю.Н.ЛОГИНОВ, М.П.ПУЗАНОВ FINITE ELEMENTS MODELING OF THE UPSETTING OF AN ANISOTROPIC CYLINDRICAL WORKPIECE КОНЕЧНО-ЭЛЕМЕНТНОЕ МОДЕЛИРОВАНИЕ ОСАДКИ АНИЗОТРОПНОЙ ЦИЛИНДРИЧЕСКОЙ ЗАГОТОВКИ 1. Методика расчета

Подробнее

ПРИБОРЫ ТОЧНОЙ МЕХАНИКИ

ПРИБОРЫ ТОЧНОЙ МЕХАНИКИ ПРИБОРЫ ТОЧНОЙ МЕХАНИКИ УДК 6.69.4 С. П. ПИРОГОВ, А. Ю. ЧУБА РАСЧЕТ ЧАСТОТ СОБСТВЕННЫХ КОЛЕБАНИЙ МАНОМЕТРИЧЕСКИХ ТРУБЧАТЫХ ПРУЖИН Представлен вывод уравнений движения манометрической трубчатой пружины.

Подробнее

СВЕРХЗВУКОВОЕ ОСЕСИММЕТРИЧНОЕ ОБТЕКАНИЕ ЗАТУПЛЕННОГО КОНУСА ПРИ ЕГО НИЗКОЧАСТОТНЫХ ПРОДОЛЬНЫХ КОЛЕБАНИЯХ

СВЕРХЗВУКОВОЕ ОСЕСИММЕТРИЧНОЕ ОБТЕКАНИЕ ЗАТУПЛЕННОГО КОНУСА ПРИ ЕГО НИЗКОЧАСТОТНЫХ ПРОДОЛЬНЫХ КОЛЕБАНИЯХ 6 МЕХАНИКА А.Н. Голованов, Ф.М. Пахомов ЖИДКОСТИ И ГАЗА 04 УДК 5.6.0.7 04 г. А. Н. ГОЛОВАНОВ, Ф. М. ПАХОМОВ СВЕРХЗВУКОВОЕ ОСЕСИММЕТРИЧНОЕ ОБТЕКАНИЕ ЗАТУПЛЕННОГО КОНУСА ПРИ ЕГО НИЗКОЧАСТОТНЫХ ПРОДОЛЬНЫХ

Подробнее

РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК. Ю. М. Волчков,, Д. В. Важева

РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК. Ю. М. Волчков,, Д. В. Важева ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 28. Т. 49, N- 5 69 УДК 539.3 РЕШЕНИЕ КОНТАКТНЫХ ЗАДАЧ НА ОСНОВЕ УТОЧНЕННОЙ ТЕОРИИ ПЛАСТИН И ОБОЛОЧЕК Ю. М. Волчков,, Д. В. Важева Институт гидродинамики им. М.

Подробнее

ГЛАВА 10. УСТОЙЧИВОСТЬ ПЛОСКИХ РАМ

ГЛАВА 10. УСТОЙЧИВОСТЬ ПЛОСКИХ РАМ ГЛАВА УСТОЙЧИВОСТЬ ПЛОСКИХ РАМ Стр Основные понятия Формула Эйлера Дифференциальное уравнение сжато-изогнутого стержня 4 4 Решение уравнения с помощью метода начальных параметров 5 5 Частное решение для

Подробнее

Задача С1. Определение реакции опор твердого тела. Найти реакции опор конструкции. Решение

Задача С1. Определение реакции опор твердого тела. Найти реакции опор конструкции. Решение Задача С1. Определение реакции опор твердого тела. Найти реакции опор конструкции. Дано: P 15 кн, Q 50 кн, М 0 кн м, q 8 кн м, α 60, β 5 Найти: R, R? Решение Для нахождения реакции опор составим уравнения

Подробнее

Аттестационное тестирование в сфере профессионального образования

Аттестационное тестирование в сфере профессионального образования Page 1 of 15 Аттестационное тестирование в сфере профессионального образования Специальность: 170105.65 Взрыватели и системы управления средствами поражения Дисциплина: Механика (Сопротивление материалов)

Подробнее

ЧИСЛЕННЫЙ АНАЛИЗ ПОЛЕЙ НАПРЯЖЕНИЙ В РАЙОНЕ ЦИЛИНДРИЧЕСКОГО КОНЦЕНТРАТОРА

ЧИСЛЕННЫЙ АНАЛИЗ ПОЛЕЙ НАПРЯЖЕНИЙ В РАЙОНЕ ЦИЛИНДРИЧЕСКОГО КОНЦЕНТРАТОРА УДК 539.3 ЧИСЛЕННЫЙ АНАЛИЗ ПОЛЕЙ НАПРЯЖЕНИЙ В РАЙОНЕ ЦИЛИНДРИЧЕСКОГО КОНЦЕНТРАТОРА А.Н. Бородой, И.А. Волков, Ю.Г. Коротких Тенденция развития конструкций и аппаратов современного машиностроения характеризуется

Подробнее

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск

Сибирский научно-исследовательский институт авиации им. С. А. Чаплыгина, Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 5 193 УДК 539.3 ОБ УРАВНЕНИЯХ КОНЕЧНОГО ИЗГИБА ТОНКОСТЕННЫХ КРИВОЛИНЕЙНЫХ ТРУБ С. В. Левяков Сибирский научно-исследовательский институт авиации

Подробнее

Глава 2. Природа движущих

Глава 2. Природа движущих Глава 2. Природа движущих сил Оглавление 1. Расчет и измерение магнитного поля постоянного магнита 2. Магнитные заряды постоянного магнита 3. Уравнения Максвелла для постоянного магнита 4. Силы взаимодействия

