Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Числовые ряды. Содержание. 1 Числовые ряды. Основные понятия 1. 2 Необходимый признак сходимости ряда 1. 3 Простейшие свойства числовых рядов 2"

Транскрипт

1 Содержание Числовые ряды. Основные понятия 2 Необходимый признак сходимости ряда 3 Простейшие свойства числовых рядов 2 4 Знакоположительные ряды 3 5 Знакочередующиеся ряды 9 6 Знакопеременные ряды 0 7 Рекомендации 2

2 Числовые ряды. Основные понятия Пусть дана последовательность действительных чисел {u n ; u n R, n }. Определение.. Выражение вида u + u u n + = u n () называется числовым рядом, числа u, u 2,..., u n,... членами ряда, u n n-ым или общим членом ряда. Определение..2 Сумма n первых членов ряда называется n-ой частичной суммой и обозначается символом S n : S n = u + u u n. Определение..3 Если для последовательности S n частичных сумм существует конечный предел S, то ряд () называется сходящимся, а число S суммой данного ряда. В этом случае пишут: S = S n ; u n = S. Определение..4 Ряд () называется расходящимся, если S n не существует или бесконечен. Определение..5 Ряд, полученный из () отбрасыванием первых его m членов, называется остатком ряда: u m+ + u m u m+n + = u m+n. Ряд сходится или расходится вместе со своим остатком. 2 Необходимый признак сходимости ряда Теорема. 2. Если ряд () сходится, то его общий член стремится к нулю: u n = 0.

3 Следствие. Если то ряд () расходится. Числовые ряды u n 0, Пример. 2. Исследовать сходимость ряда 2 n n. Найдем предел общего члена ряда: u 2 n n = n = (в числителе стоит показательная функция, которая растет быстрее чем n), следовательно, ряд расходится. Пример. 2.2 Исследовать сходимость гармонического ряда n (2) Очевидно, условие теоремы 2. выполняется, однако, гармонический ряд расходится. Действительно, если предположить, что ряд сходится и его сумма равна S, то (S 2n S n ) = S 2n S n = S S = 0. Тогда из неравенства следует что: S 2n S n = n + + n n n 2n = 2 Получили противоречие. (S 2n S n ) 2 3 Простейшие свойства числовых рядов Рассмотрим ряды: u n ; v n ; (u n + v n ); αu n. (a;b;c;d) 2

4 Ряд (с) называется суммой рядов (а) и (b), а ряд (d) произведением ряда (а) на число α. Если сходятся ряды (а) и (b), то сходятся и ряды (с) и (d) и если то u n = U; (u n + v n ) = S + V ; v n = V, αu n = αu. 4 Знакоположительные ряды Определение. 4. Ряд называется знакоположительным, если n : u n 0. Приведем некоторые достаточные признаки сходимости знакоположительных рядов. Теорема. 4. (Признак сравнения в непредельной форме). Даны 2 ряда u n ; v n. (a;b) Если, начиная с некоторого n, выполняется условие u n v n и ряд (b) сходится, то сходится и ряд (а). Если же ряд (а) расходится, то ряд (b) тоже расходится. Теорема. 4.2 (Признак сравнения в предельной форме). Даны 2 ряда: u n ; v n. (a;b) u n Если существует конечный и не равный нулю предел: u n = k 0, v n то ряды (а) и (b) сходятся или расходятся одновременно. В качестве рядов для сравнения удобно выбирать:. гармонический ряд который расходится; n, 3

5 2. обобщенный гармонический ряд (ряд Дирихле), который сходится при p > и расходится при p ; 3. геометрическую прогрессию n p q n, которая сходится, если q < и расходится, если q. В случае, когда геометрическая прогрессия сходится, можно найти ее сумму: q n = q. Признак сравнения в предельной форме особенно эффективен для рядов, общий член которых есть алгебраическая функция целого аргумента, либо функция, в пределе приводимая к вышеуказанной (использование таблицы эквивалентных бесконечно малых), т.к. позволяет свести исследование сходимости исходного ряда к рассмотрению одного из трех «эталонных» рядов. Пример. 4. Исследовать сходимость ряда: 4 n n n 3 n + 3 Ряд знакоположительный, применим к нему признак сравнения в предельной форме, сравнив его с рядом n 5/4, который сходится как обобщенный гармонический ряд с p = 5 4 >. 4 n n n 3 n + 3 : n 5/4 = n 3/2 n 3/2 n /3 + 3 = 4 n 4 n 5 n n 3 n + 3 = n 7/6 + 3 n 3/2 =. 4

