6. Неслоистые течения. 6.1 Плоское течение вблизи критической точки

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "6. Неслоистые течения. 6.1 Плоское течение вблизи критической точки"

Транскрипт

1 Лекция 7 6. Неслоистые течения 6.1 Плоское течение вблизи критической точки Рассмотрим тело, расположенное в набегающем на него потоке (рис..9). Для определенности будем считать течение плоским, т.е. тело, изображенное на рисунке, является протяженным и перпендикулярным плоскости рисунка. Рис..9 Критическая точка Видно, что тело искривляет линии тока и поток разделяется на две половины, обтекающие тело справа и слева. При этом всегда существует пограничная линия тока, которая делит поток на эти половины и не уходит ни вправо, ни влево, а упирается в вершину тела. Такая линия тока называется критической, а точка, в которую она упирается, критической точкой. Если рассмотреть малую окрестность критической точки (например, ограниченную прямоугольником на рис..9), то кривизной поверхности тела можно пренебречь и рассмотреть задачу о течении в этой окрестности в упрощенной постановке (рис..10). Рис..10 Геометрия задачи и система координат для плоского течения вблизи критической точки Плоский поток набегает из бесконечности на плоскую стенку, разделяясь на две половины и уходя вправо и влево. Начало декартовой системы координат расположено в критической точке, как показано на рисунке. 1

2 Поскольку поток плоский и, следовательно, z-компонента скорости равна нулю, то уравнения гидродинамики (1.43), (1.44) для x-компоненты Vx u и y-компоненты Vy v скорости V в стационарном случае примут вид: 6. Функция тока ρ u u v p μ u x y, x x y (.6) ρ v u v p μ v x y, y x y (.7) u v 0. x y (.8) Введем так называемую функцию тока ψ, определяемую следующими соотношениями: ψ ψ u, v y x. (.9) (.9) (.8) введение функции тока ψ эквивалентно тому, что уравнение неразрывности (.8) выполняется тождественно. (.7) (.6) y x 3 ψ ψ ψ ψ ψ. (.30) 3 y yx x y y Таким образом, с помощью введения функции тока достигаются следующие преимущества: 1) система из трех уравнений сводится к одному уравнению; ) функция ψ имеет удобный физический смысл ее изолинии являются линиями тока. Рис..11 Физический смысл функции тока

3 Поясним последнее утверждение. Пусть функция тока ψ, xy известна. Рассмотрим семейство ее изолиний, т. е. линий равного значения этой функции, и градиент функции тока в некоторой точке на ее изолинии (рис..11). Как известно, вектор градиента функции указывает направление ее скорейшего возрастания и, следовательно, перпендикулярен к ее изолинии. На рис..11 показан этот вектор и его компоненты, а также компоненты вектора скорости. Скалярное произведение вектора скорости на вектор градиента функции тока выражается, как видно из рисунка, следующим образом: ψ ψ ψ ψ V gradψ Vxgradψ Vygradψ 0 V gradψ.(.9 ) x y y x x y (.9 ) V gradψ вектор скорости в каждой точке изолинии функции тока является касательным к ней, поскольку он перпендикулярен вектору gradψ, являющемуся перпендикуляром к этой линии. Иными словами, изолинии функции тока описывают траектории частиц жидкости для данного поля скорости, т. е. являются линиями тока. Отсюда происходит название функции ψ. Можно также показать, что разность значений функции тока для двух изолиний равна расходу потока жидкости, заключенного между этими линиями тока. Отметим, что введение функции тока является стандартным приемом при решении двумерных задач для несжимаемой жидкости. Это позволяет упростить постановку задачи и ее решение, а также дает возможность наглядного представления результатов. 6.3 Решение задачи о плоском течении вблизи критической точки Если в уравнениях Навье Стокса в декартовых координатах вида (.6), (.7) перейти от вязкой жидкости к идеальной, т.е. положить μ 0, то получившаяся таким образом из (.6) (.8) система уравнений будет иметь следующее решение: ρa ψ axy, u ax, v ay, p p0 x y, (.31) ) 1) 3) где a Const некоторая постоянная, характеризующая интенсивность течения. Линии тока течения, описываемого решением (.31), полностью аналогичны картине течения на рис..9. В самом деле, построим семейство изолиний функции тока (.31 1), положив левую часть этого соотношения равной константе: ψ Const C axy. Из данного соотношения следует, что C семейство линий тока в этом течении описывается уравнением: y, в ax 3 4)

4 котором каждому значению константы С соответствует своя траектория. Как видим, траектории частиц жидкости или линии тока являются гиперболами, что соответствует картине течения на рис..9. На бесконечном расстоянии от u стенки 0 v, т. е. линии тока параллельны оси y, что тоже соответствует картине плоскопараллельного потока в невозмущенном состоянии. (.31 3) скорость v зависит от координаты y линейно для константы интенсивности потока из (.31 3) v a. (.3) y Сформулируем краевые условия на бесконечности для исходной задачи (.6) (.8) аналогично тому, какими они являются в решении (.31). Для заданной а положим, что при y также справедливо соотношение (.3) v a. Добавляя к этому стандартные условия прилипания (1.35) для y вязкой жидкости на стенке и задавая значение давления в критической точке 0,0, получаем следующие краевые условия для системы (.6) (.8): v u 0, v 0, p p 0 0 0, 0 0, a. (.33) y y x y y 1) ) 3) В терминах функции тока ψ (.9) (.33) 4 y p p a. (.34) y x yx ψ ψ ψ 0, 0, 0, 0 0, x y y0 y0 Будем искать решение в предположении, что, как и в (.31 1), ψ зависит от x линейно: 4) y ψ xf y. (.35) (.35) (.9) v f y, u xf y. (.36) Решение для p будем искать в виде, аналогичном (.31 4): ρa p p0 x F y. (.37) (.35) (.30) f ff a f. (.38) Если необходимо также найти поле давления, то после решения уравнения (.37) его можно восстановить по уравнению, получаемому при (.36) (.7): af ff f. (.39) (.34) и (.35), (.37) граничные условия для (.38), (.39) в терминах функций f и F:

