6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов
|
|
- Ольга Мятлева
- 3 лет назад
- Просмотров:
Транскрипт
1 Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В векторной алгебре изучаются линейные операции над свободными векторами (сложение векторов и умножение вектора на число) и различные произведения векторов (скалярное, псевдоскалярное, векторное, смешанное и двойное векторное). В векторном анализе изучают векторы, являющиеся функциями одного или нескольких скалярных аргументов.
2 6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов ОПРЕДЕЛЕНИЕ. Вектором называется направленный отрезок (т.е. отрезок, у которого одна из ограничивающих его точек принимается за начало, а вторая за конец). Обозначают: AB (где A начало вектора, а B его конец), a, b и т. д. Изображают: a B A
3 Расстояние от начала вектора до его конца называется длиной (или модулем) вектора. Обозначают: AB или a. Вектор, длина которого равна единице, называется единичным. Вектор, начало и конец которого совпадают, называется нулевым. Обозначают: 0. Нулевой вектор не имеет определенного направления и имеет длину, равную нулю. Векторы, лежащие на одной или параллельных прямых, называются коллинеарными (параллельными). Записывают: a b если векторы a и b коллинеарные, и a b если a и b неколлинеарные.
4 Коллинеарные векторы AB и CD называются сонаправленными если их концы лежат по одну сторону от прямой, соединяющей их начала (для векторов лежащих на параллельных прямых) один из лучей [AB) или [CD) целиком содержит в себе другой (для векторов, лежащих на одной прямой). В противном случае коллинеарные векторы называются противоположно направленными. Записывают: a b если векторы a и b сонаправленные, и a b если a,b противоположно направленные. b d a D B P A C c K M a b AB CD c d MN PK N
5 Два вектора a и b называются равными, если они сонаправлены и имеют одинаковую длину. Записывают: a = b. Все нулевые векторы считаются равными. Векторы a и b, лежащие на перпендикулярных прямых, называются перпендикулярными (ортогональными). Записывают: a b. Три вектора, лежащие в одной или в параллельных плоскостях, называются компланарными.
6 2. Линейные операции на множестве векторов 1) Умножение на число; 2) Сложение векторов ОПРЕДЕЛЕНИЕ. Произведением вектора a 0 на число 0 называется вектор, длина которого равна a, а направление совпадает с направлением вектора a при > 0 и противоположно ему при < 0. Если a = 0 или = 0, то их произведение полагают равным 0. Обозначают: a Частный случай: произведение ( 1)a Вектор ( 1)a называют противоположным вектору a и обозначают a. ЛЕММА 1 (критерий коллинеарности векторов). Два вектора a и b коллинеарны тогда и только тогда, когда a = b, для некоторого числа 0.
7 ОПРЕДЕЛЕНИЕ (правило треугольника). Пусть даны два вектора a и b. Возьмем произвольную точку C и построим последовательно векторы CA a и AB b. Вектор CB, соединяющий начало первого и конец второго построенных векторов, называется суммой векторов a и b и обозначается a b. A a b C B a b ОПРЕДЕЛЕНИЕ (правило параллелограмма). Пусть даны два вектора a и b. Возьмем произвольную точку C и построим векторы CA a и CD b. Суммой векторов a и b будет вектор CB, имеющий начало в точке C и совпадающий с диагональю параллелограмма, построенного на векторах CA a и CD b. B A a a b b D C
8 Частный случай: сумма a + ( b ) Сумму a + ( b ) называют разностью векторов a и b и обозначают a b. a b a b
9 СВОЙСТВА ЛИНЕЙНЫХ ОПЕРАЦИЙ НАД ВЕКТОРАМИ 1) a b b a (коммутативность сложения векторов); 2) ( a b) c a ( b c) (ассоциативность сложения векторов); 3) a 0 a ; 4) a ( a) 0 ; 5) ( a ) ( ) a чисел); 6) ( ) a a a (дистрибутивность умножения на вектор относительно сложения чисел); 7) ( a b) a b (дистрибутивность умножения на число относительно сложения векторов); 8) 1 a a. (ассоциативность относительно умножения
10 Линейная зависимость и независимость векторов Векторы a1, a2,, an называются линейно зависимыми, если существуют числа 1, 2,, n, не равные нулю одновременно, такие, что верно равенство a a a o n n Если же равенство a a a o n n 1 2 n a, a,, an выполняется только при условии, что, то векторы называются линейно независимыми Если векторы 1 2 a, a,, an линейно зависимы, то один из них является линейной комбинацией остальных.