6 Предел отношения общих членов этих рядов при n конечный, не равный нулю, следовательно, ряды ведут себя одинаково данный ряд сходится. Ряд для сравнения подбираем по степени n следующим образом: при n 4 n n n 3 n + 3 n/4 n 3/2 n. 5/4 Пример. 4.2 Исследовать сходимость ряда tg π 4n Ряд знакоположительный. Т.к. при n аргумент π/4n 0, то (первый замечательный предел) tg π 4n π 4n, по-этому для сравнения берем ряд π 4n = π 4 n Последний ряд является гармоническим, все члены которого умножены на π/4, что не влияет на его расходимость. Так как tg π 4n π 4n =, то оба ряда расходятся. Пример. 4.3 Исследовать на сходимость ряд 3 + cos πn n 2 Ряд является знакоположительным, так как cos πn = ( ) n, т.е. он может быть равен или, то 2 cos πn 4. отсюда следует что: cos πn 4 n2 n 2 n 2 Из последнего неравенства видно, что исходный ряд можно сравнить с рядом 4 n, 2 а этот ряд сходится (обобщенный гармонический с p = 2 >, все члены которого умножены на 4). Но так как ряд с большими членами сходится, то на основании признака сравнения в непредельной форме будет сходиться и исходный ряд. 5

7 Теорема. 4.3 (признак Даламбера). Пусть дан ряд u n. Если существует u n+ = q, u n то при q < ряд сходится; при q > ряд расходится; при q = вопрос о сходимости ряда остается открытым. Признак Даламбера не дает результата для рядов с общим членом в виде дробно-рациональной функции или функции, содержащей под радикалом переменную n, т.к. замена n на n + не меняет коэффициента при старших степенях n. Признак эффективен в случае наличия в общем члене ряда показательной функции или факториалов. (n! = 2 3 n). Пример. 4.4 Исследовать сходимость ряда (3n ) (4n ) c помощью признака Даламбера. Здесь u n = (3n ) 5 9 (4n ), u n+ = (3n ) (3n + 2) 5 9 (4n ) (4n + ). Тогда u n+ q = = u n (3n ) (3n + 2) 5 9 (4n ) 5 9 (4n ) (4n + ) (3n ) = 3n + 2 4n + = 3 4 <. Ряд сходится, т.к. q <. Пример. 4.5 Исследовать сходимость ряда n! 2 n +. u n = n! 2 n +, u n+ = q = u n+ u n 2 n ( + /2 n ) (n + ) 2 n (2 + /2 n ) Т.к. q >, ряд расходится. (n + )! 2 n+ +, = (n + )n!(2 n + ) (2 n+ + )n! = = 2 (n + ) =. 6

8 Теорема. 4.4 (Признак Коши, радикальный). Пусть дан ряд Если существует u n. n un = q, то при q < ряд сходится; при q > ряд расходится; при q = вопрос о сходимости ряд остается открытым. Радикальный признак Коши дает результат в случае, когда общий член ряда имеет вид степенно-показательной функции целочисленного аргумента. Пример. 4.6 Исследовать сходимость ряда ln n (n + ). Ряд знакоположительный, применим к нему признак Коши; найдем n q = ln n (n + ) = ln(n + ) = 0 <. По теореме 5 ряд сходится. Теорема. 4.5 (интегральный признак Коши) Пусть дан ряд u n. Если функция y = f(x) удовлетворяет следующим условиям:. f(n) = u n ; 2. непрерывна, положительна и монотонно убывает при a x, то ряд и несобственный интеграл a f(x)dx одновременно сходятся или расходятся. Интегральный признак Коши удобно применять в тех случаях, когда функция f(x), полученная заменой в общем члене ряда целочисленной переменной n на непрерывную переменную x, обладает легко находимой первообразной. 7