5 f 0, f 0, F p, f a. (.40) y0 y0 y0 0 y Преобразуем систему так, чтобы исключить параметры a и из (.38), (.39). Введем произвольные параметры α и A и определим новую автомодельную переменную η и новую функцию этой переменной φη: (.41) (.38) y f y A φη η α, φ η α A φ φφ a Aα 3 φ 1 η f A α. (.41). (.4) Пользуясь произвольностью α и A, потребуем, чтобы все коэффициенты в (.4) были одинаковы и равны a (.4) 3 α A a, Aα a. (.4 ) (.4 ) a α, A a. (.43) (.43) (.4) φ φφ φ 1 0. (.44) (.41) с учетом (.43) граничные условия (.40) примут вид: φ 0, φ 0, φ 1. (.45) η0 η0 η (.43) (.41) a η y, f y a φη. (.46) Краевая задача (.44), (.45) может быть решена (например, в виде рядов Тейлора), и специальная функция φη автомодельной переменной η и ее производная найдены в явном виде. Тогда функция тока и поля скоростей при (.46) (.35) и (.46) (.36) имеют вид: a ψ x, y x aφ y,. (.47) a a v y aφ y, u x, y xaφ y На рис..1 приведены профили функций φη и φ η, которые, связаны с компонентами скорости по (.47). При этом кривая φ η, начиная со значения η,4, менее чем на 1% отличается от своего асимптотического значения, равного единице. Это означает, что продольная к стенке компонента скорости претерпевает полное изменение в пределах ограниченного пристеночного слоя, а вне его остается практически постоянной. 5

6 Рис..1 Автомодельные кривые Как видно из рисунка.1 и соотношений (.47), профиль поперечной к стенке компоненты скорости, начиная с этого же значения η, 4, v становится линейным, т.е. a. Следовательно, условие (.33 4), которое y ставилось на бесконечности, начинает выполняться с достаточной точностью уже за пределами указанного пристеночного слоя. Из (.46) для толщины слоя y δ, в котором u 0,99, a η,4 δ δ,4. a (.48) Выберем вблизи критической точки объем конечного размера L такой, что L δ, тогда с учетом (.31 3) с достаточной точностью можно считать, что v ay. Полагая, что поперечная скорость при y L равна v 0, можно найти а: (.49) (.48) v 0 u a. (.49) L δ L,4,4L v 0 v0l 1 δ,4l. (.50) Re Таким образом, толщина пристеночного слоя обратно пропорциональна Re и не зависит от х. Этот факт отражает общие гидродинамические закономерности, которые будут далее рассмотрены в теории пограничного слоя. 6

y велики; y = p x + 1 Re v t + u v = p y + 1 Re u x + v y = 0 = v y=0 y=0 t=0

y велики; y = p x + 1 Re v t + u v = p y + 1 Re u x + v y = 0 = v y=0 y=0 t=0 Система уравнений пограничного слоя. Знаменательный успех в исследованиях движений жидкости при больших числах Рейнольдса был достигнут в 904 году и связан с именем Л. Прандтля. Прандтль показал как можно

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

ЭВОЛЮЦИЯ ПОЛЯ ТЕЧЕНИЯ ОКОЛО КРУГОВОГО ЦИЛИНДРА И СФЕРЫ ПРИ МГНОВЕННОМ СТАРТЕ СО СВЕРХЗВУКОВОЙ СКОРОСТЬЮ

ЭВОЛЮЦИЯ ПОЛЯ ТЕЧЕНИЯ ОКОЛО КРУГОВОГО ЦИЛИНДРА И СФЕРЫ ПРИ МГНОВЕННОМ СТАРТЕ СО СВЕРХЗВУКОВОЙ СКОРОСТЬЮ 44 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2004. Т. 45, N- 3 УДК 533.6.011.8 ЭВОЛЮЦИЯ ПОЛЯ ТЕЧЕНИЯ ОКОЛО КРУГОВОГО ЦИЛИНДРА И СФЕРЫ ПРИ МГНОВЕННОМ СТАРТЕ СО СВЕРХЗВУКОВОЙ СКОРОСТЬЮ В. А. Башкин, И. В.

Подробнее

Не путать прогиб y с координатой y точек сечения балки! Наибольший прогиб балки называется стрелой прогиба (f=y max );

Не путать прогиб y с координатой y точек сечения балки! Наибольший прогиб балки называется стрелой прогиба (f=y max ); Лекция Деформация балок при изгибе Дифференциальное уравнение изогнутой оси балки Метод начальных параметров Универсальное уравнение упругой линии ДЕФОРМАЦИЯ БАЛОК ПРИ ПЛОСКОМ ИЗГИБЕ Основные понятия и

Подробнее

О числе Рейнольдса задачи Джефри-Гамеля

О числе Рейнольдса задачи Джефри-Гамеля О числе Рейнольдса задачи Джефри-Гамеля Олег Е. Кириллов Анализируется неудовлетворительность определения и использования числа Рейнольдса в стандартном анализе решений задачи Джефри-Гамеля (Jeffery-Hamel)

Подробнее

S с плотностью стороннего заряда. По теореме Гаусса

S с плотностью стороннего заряда. По теореме Гаусса 5 Проводники в электрическом поле 5 Проводники Проводниками называются вещества, в которых при включении внешнего поля перемещаются заряды и возникает ток Наиболее хорошими проводниками электричества являются

Подробнее

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно,

Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ. = 0, 5. Следовательно, Лекция 11. УСЛОВНЫЙ ЭКСТРЕМУМ 1. Понятие условного экстремума.. Методы отыскания условного экстремума.. Наибольшее и наименьшее значения функции двух переменных в замкнутой области. 1. Понятие условного

Подробнее

Факультативно. Ковариантная форма физических законов.