11 Критерий линейной зависимости двух векторов Два ненулевых вектора линейно зависимы тогда и только тогда, когда они коллинеарны. Если на плоскости заданы два неколлинеарных вектора a и b, то любой вектор x этой плоскости можно разложить по векторам a и b т.е. представить в виде x=a+b причём коэффициенты разложения и определяются однозначно.
12 Критерий линейной зависимости трёх векторов Три ненулевых вектора линейно зависимы тогда и только тогда, когда они компланарны. Следствие Если три вектора не компланарны, то они линейно независимы. Если заданы три некомпланарных вектора a, b и c, то любой вектор x можно разложить по векторам a, b и c, т.е. представить в виде x=a+b+c причём коэффициенты разложения,, определяются однозначно. Любые четыре вектора в пространстве линейно зависимы
13 ПРИМЕР. В параллелограмме ABCD укажите все пары линейно зависимых и линейно независимых векторов. AD, CB Линейно зависимы: Линейно независимы:, BA, DC AD BA BA, CB DC, CB AD, DC
14 БАЗИС Базисом на прямой называется любой ненулевой вектор на этой прямой. Базисом на плоскости называется любая пара неколлинеарных векторов, взятых в определённом порядке. Базисом в пространстве называется любая тройка некомпланарных векторов, взятых в определённом порядке.
15 Любой вектор на прямой, на плоскости, в пространстве единственным образом выражается через базисные векторы с помощью линейных операций. Пусть a, b, c базис, d произвольный вектор. Равенство d xa yb zc по базису a, b, c. Числа,, вектора d в базисе a, b, c. d x, y, z называется разложением вектора d x y z называются координатами M rx, ry, rz r OM r, r, r M x y z
16 Теорема (основная теорема векторной алгебры) При сложении двух векторов их соответствующие координаты складываются. При умножении вектора на число его координаты умножаются на это число. Два вектора равны тогда и только тогда, когда равны их соответствующие координаты a { a, a, a }, b { b, b, b }, c { c, c, c } x y z x y z x y z Условие коллинеарности двух векторов в координатной форме a b a b a a a b b b x y x y z Условие компланарности трёх векторов в координатной форме z a b c a b c a b c x x x y y y z z z 0
17 ЗАДАЧА. Доказать, что векторы a 3; 2; 1, x образуют базис. Найти координаты вектора РЕШЕНИЕ ( 1) b 1; 1; 2, 11; 6; 5 Следовательно, векторы линейно независимы (не компланарны) x x a x b x c c 2; 1; 3 в этом базисе x a x b x c 3x x 2 x ; 2 x x x ; x 2x 3x x x 2x 6 2x x x 5 x1 2x2 3x x 2, x 3, x x 2a 3b c
18 ДЕКАРТОВ БАЗИС Базис на плоскости и в пространстве называется декартовым, если он состоит из единичных взаимно перпендикулярных векторов.
19 ПРОЕКЦИЯ ВЕКТОРА НА ОСЬ пр AB u AB A B M пр AB u AB cos u
Глава II. Векторная алгебра.
Глава II. Векторная алгебра. Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный
на множестве векторов Понятие линейного пространства
Линейная алгебра и аналитическая геометрия Тема: Векторы. Линейные операции на множестве векторов Понятие линейного пространства Лектор Рожкова С.В. 2012 г. Глава II. Векторная алгебра. Элементы теории
Лекция 28 Глава 1. Векторная алгебра
Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса
Лекции подготовлены доц. Мусиной М.В. Векторы. Линейные операции над векторами.