9 Пример. 4.7 Исследовать сходимость ряда Рассмотрим функцию f(x) = ln(n + ) (n + ) 2. ln(x + ) (x + ) 2. При натуральных значениях аргумента значения функции совпадают с соответствующими членами ряда. Кроме того, f(x) при будет непрерывной, положительной и монотонно убывающей (функция (x + ) 2, стоящая в знаменателе, растет быстрее, чем ln(x + ), стоящая в числителе). Показать, что f(x) будет монотонно убывающей, можно и с помощью f (x): ( ) ln(x + ) = (x + )2 2(x + ) ln(x + ) x+ = (x + ) 2 (x + ) 4 (x + )( 2 ln(x + )) (x + ) 4 = ( 2 ln(x + )) (x + ) 3 < 0 для x [, ), следовательно, f(x) убывающая на [, ). Рассмотрим несобственный интеграл который берется по частям: ln(x + ) (x + ) 2 dx, u = ln(x + ), du = dx x +, dv = dx (x + ) 2, v = x +, ln(x + ) ln(x + ) dx = (x + ) 2 x + x + Пределы найдем отдельно, для нахождения первого применим правило Лопиталя: ln(x + ) ln(x + ) x + = + ln 2 x x + 2 =. Далее: x x + x+ + ln 2 = ln 2. = x x = 2. 8

10 Итак, Числовые ряды ln(x + ) (x + ) 2 dx = ln Интеграл сходится, следовательно, сходится и данный ряд. 5 Знакочередующиеся ряды Определение. 5. Ряд называется знакочередующимся, если он имеет вид: ( ) n u n, u n 0. Теорема. 5. (признак Лейбница). Если члены знакочередующегося ряда не возрастают по абсолютной величине с ростом n, т.е., начиная с некоторого n, верно неравенство u n+ u n, и u n = 0, то ряд сходится, причем, если его сумма равна s, то 0 s u. Пример. 5. Исследовать сходимость ряда ( ) n n 2. Ряд знакочередующийся, применим признак Лейбница: u n+ = (n + ) 2 < n 2 = u n. Кроме того, n = 0. 2 Выполнены оба условия признака Лейбница, следовательно, ряд сходится. Пример. 5.2 Исследовать сходимость ряда ( ) n n 6n 5. Члены этого ряда по абсолютной величине монотонно убывают. В самом деле, u n = n 6n 5 > n + 6(n + ) 5 = u n+, 9

11 т.к. Однако, Числовые ряды n 6n 5 n + 6(n + ) 5 = 6n2 + n 6n 2 + 5n 6n + 5 (6n 5)(6n + ) 5 (6n 5)(6n + ) > 0. n 6n 5 = 6 0. Значит, ряд расходится по необходимому признаку (следствие из теоремы 2.), по признаку Лейбница расходимость не установить. 6 Знакопеременные ряды Определение. 6. Ряд называется знакопеременным, если членами его являются любые действительные числа: n : u n R. Теорема. 6. (признак абсолютной сходимости). Дан ряд Если сходится ряд u n u n. u n, то сходится и исходный ряд, который в этом случае называется абсолютно сходящимся. Так как знакочередующийся ряд частный случай знакопеременного ряда, то и к знакочередующемуся ряду можно применять признак абсолютной сходимости. Пример. 6. Исследовать сходимость ряда sin nα (ln 0) n. Дан знакопеременный ряд. Применим к нему признак абсолютной сходимости. Составим ряд из абсолютных величин членов исходного ряда: sin nα (ln 0). n = 0