Факультативно. Ковариантная форма физических законов. Факультативно. Ковариантная форма физических законов. Ковариантность и контравариантность. Слово "ковариантный" означает "преобразуется так же, как что-то", а слово "контравариантный" означает "преобразуется

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

= ε i j (t). Как отмечалось выше, напря- = u

= ε i j (t). Как отмечалось выше, напря- = u Лекция 6 Итак, нам известно, что в упругом теле напряжения и деформации связаны законом Гука. Далее мы установили критерий пластичности. Попытаемся выяснить теперь, как связаны деформации и напряжения

Подробнее

Необходимое и достаточное условие экстремума функции многих переменных

Необходимое и достаточное условие экстремума функции многих переменных Необходимое и достаточное условие экстремума функции многих переменных Рассмотрим задачу на нахождение условного экстремума для случае функции двух переменных. Необходимое условие экстремума. Пусть имеется

Подробнее

ϕ =, если положить потенциал на

ϕ =, если положить потенциал на . ПОТЕНЦИАЛ. РАБОТА СИЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ Потенциал, создаваемый точечным зарядом в точке A, находящейся на, если положить потенциал на бесконечности равным нулю: φ( ). Потенциал, создаваемый в

Подробнее

1. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

1. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 1. ТЕОРЕТИЧЕСКАЯ МЕХАНИКА 1.. Кинематика. Кинематика это часть теоретической механики, в которой изучается механическое движение материальных точек и твердых тел. Механическое движение это перемещение

Подробнее

Математический анализ

Математический анализ Кафедра математики и информатики Математический анализ Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 4 Приложения производной Составитель: доцент

Подробнее

Лекция 2. Инварианты плоских кривых

Лекция 2. Инварианты плоских кривых Лекция 2. Инварианты плоских кривых План лекции. Гладкие кривые на плоскости, число вращения, классификация кривых с точностью до гладкой гомотопии, точки самопересечения, число Уитни, теорема Уитни..1

Подробнее

Моделирование волн деформаций в физически нелинейной оболочке, содержащей вязкую несжимаемую жидкость

Моделирование волн деформаций в физически нелинейной оболочке, содержащей вязкую несжимаемую жидкость Электронный журнал «Труды МАИ». Выпуск 69 www.ai./siee/dy/ УДК 5.8:5.56 Моделирование волн деформаций в физически нелинейной оболочке содержащей вязкую несжимаемую жидкость Блинков Ю. А. * Иванов С. В.

Подробнее

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà

Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Ôèçè åñêèå ïðèëîæåíèÿ îïðåäåëåííîãî èíòåãðàëà Âîë åíêî Þ.Ì. Ñîäåðæàíèå ëåêöèè Работа переменной силы. Масса и заряд материальной кривой. Статические моменты и центр тяжести материальной кривой и плоской

Подробнее

Термодинамика необратимых процессов. Что мы уже знаем о равновесных и неравновесных состояниях, равновесных и неравновесных процессах?

Термодинамика необратимых процессов. Что мы уже знаем о равновесных и неравновесных состояниях, равновесных и неравновесных процессах? Лекция 5 Е. стр. 308-33, стр.39-35 Термодинамика необратимых процессов. Что мы уже знаем о равновесных и неравновесных состояниях, равновесных и неравновесных процессах? Равновесие. Состояние равновесия

Подробнее

3 Магнетизм. Основные формулы и определения

3 Магнетизм. Основные формулы и определения 3 Магнетизм Основные формулы и определения Вокруг проводника с током существует магнитное поле, направление которого определяется правилом правого винта (или буравчика). Согласно этому правилу, нужно мысленно

Подробнее

Введение. Часть 1. Применение операции По сечениям к эскизам, расположенным в параллельных смещенных плоскостях

Введение. Часть 1. Применение операции По сечениям к эскизам, расположенным в параллельных смещенных плоскостях Знакомство с операциями твердотельного моделирования: 1 Работа 5 ЗНАКОМСТВО С ОПЕРАЦИЯМИ ТВЕРДОТЕЛЬНОГО МОДЕЛИРОВАНИЯ: ОПЕРАЦИЯ ПО СЕЧЕНИЯМ Цель работы: Изучение операции По сечениям для создания трехмерной

Подробнее

ПАРАДОКС УГЛОВОЙ КРОМКИ ПРОФИЛЯ В НЕСТАЦИОНАРНОМ ПОТОКЕ. Д. Н. Горелов

ПАРАДОКС УГЛОВОЙ КРОМКИ ПРОФИЛЯ В НЕСТАЦИОНАРНОМ ПОТОКЕ. Д. Н. Горелов ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2002. Т. 43, N- 1 45 УДК 532.5:533.6 ПАРАДОКС УГЛОВОЙ КРОМКИ ПРОФИЛЯ В НЕСТАЦИОНАРНОМ ПОТОКЕ Д. Н. Горелов Омский филиал Института математики СО РАН, 644099 Омск

Подробнее

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки

5. ОСНОВЫ ТЕОРИИ НАПРЯЖЕННОГО СОСТОЯНИЯ 5.1. Напряжения в точке. Главные напряжения и главные площадки Теория напряженного состояния Понятие о тензоре напряжений, главные напряжения Линейное, плоское и объемное напряженное состояние Определение напряжений при линейном и плоском напряженном состоянии Решения

Подробнее

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2004. Т. 45, N- 2 5 УДК 517.91 ГРУППОВАЯ КЛАССИФИКАЦИЯ УРАВНЕНИЙ ВИДА y = f(x, y) Л. В. Овсянников Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090

Подробнее

(8.1) ( ) dx t dt (8.2) = a u t x t. du t x t u u u u dt t x dt t x (8.3)

(8.1) ( ) dx t dt (8.2) = a u t x t. du t x t u u u u dt t x dt t x (8.3) 8. Граничные условия Задание граничных условий для уравнений Навье-Стокса представляет собой отнюдь не тривиальную задачу. Даже более того. С теоретической точки зрения это наиболее сложная часть рассматриваемой

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени НЭ Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÀÍ Êàíàòíèêîâ, ÀÏ Êðèùåíêî ÔÓÍÊÖÈÈ

Подробнее

МОДЕЛИРОВАНИЕ СЖИГАНИЯ ГАЗОВ В ПУЗЫРЯХ

МОДЕЛИРОВАНИЕ СЖИГАНИЯ ГАЗОВ В ПУЗЫРЯХ XXVII сессия Российского акустического общества посвященная памяти ученых-акустиков ФГУП «Крыловский государственный научный центр» А. В. Смольякова и В. И. Попкова Санкт-Петербург16-18 апреля 014 г. Д.В.