Лекции подготовлены доц Мусиной МВ Векторы Линейные операции над векторами Определение Направленный отрезок (или что то же упорядоченную пару точек) мы будем называть вектором Обозначение: AB Нулевой вектор
Геометрические векторы
Геометрические векторы Определение Вектором называется направленный отрезок начальной точкой А и конечной точкой В (который можно перемещать параллельно самому себе) Если начало вектора - точка А, а его
определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.
Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.
8. Дать определение ортогональной скалярной проекции вектора на направление.
1. Дать определение равенства геометрический векторов. Два геометрических вектора называют равными, если: они коллинеарны и однонаправлены; их длины совпадают. 2. Дать определение суммы векторов и умножения
Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K
Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются
Лекция 6. Геометрические векторы.
Лектор Гущина Елена Николаевна, кафедра Высшей математики 2. Лекция 6. Геометрические векторы. Вектор как направленный отрезок. Сложение векторов и умножение вектора на число. Свойства линейных операций.
5. Векторы. 5.1 Определение и начальные сведения о векторах
49 5 Векторы 51 Определение и начальные сведения о векторах Любые две точки А,В определяют направленный отрезок, если точка А определяет начало, точка В конец отрезка, направление задается от А к В Направленный
Лекция 3 ВЕКТОР И ЕГО КООРДИНАТЫ. 1. Направленные отрезки и вектор
Лекция 3 ВЕКТОР И ЕГО КООРДИНАТЫ 1. Направленные отрезки и вектор Прежде всего напомним определение направленного отрезка. Определение 1. Упорядоченная пара точек (A,B) называется направленным отрезком
a b, a если векторы имеют противоположное направление, то
ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают
Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4
Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция 1.4 Аннотация Скалярные и векторные величины. Понятие геометрического вектора, как направленного отрезка. Длина вектора. Нуль-вектор,
Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов
Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.
Введение в линейную алгебру
Введение в линейную алгебру Матрицы. Определение. Таблица m n чисел вида m m n n mn состоящая из m строк и n столбцов называется матрицей. Элементы матрицы нумеруются аналогично элементам определителя
Основы векторной алгебры
) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе
Министерство образования и науки Российской Федерации
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический
Лекция 3. Алгебра векторов. Скалярное произведение
Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB
ВЕКТОРЫ. 1 Определение вектора. Линейные операции над векторами.
ВЕКТОРЫ Определение вектора Линейные операции над векторами Вектором на плоскости или в пространстве называется направленный отрезок, для которого указаны начало и конец Обозначения: AB, Точка А начало
Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты
Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные
Лекция 2. Векторы. Определения.
Лекция 2 Векторы Определения. Вектором (геометрическим вектором) называется направленный отрезок, т.е. отрезок, у которого указаны начало и конец. B конец вектора A начало вектора Обозначение вектора:
Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра
Аналитическая геометрия Модуль 1 Матричная алгебра Векторная алгебра Текст 4 (самостоятельное изучение) Аннотация Линейная зависимость векторов Критерии линейной зависимости двух, трех и четырех векторов
Аналитическая геометрия. Лекция 1.4
Московский Государственный Технический Университет им. Н.Э. Баумана Факультет Фундаментальные науки Кафедра Высшая математика Аналитическая геометрия Модуль 1. Матричная алгебра. Векторная алгебра Лекция
3.4 Векторы. Метод координат
3.4. ВЕКТОРЫ. МЕТОД КООРДИНАТ 167 3.4 Векторы. Метод координат 3.4.1 Понятие вектора. Свойства Будем называть направленным отрезком AB упорядоченную пару (см. определение 16) точек A; B трехмерного пространства
Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»
ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,
ВЕКТОРНАЯ АЛГЕБРА Т.С. ХАЧАТРЯН, Н.П. ХОВАНСКАЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ
МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) Т.С. ХАЧАТРЯН, Н.П. ХОВАНСКАЯ ВЕКТОРНАЯ АЛГЕБРА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ
Лекция 3. Вектора и линейные операции над ними.
Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых
Векторная алгебра. Глава Векторы на плоскости и в пространстве
Глава 6 Векторная алгебра 6.1. Векторы на плоскости и в пространстве Геометрическим вектором, или просто вектором, называется направленный отрезок, т. е. отрезок, в котором одна из граничных точек названа
4. Координаты вектора
4. Координаты вектора ОПРЕДЕЛЕНИЕ. Коэффициенты в разложении вектора по базису называются координатами этого вектора в данном базисе. Декартовой прямоугольной системой координат в пространстве называют
Тема 1-12: Линейные операции над векторами
Тема 1-12: Линейные операции над векторами А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков
Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2.
Тема 04 Скалярное произведение векторов Координатное представление скалярного произведения Векторное произведение векторов Координатное представление векторного произведения Смешанное произведение тройки
Обязательный образовательный минимум. Содержание определения (понятия) Для любого числа a, не равного нулю, и целого отрицательного числа n
Обязательный образовательный минимум Класс 9 Предмет Математика Четверть I 1 Степень с целым Для любого числа a, не равного нулю, и целого отрицательного числа n Для любого числа a, на равного нулю, определения
Лекция 2: Линейные операции над векторами
Лекция 2: Линейные операции над векторами Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы приступаем к изучению
0.5 setgray0 0.5 setgray1
0.5 setgray0 0.5 setgray1 1 Лекция 4 ВЕКТОРЫ. БАЗИС 1. Базис векторов Определение 1. Векторы a 1,a 2,...,a n называются упорядоченными, если указано какой вектор из этой системы является первым, какой
1. a + b = b + a. 2. (a + b) + c = a + (b + c).
Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется
Линейная алгебра Лекция 8. Векторы (продолжение)
Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится
ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.
ЛЕКЦИЯ N4. Векторное пространство. Линейные операции над векторами. Векторная алгебра. 1.Векторное пространство.... 1 2.Векторная алгебра.... 2 3.Системы координат... 6 1.Векторное пространство. Рассмотрим
0.5 setgray0 0.5 setgray1
0.5 setgray0 0.5 setgray1 1 Лекция 3 ВЕКТОРЫ 1. Определение вектора. Свободные и скользящие векторы Дадим определение направленного отрезка. Определение 1. Отрезок, концы которого упорядочены, называется
Глава I. Векторная алгебра.
Глава I Векторная алгебра Линейные операции над векторами Основные обозначения: - вектор; АВ - вектор с началом в точке и концом в точке B ; B -длина вектора АВ, те расстояние между точками и B ; b - коллинеарные
МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации
МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации ОДЕССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СВЯЗИ им АС ПОПОВА Кафедра высшей математики ВЕКТОРНАЯ АЛГЕБРА Учебное
ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ
МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ
Семинар 5. ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ Теоретические вопросы для самостоятельного изучения:
Семинар 5. ОСНОВЫ ВЕКТОРНОЙ АЛГЕБРЫ Теоретические вопросы для самостоятельного изучения: 1. Определение вектора. Коллинеарные и компланарные векторы.. Сложение и вычитание векторов. Умножение вектора на
1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ
ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?
a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b.
ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» А.Н. Канатников, А.П. Крищенко
Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.
Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция
a b =S пар. = a b sin( a,b );
Практическое занятие 4 Тема: Векторное произведение векторов План Определение и свойства векторного произведения Векторное произведение в координатах Приложение векторного произведения к вычислению площадей
«Элементы векторной алгебры» Тема4. Минестерство образования Республики Беларусь. Кафедра теоретической и прикладной математики.
Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема4. «Элементы векторной алгебры» Уи льям Ро уэн Га мильтон Кафедра теоретической и прикладной
Саратовский государственный университет имени Н. Г. Чернышевского. В.А. Иванов, Д.В. Иванов МАТЕМАТИКА
Саратовский государственный университет имени НГ Чернышевского ВА Иванов, ДВ Иванов МАТЕМАТИКА Основы линейной алгебры и аналитической геометрии Учебное пособие для студентов биологического факультета
Базис. Координаты вектора в базисе
Тема 0 Базис Существование и единственность разложения вектора по базису Координатное представление векторов Действия с векторами в координатном представлении Необходимое и достаточное условие линейной
Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ
КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИНФОРМАЦИОННЫХ СИСТЕМ Н.Н. Корнеева, М.Ф. Насрутдинов, Ф.Ф. Шарифуллина СБОРНИК ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ УЧЕБНО-МЕТОДИЧЕСКОЕ
Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c);
Лекция 4 1. ВЕКТОРЫ Вектор направленный отрезок. Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны) Противоположные векторы: имеют одинаковые длины
Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число
Лекция 4 Скалярное произведение φ Определение. Углом φ между ненулевыми векторами и называется тот из углов, образованных этими векторами, отложенными от единого начала, который лежит в пределах от до
Лекция 3. Базис. Вычтем из первого разложения второе:
Лекция 3 Базис Теорема 3.1. Любой вектор d единственным образом раскладывается по данному базису, b, c в пространстве. Аналогично, любой вектор c на плоскости единственным образом раскладывается по данному
УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ «ВЕКТОРНАЯ АЛГЕБРА В ПРИМЕРАХ И ЗАДАЧАХ»
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет геосистем и технологий»
7. Понятие линейного пространства
7 Понятие линейного пространства 1 Определение и примеры Пусть L некоторое множество, элементы которого можно складывать и умножать на действительные числа (например, множество матриц одинакового размера,
Тест 371. Сонаправленные векторы. Равенство векторов
Тест 371. Сонаправленные векторы. Равенство векторов Пусть ABCD параллелограмм, O точка пересечения его диагоналей, точка K середина его стороны АВ, точка L середина его стороны ВС. Тогда: 1. векторы АВ
МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости
Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественно-научная школа при КрасГУ Математика: Модуль 3 для класса. Учебно-методическая часть./
А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов
А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов
и AC компланарны, а векторы AB, AD и AA не компланарны.
Лекция 3 Тема: Линейная зависимость векторов Базис векторного пространства План лекции Компланарные векторы Линейная зависимость/независимость системы векторов: определение свойства геометрический смысл
Системы линейных уравнений и матрицы второго и третьего порядков.
Системы линейных уравнений и матрицы второго и третьего порядков. Введение: Рассмотрим систему уравнений вида: { a 11 x 1+a 12 x 2+...+a 1n x n=b 1... a m1 x 1 +a m2 x 2 +...+a mn x n =b m} Обозначим систему
Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»
ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî
Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА
Конспект лекции 11 ЕВКЛИДОВЫ ПРОСТРАНСТВА 0. План лекции 1. Скалярное произведение. 1.1. Определение скалярного произведения. 1.2. Эквивалентная запись через проекции. 1.3. Доказательство линейности по
Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»
ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,
Векторная алгебра Направленные отрезки и векторы.
ГЛАВА 1. Векторная алгебра. 1.1. Направленные отрезки и векторы. Рассмотрим евклидово пространство. Пусть прямые (AB) и (CD) параллельны. Тогда лучи [AB) и [CD) называются одинаково направленными (соответственно
Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости
Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения
Структурно-логическая схема. Понятие вектора (В) Линейные операции над В. Сложение. Вычита-ние. Коллинеарность
Практическое занятие 3. Практикум (рекомендации к практической части) МОДУЛЬ. ВЕКТОРНАЯ АЛГЕБРА Тема: Линейные операции над векторами План. Понятие вектора. Основные отношения векторов.. Сложение векторов.
~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только
~ ~ ВЕКТОРНАЯ АЛГЕБРА калярные и векторные величины, виды векторов. Определение: калярной называется величина, которая характеризуется только o своим значением m, T C. Определение: Векторной называется
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА.