12 Этот знакоположительный ряд сравним в непредельной форме с рядом (ln 0), n который сходится, поскольку представляет собой геометрическую прогрессию с q = ln 0 <. Имеем очевидное неравенство: sin nα (ln 0) n (ln 0), n тогда ряд sin nα (ln 0) n также сходится, а значит по признаку абсолютной сходимости исходный ряд сходится абсолютно. Определение. 6.2 Если ряд сходится, а ряд u n u n расходится, то исходный ряд называется условно сходящимся. Пример. 6.2 Пример. Исследовать на абсолютную или условную сходимость так называемый ряд Лейбница: ( )n n = По признаку Лейбница этот ряд сходится, т.к. для него выполняются оба условия этого признака: u n+ = n + < n = u n, u n = n = 0. Но ряд, составленный из абсолютных величин данного ряда, является гармоническим, который расходится (2). Следовательно, ряд Лейбница сходится условно. Теорема. 6.2 В сходящемся (абсолютно или условно) ряде можно группировать члены, не меняя их порядка. Иными словами, если сходится ряд u + u u n +..., то сходится и ряд (u + u u n ) + (u n+ + u n u l ) + (u l+ + u l u m ) +..., причем оба ряда имеют одну и ту же сумму. n.

13 Теорема. 6.3 Абсолютно сходящийся ряд остается сходящимся и сохраняет сумму при любой перестановке его членов. Теорема. 6.4 В условно сходящемся ряде при соответствующей перестановке его членов можно сделать его сумму равной любому наперед заданному числу или сделать ряд расходящимся. Определение. 6.3 Произведением рядов называется ряд u n = s ; w n, где w n = u v n + u 2 v n u n v. v n = s 2 Теорема. 6.5 Если перемножаемые ряды сходятся абсолютно, то ряд произведение сходится также абсолютно и имеет сумму, равную s s 2. 7 Рекомендации Краткие рекомендации по применению тех или иных признаков сходимости к соответствующим рядам приведены в следующем списке: Знакоположительные ряды.. Необходимый. 2. Сравнения в непредельной форме. 3. Сравнения в предельной форме. 4. Даламбера. 5. Коши радикальный. 6. Коши интегральный. Знакочередующиеся ряды.. Необходимый. 2. Лейбница. 3. Абсолютной сходимости. 2

14 Знакопеременные ряды.. Необходимый. 2. Абсолютной сходимости. Числовые ряды Следует иметь в виду, что существуют и другие признаки сходимости рядов, с которыми можно познакомиться в литературе. 3


1. Числовые ряды, основные понятия.

1. Числовые ряды, основные понятия. Числовой ряд. Числовые ряды, основные понятия. () называется сходящимся, если его частичная сумма (2) имеет конечный предел Тогда называется суммой ряда, а разность lim. (3) (4) называют остатком ряда.

Подробнее

{основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными

{основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными {основные понятия основные теоремы о сходящихся рядах - необходимый признак сходимости ряда - достаточные признаки сходимости рядов с положительными членами признак Даламбера, признак Коши, интегральный

Подробнее

Сходимость знакопеременных числовых рядов

Сходимость знакопеременных числовых рядов ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Сходимость знакопеременных числовых рядов Числовой ряд u, в котором имеется бесконечно много как положительных, так = и отрицательных элементов, называется числовым рядом с произвольными

Подробнее

Лекция 2. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши

Лекция 2. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши Лекция. Признаки сходимости рядов с положительными членами: признаки сравнения, признак Даламбера, радикальный признак Коши.. Ряды Дирихле и их сходимость, гармонический ряд Определение. Числовой ряд вида

Подробнее

Числовые ряды. Лекции 6-7

Числовые ряды. Лекции 6-7 Числовые ряды Лекции 6-7 Понятие числового ряда Аналитическое выражение вида, a a2 a a a, a, a, где 2 последовательность чисел членов ряда, выражение a - называется общим членом ряда. Последовательность

Подробнее

Глава 6 Числовые ряды

Глава 6 Числовые ряды Глава 6 Числовые ряды Определение числового ряда и основные теоремы Определение : Последовательностью действительных чисел называется функция f, определённая на множестве всех натуральных чисел Число f

Подробнее

РЯДЫ МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ (с элементами квантования текста)

РЯДЫ МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ (с элементами квантования текста) ФЕДЕРАЛЬНОЕ АГЕНТСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Иркутский государственный университет путей сообщения»

Подробнее

a......, a,... называют членами...

a......, a,... называют членами... РЯДЫ Числовые ряды Основные понятия числового Пусть дана последовательность вещественных или комплексных чисел Числовым рядом называется сумма всех членов числовой последовательности: Числа,,,, называют

Подробнее

сгупс Методические указания к выполнению типового расчета «Ряды».