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика: Статистическая термодинамика Лекция 13 ЛЕКЦИЯ 13

Д. А. Паршин, Г. Г. Зегря Физика: Статистическая термодинамика Лекция 13 ЛЕКЦИЯ 13 ЛЕКЦИЯ 13 Столкновения молекул. Длина свободного пробега. Время свободного пробега. Случайные блуждания. Диффузия. Уравнение непрерывности и закон Фика. Уравнение диффузии. Столкновения молекул До сих

Подробнее

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ

ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Казанский государственный университет Р.Ф. Марданов ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ПЛОСКОЙ ЗАДАЧИ ТЕПЛОПРОВОДНОСТИ Учебно-методическое пособие Издательство Казанского государственного университета 2007 УДК 517.9

Подробнее

Применение ELCUT для моделирования течений газа, а также подъемной силы крыла.

Применение ELCUT для моделирования течений газа, а также подъемной силы крыла. Применение ELCUT для моделирования течений газа, а также подъемной силы крыла. Вишняков Е.М 1)., Хвостов Д.А. 2) 1) ОТИ МИФИ, 2) ЗАО "Самара-импэкс-кабель" Показана возможность моделирования в среде ELCUT

Подробнее

Московский Государственный Университет Геодезии и Картографии. Кафедра высшей математики

Московский Государственный Университет Геодезии и Картографии. Кафедра высшей математики Московский Государственный Университет Геодезии и Картографии Кафедра высшей математики Высшая математика ( семестр Разделы Функции. Пределы. Дифференцирование. Интегрирование. Основные формулы по темам

Подробнее

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

МАТЕМАТИКА ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ. НЕЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ ООО «Резольвента» www.resolventa.ru resolventa@list.ru (495) 509-8-0 Учебный центр «Резольвента» Доктор физико-математических наук профессор К. Л. САМАРОВ МАТЕМАТИКА Учебно-методическое пособие по разделу

Подробнее

0(z z c ) 2 /2 +..., также для удобства разделим уравнение Орра-Зоммерфельда на u 0: d 4 w 2. d (z z dz 2 α2 u 0. ((z z c ) + u 0

0(z z c ) 2 /2 +..., также для удобства разделим уравнение Орра-Зоммерфельда на u 0: d 4 w 2. d (z z dz 2 α2 u 0. ((z z c ) + u 0 На прошлой лекции было показано, что при больших R два решения уравнения Орра-Зоммерфельда близки к решениям уравнения Рэлея, два других являются ВКБ-решениями. С последними имеются две проблемы. Во-первых,

Подробнее

1. Устойчивые решения ОДУ. Устойчивые многочлены

1. Устойчивые решения ОДУ. Устойчивые многочлены Глава III. Теория устойчивости 1. Устойчивые решения ОДУ. Устойчивые многочлены III.1.1. Устойчивые решения линейных ОДУ Существенную роль в исследовании различных процессов, поведение которых описывается

Подробнее

ТЕСТЫ. Математика. Варианты, решения и ответы

ТЕСТЫ. Математика. Варианты, решения и ответы Министерство образования и науки Российской Федерации Федеральное агентство по образованию Алтайский государственный технический университет им. И. И. Ползунова Е. В. Мартынова, И. П. Мурзина, Т. М. Степанюк,

Подробнее

Лекция 1 Доцент Ильич Г.К. ( кафедра мед. и биол. физики ) ОСНОВНЫЕ ПОНЯТИЯ ВЫСШЕЙ МАТЕМАТИКИ

Лекция 1 Доцент Ильич Г.К. ( кафедра мед. и биол. физики ) ОСНОВНЫЕ ПОНЯТИЯ ВЫСШЕЙ МАТЕМАТИКИ Лекция 1 Доцент Ильич Г.К. ( кафедра мед. и биол. физики ) ОСНОВНЫЕ ПОНЯТИЯ ВЫСШЕЙ МАТЕМАТИКИ 1. Производная функции Количественное описание сложных изменяющихся процессов жизнедеятельности с помощью элементарной

Подробнее

Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики

Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики Министерство образования Российской Федерации Томский политехнический университет Кафедра теоретической и экспериментальной физики «УТВЕРЖДАЮ» Декан ЕНМФ И.П. Чернов «14» мая 00 г. ИЗУЧЕНИЕ БРОУНОВСКОГО

Подробнее

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Министерство образования РФ Сибирская государственная автомобильно-дорожная академия (СибАДИ) ЛН Романова ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ Курс лекций Омск Издательство СибАДИ ЛН РОМАНОВА ФУНКЦИИ НЕСКОЛЬКИХ

Подробнее

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет)

УДК Мирсалимов М. В. ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ. (Тульский государственный университет) ВЕСТНИК ЧГПУ им И Я ЯКОВЛЕВА МЕХАНИКА ПРЕДЕЛЬНОГО СОСТОЯНИЯ 7 УДК 5975 Мирсалимов М В ЗАРОЖДЕНИЕ ТРЕЩИНЫ В ПОЛОСЕ ПЕРЕМЕННОЙ ТОЛЩИНЫ (Тульский государственный университет) Рассматривается задача механики

Подробнее

ГЛАВА: Введение в численные методы. Лекция 3: Численное интегрирование (15 слайдов)

ГЛАВА: Введение в численные методы. Лекция 3: Численное интегрирование (15 слайдов) ГЛАВА: Введение в численные методы. Лекция 3: Численное интегрирование (15 слайдов) Слайд 1: Методы численного интегрирования. Требуется вычислить определенный интеграл: Методы решения такой задачи: 1.