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА Часть ВЕКТОРНАЯ АЛГЕБРА Методические указания для студентов -го
МЕТОД КООРДИНАТ. ВВЕДЕНИЕ В ВЕКТОРНУЮ АЛГЕБРУ
ФГБОУ ВПО «Саратовский государственный университет им НГ Чернышевского» МЕТОД КООРДИНАТ ВВЕДЕНИЕ В ВЕКТОРНУЮ АЛГЕБРУ НС Анофрикова ОВ Сорокина Учебное пособие для студентов нематематических специальностей
Примеры решений контрольных работ
Примеры решений контрольных работ Л.И. Терехина, И.И. Фикс 1 Контрольная работа 2 Векторная алгебра 1. Даны три вектора a = {0; 1; 3}, b = {3; 2; 1}, c = {4; 0; 4}. Требуется найти: a) вектор d = 2 a b
ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ
. ВЕКТОРНАЯ АЛГЕБРА и АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 1 1. Векторная алгебра 1. Понятие вектора Вектором будем называть направленный отрезок, т. е. отрезок с заданным на нём направлением. На рисунке направление
Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»
ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,
6. Базис и координаты вектора. Прямоугольная декартова система координат
6. Базис и координаты вектора. Прямоугольная декартова система координат Понятия вектора и линейных операций над векторами алгебраизируют геометрические высказывания т.е. заменяют геометрические утверждения
Элементы высшей математики
Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов, обучающихся с применением дистанционных технологий Модуль 5 Элементы аналитической геометрии на плоскости
ВЕКТОРНАЯ АЛГЕБРА. Часть 1. Методические указания для самостоятельной работы студентов. Составители, О.В. Иванова
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Томский государственный архитектурно-строительный университет»
IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ. Теоретические вопросы
векторами. IX. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Теоретические вопросы 1. Векторы. Линейные, операции над векторами. 2. Скалярное произведение, его свойства. Длина вектора. Угол между двумя 3. Определители, их свойства.
Лекция 4 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ. 1. Проекция вектора на ось
Лекция 4 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ В этой лекции мы введем понятие скалярного произведения векторов и рассмотрим его свойства. Для этого нам понадобятся некоторые геометрические
Действия с направленными отрезками
Тема 0. Направленные отрезки. Операции с направленными отрезками: сравнение, сложение и умножение на число. Множество векторов. Свойства линейных операций с векторами. Коллинеарность и компланарность.
векторы ШИМАНЧУК Дмитрий Викторович
А Н А Л И Т И Ч Е С К А Я векторы Г Е О М Е Т Р И Я ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов управления Санкт-Петербург
МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ ЕН.01 «МАТЕМАТИКА»
НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ ЧАСТНОЕ УЧРЕЖДЕНИЕ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ОРГАНИЗАЦИЯ КОЛЛЕДЖ ПРЕДПРИНИМАТЕЛЬСТВА И СОЦИАЛЬНОГО УПРАВЛЕНИЯ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ
Векторы в пространстве. Выполнили: Девахина Д.П., Иванова П.М. Учитель: Шорникова С.П.
Векторы в пространстве Выполнили: Девахина Д.П., Иванова П.М. Учитель: Шорникова С.П. Понятие вектора в пространстве Вектор(направленный отрезок) отрезок, для которого указано какой из его концов считается
Коллоквиум по аналитической геометрии
Коллоквиум по аналитической геометрии Решения 07/11/2013 Напоминание некоторых обозначений. f : A B: f функция с областью определения A и областью значений B. Z, Q, R множества целых, рациональных, и действительных
Математика. Лектор: Зюбин С.А.
Математика Лектор: Зюбин С.А. Математика. семестр Линейная алгебра Аналитическая геометрия Математика Основная литература )Д.В. Беклемишев. Курс аналитической геометрии и линейной алгебры )Л.А. Беклемишева
«Элементы векторной алгебры и аналитической геометрии»
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет
ЗАДАЧИ по теме «ВЕКТОРЫ»
УТВЕРЖДАЮ: ДЕ Капуткин, Председатель Учебно-методической комиссии по реализации Соглашения с Департаментом образования г Москвы "30" августа 013г ЗАДАЧИ по теме «ВЕКТОРЫ» МИСиС-013 1 Какие векторы равны
ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами.
ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ 1 Основные понятия. Линейные операции над векторами. Отрезок, имеющий определенную длину и определенное направление, называется вектором. Вектор служит для геометрического
Лекция 3 Скалярное, векторное и смешанное произведение векторов
Лекция 3 Скалярное, векторное и смешанное произведение векторов 1. ПРЕОБРАЗОВАНИЕ БАЗИСОВ И ОРИЕНТАЦИЯ Пусть на плоскости заданы два произвольных базиса (условно назовем их старым и новым) e 1, e, f 1,
L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости
Тема 5 Способы задания прямой на плоскости Условие совпадения прямых задаваемых разными линейными уравнениями Геометрические свойства линейных неравенств Способы задания плоскости в пространстве Способы
Векторное и смешанное произведение векторов
Векторное и смешанное произведение векторов 1. Правые и левые тройки векторов и систем координат Определение. Три вектора называются упорядоченной тройкой (или просто тройкой), если указано, какой из этих
Лекция 2 Векторы Определители второго и третьего порядка
Лекция 2 Векторы Определители второго и третьего порядка 1 ВЕКТОРЫ Вектор направленный отрезок Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны)
Линейная алгебра и аналитическая геометрия
Федеральное агентство по образованию Белгородский государственный технологический университет им ВГ Шухова Кафедра прикладной математики Утверждено научно-методическим советом университета Линейная алгебра
0.5 setgray0 0.5 setgray1
0.5 setgray0 0.5 setgray1 1 Лекция 6 СКАЛЯРНОЕ, ВЕКТОРНОЕ И СМЕШАННОЕ ПРОИЗВЕДЕНИЯ ВЕКТОРОВ 1. Скалярное произведение Определение 1. Углом ϕ между векторами a и b называется тот из углов, образованный
ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.
ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...
Вопросы образовательного минимума по математике за I четверть 9 класса Теоретическая часть: 1. В каком случае числа считается больше, чем число?
Вопросы образовательного минимума по математике за I четверть 9 класса Теоретическая часть: 1. В каком случае числа считается больше, чем число? В каком случае числа считается меньше, чем число? 2. В каком
-1-2. Вычислить площадь треугольника, построенного на векторах.. Найти высоту грани ОВС тетраэдра ОАВС, опущенную из конца вектора OB.
--. Показать, что векторы a { ;2;0 }, b { 2; ; }, c { ;; } компланарны и найти разложение вектора 2 a + b по векторам a и b. 2. Вычислить площадь треугольника, построенного на векторах a m n, b 2 m + 3n
Векторы и действия над ними. Лектор доцент Николай Александрович Веклич
Векторы и действия над ними Лектор доцент Николай Александрович Веклич (Кафедра высшей математики РГУ нефти и газа им. И.М. Губкина, Москва) http://kvm.gubkin.ru/ 1 Литература В.А. Ильин, Э.Г. Позняк.
АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ
На http://technofile.ru чертежи, 3d модели, учебники, методички, лекции. Материалы студентам технических вузов! 1. Векторы. Линейные, операции над векторами. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ
векторы ШИМАНЧУК Дмитрий Викторович
А Н А Л И Т И Ч Е С К А Я векторы Г Е О М Е Т Р И Я ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов управления Санкт-Петербург
Линейные пространства
Линейные пространства Лекция 1-2 по дисциплине «Линейная алгебра и аналитическая геометрия» поток гр. ПМ(б), ПО(б) Лекция 1-2 1. ОПРЕДЕЛЕНИЯ И АКСИОМЫ Определение 1. Множество R называется линейным или
Практические указания по векторной алгебре (варианты курсовых работ)
Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «МАТИ» - Российский государственный технологический университет им. К.Э.Циолковского