сгупс Методические указания к выполнению типового расчета «Ряды». сгупс кафедра высшей математики Методические указания к выполнению типового расчета «Ряды» Новосибирск 006 Некоторые теоретические сведения Числовые ряды Пусть u ; u ; u ; ; u ; есть бесконечная числовая

Подробнее

Числовые ряды. lim. S n. Определение Числовым рядом называется выражение следующего вида:

Числовые ряды. lim. S n. Определение Числовым рядом называется выражение следующего вида: Тема 9 Определение Числовым рядом называется выражение следующего вида: a 1 a2 a3... a... a Если предел последовательности последовательностью частичных сумм ряда. lim S S 1 Необходимое условие сходимости:

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд

Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд 3. Признаки сходимости знакопеременных рядов Словарь: знакопеременный ряд знакочередующиеся ряды абсолютно сходящийся ряд условно сходящийся ряд Ряд u, не являющийся знакоположительным или знакоотрицательным

Подробнее

Лекция 1. Числовой ряд. Основные понятия, свойства сходящихся рядов. Знакоположительные ряды. Интегральный признак Коши

Лекция 1. Числовой ряд. Основные понятия, свойства сходящихся рядов. Знакоположительные ряды. Интегральный признак Коши Лекция. Числовой ряд. Основные понятия, свойства сходящихся рядов. Знакоположительные ряды. Интегральный признак Коши.. Некоторые сведения о последовательностях Пусть каждому значению N поставлено в соответствие

Подробнее

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1 Глава 3. Числовые ряды 3.. Занятие 0 3... Сумма ряда Рассмотрим числовую последовательность {a k } k=. ОПРЕДЕЛЕНИЕ 3... Рядом называется выражение вида a + a 2 +...+ a k +...= a k. k= Величина a k называется

Подробнее

n =1,2, K. Ряд называют

n =1,2, K. Ряд называют 2. Признаки сходимости знакоположительных рядов Ряд u называют знакоположительным, если все его члены неотрицательны, т.е. если u 0 для любого,2, K. Ряд называют знакоотрицательным, если все его члены

Подробнее

Задача Первая теорема сравнения

Задача Первая теорема сравнения Первая теорема сравнения Постановка задачи: Исследовать сходимость ряда с неотрицательными членами где = f(, u (), u 2 (),...) и u (), u 2 (),...- функции с известными наименьшими и наибольшими значениями,

Подробнее

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Е.М. РУДОЙ МАТЕМАТИЧЕСКИЙ АНАЛИЗ. ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ НОВОСИБИРСК 200 2 МИНОБРНАУКИ РОССИИ ГОУ ВПО «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ» Е.М. Рудой МАТЕМАТИЧЕСКИЙ АНАЛИЗ.

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ. Учебно-методическое пособие

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ. Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ. Учебно-методическое пособие КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Кафедра математической статистики ЧИСЛОВЫЕ РЯДЫ Учебно-методическое пособие КАЗАНЬ 008 Печатается по решению секции Научно-методического совета Казанского университета

Подробнее

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности.

Числовые ряды. Числовая последовательность., определенную на множестве натуральных чисел. х n - общий член последовательности. Числовые ряды Числовая последовательность Опр Числовой последовательностью называют числовую ф-цию, определенную на множестве натуральных чисел х - общий член последовательности х =, х =, х =,, х =,,,,,,,,

Подробнее

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости).