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Принцип Гюйгенса

И. В. Яковлев Материалы по физике MathUs.ru. Принцип Гюйгенса И. В. Яковлев Материалы по физике MathUs.ru Принцип Гюйгенса В кодификаторе ЕГЭ принцип Гюйгенса отсутствует. Тем не менее, мы посвящаем ему отдельный листок. Дело в том, что этот основополагающий постулат

Подробнее

КИНЕМАТИКА ДВИЖЕНИЯ ТОЧКИ И ТВЕРДОГО ТЕЛА. Задание. к расчетно-графической работе Кинематика

КИНЕМАТИКА ДВИЖЕНИЯ ТОЧКИ И ТВЕРДОГО ТЕЛА. Задание. к расчетно-графической работе Кинематика КИНЕМАТИКА ДВИЖЕНИЯ ТОЧКИ И ТВЕРДОГО ТЕЛА Задание к расчетно-графической работе Кинематика РГР- ЗАДАНИЕ Вариант задания включает в себя: - задачу по определению траектории, скорости и ускорения точки при

Подробнее

Определение 9.2. Назовем трехкратным интегралом от функции f(x, y, z) по области V выражение вида:

Определение 9.2. Назовем трехкратным интегралом от функции f(x, y, z) по области V выражение вида: Лекция 9. Вычисление тройного интеграла. Криволинейные системы координат. Якобиан и его геометрический смысл. Замена переменных в кратных интегралах. Переход к цилиндрическим и сферическим координатам

Подробнее

4. Электромагнитная индукция

4. Электромагнитная индукция 1 4 Электромагнитная индукция 41 Закон электромагнитной индукции Правило Ленца В 1831 г Фарадей открыл одно из наиболее фундаментальных явлений в электродинамике явление электромагнитной индукции: в замкнутом

Подробнее

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов

ВЫСШАЯ МАТЕМАТИКА Второй семестр. Курс лекций для студентов экономических специальностей вузов МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» М.П. Дымков ВЫСШАЯ МАТЕМАТИКА Второй семестр Курс лекций для студентов экономических специальностей

Подробнее

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ

ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 007. Т. 48, N- 5 УДК 539.3 ТОЧНЫЕ И ПРИБЛИЖЕННЫЕ ФОРМУЛЫ ДЛЯ ПРОГИБОВ УПРУГО ЗАКРЕПЛЕННОГО СТЕРЖНЯ ПОД ДЕЙСТВИЕМ ПОПЕРЕЧНОЙ НАГРУЗКИ Ю. В. Захаров, К. Г. Охоткин,

Подробнее

Векторы в пространстве и метод координат. Задача C2

Векторы в пространстве и метод координат. Задача C2 А. Г. Малкова. Подготовка к ЕГЭ по математике. Материалы сайта EGE-Study.ru Векторы в пространстве и метод координат. Задача C Существует два способа решения задач по стереометрии. Первый классический

Подробнее

ТОЧНОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ ЧЕРЕЗ КАПИЛЛЯР ДЛЯ ТРЕХКОМПОНЕНТНОЙ СМЕСИ

ТОЧНОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ ЧЕРЕЗ КАПИЛЛЯР ДЛЯ ТРЕХКОМПОНЕНТНОЙ СМЕСИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2002. Т. 43 N- 3 59 УДК 532.6 ТОЧНОЕ РЕШЕНИЕ УРАВНЕНИЯ ДИФФУЗИИ ЧЕРЕЗ КАПИЛЛЯР ДЛЯ ТРЕХКОМПОНЕНТНОЙ СМЕСИ О. Е. Александров Уральский государственный технический

Подробнее

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия

Глава 2. Дифференциальное и интегральное исчисление функции одной переменной 1. Основные понятия 35 Глава 2 Дифференциальное и интегральное исчисление функции одной переменной 1 Основные понятия Пусть D некоторое множество чисел Если задан закон, по которому каждому числу из множества D ставится в

Подробнее

ϕ(r) = Q a + Q 2a a 2

ϕ(r) = Q a + Q 2a a 2 1 Урок 14 Энергия поля, Давление. Силы 1. (Задача.47 Внутри плоского конденсатора с площадью пластин S и расстоянием d между ними находится пластинка из стекла, целиком заполняющая пространство между пластинами

Подробнее

К. В. Григорьева. Методические указания Тема 3. Методы решения задачи минимизации квадратичной функции. Факультет ПМ-ПУ СПбГУ 2007 г.

К. В. Григорьева. Методические указания Тема 3. Методы решения задачи минимизации квадратичной функции. Факультет ПМ-ПУ СПбГУ 2007 г. К. В. Григорьева Методические указания Тема. Методы решения задачи минимизации квадратичной функции Факультет ПМ-ПУ СПбГУ 7 г. ОГЛАВЛЕНИЕ. ПОСТАНОВКА ЗАДАЧИ. ВСПОМОГАТЕЛЬНЫЕ СВЕДЕНИЯ.... МЕТОДЫ СПУСКА

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Теория пределов Составитель: доцент

Подробнее

ФОРМА НОСОВОЙ ПОЛОСТИ И СТРУКТУРА ТЕЧЕНИЯ ВОЗДУХА В НОСУ ЧЕЛОВЕКА. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ В.М.

ФОРМА НОСОВОЙ ПОЛОСТИ И СТРУКТУРА ТЕЧЕНИЯ ВОЗДУХА В НОСУ ЧЕЛОВЕКА. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ В.М. ФОРМА НОСОВОЙ ПОЛОСТИ И СТРУКТУРА ТЕЧЕНИЯ ВОЗДУХА В НОСУ ЧЕЛОВЕКА. РЕЗУЛЬТАТЫ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ В.М. Фомин, В.Л. Ганимедов, М.И. Мучная, А.С. Садовский, В.Н. Шепеленко Институт Теоретической и Прикладной

Подробнее

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail: karabut@hydro.nsc.ru

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mail: karabut@hydro.nsc.ru 68 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 27. Т. 48, N- 1 УДК 532.516 ДВА РЕЖИМА ТЕЧЕНИЯ ЖИДКОЙ ПЛЕНКИ НА ВРАЩАЮЩЕМСЯ ЦИЛИНДРЕ Е. А. Карабут Институт гидродинамики им. М. А. Лаврентьева СО РАН, 639

Подробнее

Примеры решений контрольных работ

Примеры решений контрольных работ Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 3. Аналитическая геометрия на плоскости 1. Составить уравнения прямых, проходящих через точку A(4; 1) a) параллельно прямой

Подробнее

Интегрируемость функции (по Риману) и определенный интеграл

Интегрируемость функции (по Риману) и определенный интеграл Интегрируемость функции (по Риману) и определенный интеграл Примеры решения задач 1. Постоянная функция f(x) = C интегрируема на [a, b], так как для любых разбиений и любого выбора точек ξ i интегральные