Подробнее

2007 г. Н.Н. Любушкина, А.Н. Петрова, канд. техн. наук, Н.А. Тарануха, д-р техн. наук (Комсомольский-на-Амуре государственный технический университет)

2007 г. Н.Н. Любушкина, А.Н. Петрова, канд. техн. наук, Н.А. Тарануха, д-р техн. наук (Комсомольский-на-Амуре государственный технический университет) Моделирование систем 7. 5. Нагорнов В. П. Аналитическое определение параметров субструктуры деформированных поликристаллов в рентгеновском методе аппроксимации с использованием функций Коши //Аппаратура

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА. Часть I МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРИКЛАДНАЯ МЕХАНИКА Часть I Методические указания и контрольные задания Пенза 00 УДК 5. (075) И85 Методические указания

Подробнее

Об определении переменной жёсткости круглой пластины

Об определении переменной жёсткости круглой пластины Вычислительные технологии Том 17, 6, 212 Об определении переменной жёсткости круглой пластины Т. А. Аникина 1, А. О. Ватульян 2, П. С. Углич 3 1 Донской государственный технический университет, Ростов-на-Дону,

Подробнее

ВЯЗКОУПРУГИЕ КОЛЕБАНИЯ ТРЕУГОЛЬНОЙ ПЛАСТИНЫ

ВЯЗКОУПРУГИЕ КОЛЕБАНИЯ ТРЕУГОЛЬНОЙ ПЛАСТИНЫ 152 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 3 УДК 534.121/122 ВЯЗКОУПРУГИЕ КОЛЕБАНИЯ ТРЕУГОЛЬНОЙ ПЛАСТИНЫ Н. А. Чернышов, А. Д. Чернышов Воронежская государственная технологическая академия,

Подробнее

О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки

О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки УДК 534.113 + 517.984.54 О двойственности решения задачи отыскания относительной жесткости упругих краевых ребер цилиндрической оболочки по двум собственным частотам ее осесимметричных колебаний А. М.

Подробнее

СВОБОДНЫЕ КОЛЕБАНИЯ СТЕРЖНЯ С ИЗЛОМОМ

СВОБОДНЫЕ КОЛЕБАНИЯ СТЕРЖНЯ С ИЗЛОМОМ ИЗВЕСТИЯ ВЕЛИКОЛУКСКОЙ ГСХА 05 3 УДК 6.36 СВОБОДНЫЕ КОЛЕБАНИЯ СТЕРЖНЯ С ИЗЛОМОМ Николай Витальевич Никифоров, старший преподаватель ФГБОУ ВО «Великолукская ГСХА», Россия, г. Великие Луки В статье рассматривается

Подробнее

r 2 r. E + = 2κ a, E = 2κ a

r 2 r. E + = 2κ a, E = 2κ a 1. Электростатика 1 1. Электростатика Урок 2 Теорема Гаусса 1.1. (1.19 из задачника) Используя теорему Гаусса, найти: а) поле плоскости, заряженной с поверхностной плотностью σ; б) поле плоского конденсатора;

Подробнее

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Math-NetRu Общероссийский математический портал Х П Культербаев, Т Ю Чеченов, Свободные колебания модифицированной балки Тимошенко, Матем моделирование и краев задачи, 5, часть 1, 176 179 Использование

Подробнее

Тема 5. Механические колебания и волны.

Тема 5. Механические колебания и волны. Тема 5. Механические колебания и волны. 5.1. Гармонические колебания и их характеристики Колебания процессы, отличающиеся той или иной степенью повторяемости. В зависимости от физической природы повторяющегося

Подробнее

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Производная сложной и неявно заданной функции нескольких переменных Касательная плоскость и нормаль к поверхности Пусть f ( где (t (t причём функции f ( (t (t дифференцируемы Тогда

Подробнее

Лабораторная работа 5. Краткая теория

Лабораторная работа 5. Краткая теория Лабораторная работа 5 Определение модуля сдвига по крутильным колебаниям Целью работы является изучение деформации сдвига и кручения, определение модуля сдвига металлического стержня. Краткая теория Модуль

Подробнее

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ОПД.Ф.2.2 Сопротивление материалов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ОПД.Ф.2.2 Сопротивление материалов ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Проектирование механизмов и машин» РАБОЧАЯ

Подробнее

Институт вычислительного моделирования СО РАН, Красноярск

Институт вычислительного моделирования СО РАН, Красноярск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2001. Т. 42, N- 2 141 УДК 539.370 ЧИСЛЕННЫЙ АНАЛИЗ РАЗВЕТВЛЕННЫХ ФОРМ ИЗГИБА СТЕРЖНЕЙ Л. И. Шкутин Институт вычислительного моделирования СО РАН, 660036 Красноярск

Подробнее

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ

СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ СПИСОК ЭКЗАМЕНАЦИОННЫХ ВОПРОСОВ ПО «СОПРОТИВЛЕНИЮ МАТЕРИАЛОВ» (часть 1) ДЛЯ СТУДЕНТОВ СПЕЦИАЛЬНОСТИ ПТМ 2014-2015 уч. год 1. Какие допущения о свойствах материалов приняты в курсе "Сопротивление материалов

Подробнее

краткого курса, представленные в иллюстрированном виде. растрачивается в значительной мере лектором и студентами на

краткого курса, представленные в иллюстрированном виде. растрачивается в значительной мере лектором и студентами на РЕКОМЕНДАЦИИ ПО ИСПОЛЬЗОВАНИЮ ОПОРНОГО КОНСПЕКТА 1. Конспект содержит узловые принципиальные положения краткого курса, представленные в иллюстрированном виде. 2. Конспект нацелен на экономию лекционного

Подробнее