«Ряды» Тесты для самопроверки. 1. Необходимый признак сходимости ряда. Теорема (необходимый признак сходимости). «Ряды» Тесты для самопроверки Необходимый признак сходимости ряда Теорема необходимый признак сходимости Если ряд сходится то lim + Следствие достаточное условие расходимости ряда Если lim то ряд расходится

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра высшей математики ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Методические указания для

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные

интегралы» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Числовые ряды и несобственные Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

Пусть дана числовая последовательность. Определение Числовым рядом называется выражение следующего вида: ... a n

Пусть дана числовая последовательность. Определение Числовым рядом называется выражение следующего вида: ... a n Тема 9 Пусть дана числовая последовательность { } {, 2,..., 1...}. Определение Числовым рядом называется выражение следующего вида: 1 2 3...... 1 Упрощенно : ряд это «бесконечная» сумма. { } Вместе с последовательностью

Подробнее

Определение 1. Наибольший из частных пределов последовательности называется верхним пределом последовательности и обозначается

Определение 1. Наибольший из частных пределов последовательности называется верхним пределом последовательности и обозначается Глава. РЯДЫ. Понятия верхнего и нижнего пределов последовательности Пусть дана ограниченная числовая последовательность ( ) (все её члены заключены на числовой прямой между числами а и b), т.е. По теореме

Подробнее

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки:

4. Сходимость знакопеременных рядов Определение Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: 4 Сходимость знакопеременных рядов Определение 4 Ряд a с членами произвольных знаков называют знакопеременным Знакочередующимся называется ряд, у которого любые два соседних члена имеют разные знаки: a

Подробнее

Методические указания к выполнению задания для самостоятельной работы

Методические указания к выполнению задания для самостоятельной работы Федеральное агентство по образованию Архангельский государственный технический университет строительный факультет РЯДЫ Методические указания к выполнению задания для самостоятельной работы Архангельск

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Санкт-Петербургский государственный университет Кафедра математического анализа

Санкт-Петербургский государственный университет Кафедра математического анализа Санкт-Петербургский государственный университет Кафедра математического анализа МЕТОДИЧЕСКИЕ УКАЗАНИЯ к проведению практических занятий по математическому анализу Часть 2 Числовые ряды М. Г. Голузина,

Подробнее

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n

Числовые и функциональные ряды. Числовые ряды: основные понятия. (1), где u n Лекции подготовлены доц Мусиной МВ Определение Выражение вида Числовые и функциональные ряды Числовые ряды: основные понятия (), где называется числовым рядом (или просто рядом) Числа,,, члены ряда (зависят

Подробнее

Комплексный анализ Последовательности и ряды комплексных чисел

Комплексный анализ Последовательности и ряды комплексных чисел Комплексный анализ Последовательности и ряды комплексных чисел Никита Александрович Евсеев Физичеcкий факультет Новосибирского государственного университета Китайско-российский институт Хэйлунцзянского

Подробнее

4. Понятие числового ряда. Критерий Коши сходимости числового ряда.

4. Понятие числового ряда. Критерий Коши сходимости числового ряда. 4. Понятие числового ряда. Критерий Коши сходимости числового ряда. Под словом "ряд"в математическом анализе понимают сумму бесконечного числа слагаемых. Рассмотрим произвольную числовую последовательность

Подробнее

Глава 12. Ряды Числовые ряды. Формальная запись суммы членов некоторой числовой последовательности

Глава 12. Ряды Числовые ряды. Формальная запись суммы членов некоторой числовой последовательности Глава Ряды Формальная запись суммы членов некоторой числовой последовательности Числовые ряды называется числовым рядом Суммы S, называются частичными суммами ряда Если существует предел lim S, S то ряд

Подробнее

Рассмотрим некоторые примеры. Пример. Найдём сумму бесконечной геометрической прогрессии. a+aq+...+aq n (a 0). Формула общего члена этого ряда

Рассмотрим некоторые примеры. Пример. Найдём сумму бесконечной геометрической прогрессии. a+aq+...+aq n (a 0). Формула общего члена этого ряда Рассмотрим некоторые примеры. Пример. Найдём сумму бесконечной геометрической прогрессии Формула общего члена этого ряда a+aq+...+aq n +... (a ). a n = aq n. Вычислим его частичные суммы. Если q =, то

Подробнее

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды.