Подробнее

Геометрические приложения определенного интеграла

Геометрические приложения определенного интеграла Геометрические приложения определенного интеграла Кривая L на плоскости задается своей параметризацией x = x(t), y = y(t), t [t, T ]. (1) Заметим, что изменяется единственный параметр t. Часто говорят,

Подробнее

Лекция 3. 2.6. Работа силы. Кинетическая энергия ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ

Лекция 3. 2.6. Работа силы. Кинетическая энергия ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ 34 ЗАКОНЫ СОХРАНЕНИЯ В МЕХАНИКЕ Лекция 3.6. Работа силы. Кинетическая энергия Наряду с временнóй характеристикой силы ее импульсом, вводят пространственную, называемую работой. Как всякий вектор, сила

Подробнее

КУРС ЛЕКЦИЙ. по высшей математике

КУРС ЛЕКЦИЙ. по высшей математике Министерство образования и науки, молодежи и спорта Донецкий национальный технический университет Улитин Г.М., Гончаров А.Н. КУРС ЛЕКЦИЙ по высшей математике Учебное пособие Донецк 2011 УДК 51 (075.8)

Подробнее

12. Определенный интеграл

12. Определенный интеграл 58 Определенный интеграл Пусть на промежутке [] задана функция () Будем считать функцию непрерывной, хотя это не обязательно Выберем на промежутке [] произвольные числа,, 3,, n-, удовлетворяющие условию:

Подробнее

О СХОДЯЩЕМСЯ ЛАМИНАРНОМ ПОТОКЕ ЖИДКОСТИ МЕЖДУ ДВУМЯ ВРАЩАЮЩИМИСЯ ДИСКАМИ

О СХОДЯЩЕМСЯ ЛАМИНАРНОМ ПОТОКЕ ЖИДКОСТИ МЕЖДУ ДВУМЯ ВРАЩАЮЩИМИСЯ ДИСКАМИ ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2. Т. 41, N- 2 77 УДК 66.67.5 О СХОДЯЩЕМСЯ ЛАМИНАРНОМ ПОТОКЕ ЖИДКОСТИ МЕЖДУ ДВУМЯ ВРАЩАЮЩИМИСЯ ДИСКАМИ Е. В. Семенов Московский государственный университет пищевых

Подробнее

Лекция 18: Ортонормированный базис

Лекция 18: Ортонормированный базис Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Ортогональные и ортонормированные наборы векторов Из определения угла между векторами

Подробнее

1. Поле создано бесконечной равномерно заряженной нитью с линейной плотностью заряда +τ. Укажите направление градиента потенциала в точке А.

1. Поле создано бесконечной равномерно заряженной нитью с линейной плотностью заряда +τ. Укажите направление градиента потенциала в точке А. Электростатика ТИПОВЫЕ ВОПРОСЫ К ТЕСТУ 1 (ч. 2) 1. Поле создано бесконечной равномерно заряженной нитью с линейной плотностью заряда +τ. Укажите направление градиента потенциала в точке А. 2. Каждый из

Подробнее

К ПОСТАНОВКЕ НЕЛИНЕЙНОЙ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ НЕСТАЦИОНАРНОГО ОТРЫВНОГО ОБТЕКАНИЯ ПРОФИЛЯ

К ПОСТАНОВКЕ НЕЛИНЕЙНОЙ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ НЕСТАЦИОНАРНОГО ОТРЫВНОГО ОБТЕКАНИЯ ПРОФИЛЯ 48 ПРИКЛАДНАЯ МЕХАНИКА И ТЕХНИЧЕСКАЯ ФИЗИКА. 2007. Т. 48, N- 2 УДК 532.5: 533.6 К ПОСТАНОВКЕ НЕЛИНЕЙНОЙ НАЧАЛЬНО-КРАЕВОЙ ЗАДАЧИ НЕСТАЦИОНАРНОГО ОТРЫВНОГО ОБТЕКАНИЯ ПРОФИЛЯ Д. Н. Горелов Омский филиал Института

Подробнее

Лекция 5. Лекция 6. Лекция 7. Лекция 8.

Лекция 5. Лекция 6. Лекция 7. Лекция 8. Очная форма обучения. Бакалавры. I курс, I семестр. Направление 220700- «Автоматизация технологических процессов и производств» Дисциплина - «Математика». Лекции Лекция 1. Векторные и скалярные величины.

Подробнее

Лекция 14. Неопределенности и правило Лопиталя

Лекция 14. Неопределенности и правило Лопиталя СА Лавренченко 1 wwwlawrencenkoru Лекция 14 Неопределенности и правило Лопиталя Правило Лопитáля применяется при вычислении пределов для раскрытия неопределенностей типа или Раскрытие неопределенности

Подробнее

ПОДГОТОВКА К ЕГЭ по ФИЗИКЕ

ПОДГОТОВКА К ЕГЭ по ФИЗИКЕ Национальный исследовательский ядерный университет «МИФИ» ПОДГОТОВКА К ЕГЭ по ФИЗИКЕ Преподаватель: кандидат физико-математических наук, доцент кафедры физики, Грушин Виталий Викторович Напряжённость и

Подробнее

Общая постановка задачи о замене переменных в интеграле по фигуре от скалярной функции. Пусть функции ( ) ( ) ( )

Общая постановка задачи о замене переменных в интеграле по фигуре от скалярной функции. Пусть функции ( ) ( ) ( ) 6 9 Замена переменных в интеграле по фигуре от скалярной функции. Общий случай замены переменной в двойном и тройном интегралах. Якобиан. Вычисление тройного интеграла в цилиндрических и сферических координатах

Подробнее

Введение. Правило Декарта. Число положительных корней многочлена P (x) = a k x m k a1 x m 1

Введение. Правило Декарта. Число положительных корней многочлена P (x) = a k x m k a1 x m 1 Введение В курсе математического анализа первого семестра одно из центральных мест занимает теорема Ролля. Теорема Ролля. Пусть функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (a,

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Динамика Лекция 6 ЛЕКЦИЯ 6

Д. А. Паршин, Г. Г. Зегря Физика Динамика Лекция 6 ЛЕКЦИЯ 6 1 ЛЕКЦИЯ 6 Закон сохранения импульса. Центр инерции. Движение центра инерции. Связь закона сохранения импульса с принципом относительности Галилея. Закон сохранения импульса Второй закон Ньютона можно