ЛЕКЦИЯ N26. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды. ЛЕКЦИЯ N6. Знакопеременные ряды. Знакочередующиеся ряды. Теорема Лейбница. Абсолютная и условная сходимость. Функциональные ряды..знакочередующиеся ряды.....знакопеременные ряды.....признаки Даламбера

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ

ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Министерство образования Российской Федерации МАТИ Российский государственный технологический университет им.к.э.циолковского Кафедра «Высшая математика» ЧИСЛОВЫЕ И ФУНКЦИОНАЛЬНЫЕ РЯДЫ Варианты курсовых

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК) О. В. Исакова Л. А. Сайкова М.Д. Улымжиев Федеральное агентство по образованию МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ГЕОДЕЗИИ И КАРТОГРАФИИ (МИИГАиК О. В. Исакова Л. А. Сайкова М.Д. Улымжиев УЧЕБНОЕ ПОСОБИЕ ДЛЯ СТУДЕНТОВ ПО САМОСТОЯТЕЛЬНОМУ ИЗУЧЕНИЮ

Подробнее

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8

МАТЕМАТИКА МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ РАБОТ 7, 8 Министерство образования и науки РФ Ачинский филиал федерального государственного автономного образовательного учреждения высшего профессионального образования «Сибирский федеральный университет» МАТЕМАТИКА

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПИ НИЖНЕТАГИЛЬСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ Демина ЕЛ, Демин СЕ РЯДЫ г Нижний Тагил 00 Предисловие В настоящем

Подробнее

0. В таком ряде знаки + и - чередуются и идут через один, откуда и название ряда. Достаточный признак сходимости знакочередующегося ряда:

0. В таком ряде знаки + и - чередуются и идут через один, откуда и название ряда. Достаточный признак сходимости знакочередующегося ряда: Сходимость произвольных рядов. Ниже будут рассматриваться ряды, в которых имеется бесконечное количество положительных членов и бесконечное количество отрицательных членов. Такие ряды называют знакопеременными.

Подробнее

Т. А. Матвеева, В. Б. Светличная, Н. Н. Короткова ЧИСЛОВЫЕ РЯДЫ

Т. А. Матвеева, В. Б. Светличная, Н. Н. Короткова ЧИСЛОВЫЕ РЯДЫ Т А Матвеева, В Б Светличная, Н Н Короткова ЧИСЛОВЫЕ РЯДЫ Волгоград 00 МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ВОЛЖСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ

Подробнее

1. Числовые ряды. результату одно следующее число, мы будем получать частичные суммы: 1 ; ; ; ;...

1. Числовые ряды. результату одно следующее число, мы будем получать частичные суммы: 1 ; ; ; ;... ЛЕКЦИЯ N25. Числовые ряды. Сходимость и сумма ряда. Необходимый признак сходимости рядов с положительными членами. Достаточные признаки сходимости знакоположительных рядов..числовые ряды 2.Основные теоремы....

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция. Определение ряда, свойства, критерий Коши сходимости ряда. Сравнение положительных рядов. Достаточные признаки сходимости Даламбера, Коши, Коши-Адамара, Раабе,

Подробнее

sin n 100. n=1 sin k sin 1 k=1

sin n 100. n=1 sin k sin 1 k=1 Разберите предложенные ниже задачи с решениями Найдите принципиальные ошибки Для ошибочно решенных задач объясните, почему используемые методы не работают или работают неправильно, и предложите собственное

Подробнее

Числовые и функциональные ряды

Числовые и функциональные ряды МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте   Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Типовой расчет по математическому анализу Контрольные задания по теме Ряды Задание. Найти сумму числового ряда ) ) = + + ( )( 5) + ) ( ) = 5 = Решение ) 5 ( ) + + = = = = + + 5 + + 5 + + 5 + + 5

Подробнее

Российский Университет Дружбы Народов. Марченко В. В., Сорокина М. В. Числовые ряды. Учебно-методическое пособие

Российский Университет Дружбы Народов. Марченко В. В., Сорокина М. В. Числовые ряды. Учебно-методическое пособие Российский Университет Дружбы Народов Марченко В. В., Сорокина М. В. Числовые ряды Учебно-методическое пособие Москва 205 Аннотация Учебное пособие знакомит студентов с основными понятиями, методами доказательств

Подробнее

3. Ряды Числовые ряды

3. Ряды Числовые ряды . Ряды Числовые ряды Определение. Числовым рядом называется выражение вида u u u... u..., где числа u, u, u,... называются членами ряда u называется общим членом ряда. Определение. -ой частичной суммой

Подробнее

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности.