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

Исследование влияния отверстий на эффективность экранирования корпуса с помощью МКЭ

Исследование влияния отверстий на эффективность экранирования корпуса с помощью МКЭ Исследование влияния отверстий на эффективность экранирования корпуса с помощью МКЭ Кечиев Л.Н., Сафонов А.А. Любой корпус электронной аппаратуры практически всегда содержит одну или несколько неоднородностей,

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОУ ВПО «УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ЛЕСОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» Кафедра высшей математики Т.Е. Воронцова И.Н. Демидова Н.К. Пешкова АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

Подробнее

ИДЕНТИФИКАЦИЯ ВЕРТИКАЛЬНОЙ ПРОНИЦАЕМОСТИ ПЛАСТА НА ОСНОВЕ ПРОФИЛЬНОГО И ВЕРТИКАЛЬНОГО ГИДРОПРОСЛУШИВАНИЯ. Цаган-Манджиев Т.Н.

ИДЕНТИФИКАЦИЯ ВЕРТИКАЛЬНОЙ ПРОНИЦАЕМОСТИ ПЛАСТА НА ОСНОВЕ ПРОФИЛЬНОГО И ВЕРТИКАЛЬНОГО ГИДРОПРОСЛУШИВАНИЯ. Цаган-Манджиев Т.Н. VIII Всероссийская научно-техническая конференция "Актуальные проблемы развития нефтегазового комплекса России" 1-3 февраля 010 года, Москва Российский государственный университет НЕФТИ и ГАЗА им. И.М.

Подробнее

С.А. Лавренченко. Лекция 10. Исследование функции при помощи производных

С.А. Лавренченко. Лекция 10. Исследование функции при помощи производных 1 СА Лавренченко Лекция 10 Исследование функции при помощи производных 1 Исследование функции при помощи первой производной Под интервалом мы будем подразумевать или конечный интервал, или один из следующих

Подробнее

Конспект лекций по высшей математике

Конспект лекций по высшей математике Министерство образования Республики Беларусь Учреждение образования «Брестский государственный технический университет» Кафедра высшей математики Конспект лекций по высшей математике для студентов экономических

Подробнее

1. Основные уравнения математической физики

1. Основные уравнения математической физики 1. Основные уравнения математической физики В математической физике возникают самые разнообразные дифференциальные уравнения, описывающие различные физические процессы. Целью нашего курса является изучение

Подробнее

3. Магнитное поле Вектор магнитной индукции. Сила Ампера

3. Магнитное поле Вектор магнитной индукции. Сила Ампера 3 Магнитное поле 3 Вектор магнитной индукции Сила Ампера В основе магнитных явлений лежат два экспериментальных факта: ) магнитное поле действует на движущиеся заряды, ) движущиеся заряды создают магнитное

Подробнее

f(x 1,..., x k + h,..., x n ) f(x 1,..., x k,..., x n ),

f(x 1,..., x k + h,..., x n ) f(x 1,..., x k,..., x n ), 13. Дифференцирование функций многих переменных 13.1. Одним из самых распространенных средств локального изучения функций многих переменных является характеристика ее поведения вдоль координатных прямых

Подробнее

Решение задачи рассеяния на протяженных цилиндрических телах различного сечения

Решение задачи рассеяния на протяженных цилиндрических телах различного сечения Электронный журнал «Труды МАИ». Выпуск 68 www.a.ru/scece/rudy/ УДК 537.87+6.37 Решение задачи рассеяния на протяженных цилиндрических телах различного сечения Гиголо А. И. * Кузнецов Г. Ю. ** Московский

Подробнее

Геометрия Александрова.

Геометрия Александрова. Тема 5 Геометрия Александрова. В этой лекции мы определим пространства Александрова и обсудим некоторые их свойства. 5.1 Треугольники и углы сравнения Пусть (X, d) произвольное метрическое пространство.

Подробнее

после интегрирования получаем: = 2 pa, то есть формулу Лапласа. Растягивающие напряжение σ , если считать трубу тонкостенной (h<<a), = p.

после интегрирования получаем: = 2 pa, то есть формулу Лапласа. Растягивающие напряжение σ , если считать трубу тонкостенной (h<<a), = p. УСЛОВИЯ ПЛАСТИЧНОСТИ Рассмотрим круглую трубку длины l, радиуса а, и толщиной h Приложим к ней следующие нагрузки: растягивающую силу Р, крутящий момент М и внутреннее давление р Мысленно вырежем малый

Подробнее

ТЕМА 2. Цепи переменного тока. П.3. Комплексное сопротивление (импеданс) П.4. Импедансы основных элементов цепи. П.5. Свободные колебания в контуре

ТЕМА 2. Цепи переменного тока. П.3. Комплексное сопротивление (импеданс) П.4. Импедансы основных элементов цепи. П.5. Свободные колебания в контуре ТЕМА 2. Цепи переменного тока П.1. Гармонический ток П.2. Комплексный ток. Комплексное напряжение. П.3. Комплексное сопротивление (импеданс) П.4. Импедансы основных элементов цепи. П.5. Свободные колебания

Подробнее

Решение дифференциальных уравнений на CUDA на примере задач аэро - гидродинамики.

Решение дифференциальных уравнений на CUDA на примере задач аэро - гидродинамики. Лекция 7 Решение дифференциальных уравнений на CUDA на примере задач аэро - гидродинамики. Лекторы: Сахарных Н.А. ( ВМиК МГУ, NVIDIA ) План Постановка задачи Численный метод Обзор архитектуры GPU и модели

Подробнее

Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2011

Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2011 Конспект лекции «Уменьшение размерности описания данных: метод главных компонент» по курсу «Математические основы теории прогнозирования» 2 Проблема анализа многомерных данных При решении различных задач

Подробнее

Пример 1. Два точечных заряда = 1 нкл и q = 2 нкл находятся на расстоянии d = 10 см друг от

Пример 1. Два точечных заряда = 1 нкл и q = 2 нкл находятся на расстоянии d = 10 см друг от Примеры решения задач к практическому занятию по темам «Электростатика» «Электроемкость Конденсаторы» Приведенные примеры решения задач помогут уяснить физический смысл законов и явлений способствуют закреплению

Подробнее

Нелинейные уравнения и системы. Устойчивость решений.

Нелинейные уравнения и системы. Устойчивость решений. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Физический факультет Кафедра высшей математики физического факультета Методы решения обыкновенных дифференциальных уравнений.

Подробнее

Д. А. Паршин, Г. Г. Зегря Физика Магнитостатика Лекция 1 ЛЕКЦИЯ 1

Д. А. Паршин, Г. Г. Зегря Физика Магнитостатика Лекция 1 ЛЕКЦИЯ 1 1 ЛЕКЦИЯ 1 Релятивистский характер магнитного поля. Магнитное поле равномерно движущегося точечного заряда. Уравнения для средних значений магнитного поля. Уравнение для векторного потенциала. Векторный

Подробнее

Генкин Б.И. Элементы содержания, проверяемые на ЕГЭ по физике. Пособие для повторения учебного материала. Санкт-Петербург:

Генкин Б.И. Элементы содержания, проверяемые на ЕГЭ по физике. Пособие для повторения учебного материала. Санкт-Петербург: Генкин Б.И. Элементы содержания, проверяемые на ЕГЭ по физике. Пособие для повторения учебного материала. Санкт-Петербург: http://audto-um.u, 013 3.1 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ 3.1.1 Электризация тел Электрический

Подробнее

И. В. Яковлев Материалы по физике MathUs.ru. Энергия

И. В. Яковлев Материалы по физике MathUs.ru. Энергия И. В. Яковлев Материалы по физике MathUs.ru Энергия Темы кодификатора ЕГЭ: работа силы, мощность, кинетическая энергия, потенциальная энергия, закон сохранения механической энергии. Мы приступаем к изучению

Подробнее

Вопросы, упражнения, задачи к главам 26, 27 и 28

Вопросы, упражнения, задачи к главам 26, 27 и 28 Вопросы, упражнения, задачи к главам 26, 27 и 28 26.1. Электрическое поле постоянных токов в диэлектрике и в проводящей среде ВОПРОСЫ 1. Чем различаются электрические поля, определяемые понятиями «статические»

Подробнее

Теория информации. Итак, чтобы осуществить стратегию сжатия данных с риском, нужно выбрать наименьшее подмножество S. или P x S

Теория информации. Итак, чтобы осуществить стратегию сжатия данных с риском, нужно выбрать наименьшее подмножество S. или P x S Теория информации Лекция 4 Сжатие данных (продолжение) Итак, чтобы осуществить стратегию сжатия данных с риском, нужно выбрать наименьшее подмножество S A x, такое что вероятность непопадания в него x

Подробнее

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА ФЕДЕРАЛЬНОЕ АГЕНТСТВО ВОЗДУШНОГО ТРАНСПОРТА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ

Подробнее

Однородные координаты

Однородные координаты Однородные координаты Автор: Алексей Игнатенко ignatenko@graphics.cs.msu.su Однородные координаты мощный математический инструмент, находящий свое применения в различных разделах компьютерной графики геометрическом

Подробнее

11 класс. Задача 1. Скорость v! бруска в этот момент найдём из закона изменения механической энергии:

11 класс. Задача 1. Скорость v! бруска в этот момент найдём из закона изменения механической энергии: 11 класс Задача 1 Маленький брусок массой m находится на гладкой горизонтальной поверхности на расстоянии L от вертикального столба, на котором на высоте h на коротком держателе закреплён маленький невесомый

Подробнее

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8.

Если в качестве базисной переменной выбрать x, то общее решение: x = 4 8x + 5x, x, x R; базисное решение: x = 0, x = 0, x = 4. Ответ: 8. 01 1. Найдите общее и базисное решения системы уравнений: 16x 10x + 2x = 8, 40x + 25x 5x = 20. Ответ: Если в качестве базисной переменной выбрать x, то общее решение: x = 1 2 + 5 8 x 1 8 x, x, x R; базисное

Подробнее

Расчет аэродинамических ветровых нагрузок, антенну при ураганном ветре и шквале

Расчет аэродинамических ветровых нагрузок, антенну при ураганном ветре и шквале Расчет аэродинамических ветровых нагрузок, действующих на параболическую спутниковую антенну при ураганном ветре и шквале Н.Владимирова постановка задачи: геометрия, расчетная область и граничные условия

Подробнее

ПРОГРАММА ПО МАТЕМАТИКЕ

ПРОГРАММА ПО МАТЕМАТИКЕ МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ ДЕПАРТАМЕНТ НАУЧНО-ТЕХНОЛОГИЧЕСКОЙ ПОЛИТИКИ И ОБРАЗОВАНИЯ ФГБОУ ВПО «ДОНСКОЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» ПРОГРАММА ПО МАТЕМАТИКЕ Персиановский

Подробнее

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье.

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье. Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда..4. Равенство Парсеваля Пусть система вещественных функций g( ), g( ),..., g ( ),... ортогональна и

Подробнее

В. В. АНИСЬКОВ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. КУРС ЛЕКЦИЙ В 3 ЧАСТЯХ. ЧАСТЬ 2. ЛИНИИ И ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА

В. В. АНИСЬКОВ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. КУРС ЛЕКЦИЙ В 3 ЧАСТЯХ. ЧАСТЬ 2. ЛИНИИ И ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА В. В. АНИСЬКОВ АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. КУРС ЛЕКЦИЙ В 3 ЧАСТЯХ. ЧАСТЬ 2. ЛИНИИ И ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА Гомель, 2007 Содержание Тема 1. Эллипс 4 1.1 Эллипс и его каноническое уравнение............

Подробнее

а) Минимальной расстояние между кораблями есть расстояние от точки А до прямой ВС, которое равно

а) Минимальной расстояние между кораблями есть расстояние от точки А до прямой ВС, которое равно 9 класс. 1. Перейдем в систему отсчета, связанную с кораблем А. В этой системе корабль В движется с относительной r r r скоростью Vотн V V1. Модуль этой скорости равен r V vcos α, (1) отн а ее вектор направлен

Подробнее