~ 1 ~ Ряды. Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. ~ ~ Ряды Числовой ряд и его сумма. Определение: Числовым рядом называется сумма членов бесконечной числовой последовательности. Определение: Общим членом ряда называется такое его слагаемое, для которого

Подробнее

Лекция 5. Абсолютная и условная сходимости

Лекция 5. Абсолютная и условная сходимости С. А. Лавренченко www.lwreceko.ru Лекция 5 Абсолютная и условная сходимости. Понятие абсолютной и условной сходимостей Пусть дан ряд (данный ряд). Поставим ему в соответствие ряд, члены которого равны

Подробнее

Теорема 2.7. (Обобщенный признак Коши). Если существует верхний предел lim n a, то при 1. ряд расходится. Пример 14. Исследуем на сходимость ряд

Теорема 2.7. (Обобщенный признак Коши). Если существует верхний предел lim n a, то при 1. ряд расходится. Пример 14. Исследуем на сходимость ряд Теорема.7. (Обобщенный признак Коши). Если существует верхний предел lim a, то при ряд сходится, а при ряд расходится. ( ) Пример 4. Исследуем на сходимость ряд. 4 Первая мысль при рассмотрении данного

Подробнее

ОТНОШЕНИЯ ПОРЯДКА И АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ

ОТНОШЕНИЯ ПОРЯДКА И АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ Глава. ОТНОШЕНИЯ ПОРЯДКА И АСИМПТОТИЧЕСКОЕ ПОВЕДЕНИЕ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ.. Сравнение поведения функций. О-символика В этой, вводной, главе будет обсуждаться сравнительное поведение функций, а также асимптотическое

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

Санкт-Петербургский государственный университет Кафедра математического анализа

Санкт-Петербургский государственный университет Кафедра математического анализа Санкт-Петербургский государственный университет Кафедра математического анализа ФУНКЦИОНАЛЬНЫЕ РЯДЫ Поточечная и равномерная сходимость. Действия над рядами, связанные с предельным переходом методические

Подробнее

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx.

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Лекция 5. Понятие несобственного интеграла -го рода, его вычисление. Критерий сходимости. Интегралы от положительных функций. Признаки сравнения, абсолютная

Подробнее

РЯДЫ. 1. Числовые ряды

РЯДЫ. 1. Числовые ряды РЯДЫ. Числовые ряды. Основные определения Пусть дана бесконечная последовательность чисел Выражение (бесконечная сумма) a, a 2,..., a n,... a i = a + a 2 + + a n +... () i= называется числовым рядом. Числа

Подробнее

ДОМАШНИЕ ЗАДАНИЯ 8, 9 ПО РЯДАМ

ДОМАШНИЕ ЗАДАНИЯ 8, 9 ПО РЯДАМ ДОМАШНИЕ ЗАДАНИЯ 8 9 ПО РЯДАМ Для выполнения домашнего задания Вам необходимо пользуясь табл заполнить первую строку табл затем выписать соответствующие Вашему номеру варианта данные из табл Например Вы

Подробнее

Лекция 3, 4. Будем считать, что область задания функции f (x) } значений аргумента функции f ( x n ) значений функции сходится к b.

Лекция 3, 4. Будем считать, что область задания функции f (x) } значений аргумента функции f ( x n ) значений функции сходится к b. Лекция 3, 4 Предельное значение функции при, + и Будем считать, что область задания функции f ( имеет хотя бы один элемент, лежащий вне отрезка [ A, A], для любого положительного числа A. Определение (по

Подробнее

Лекция 1 (13 января 2017)

Лекция 1 (13 января 2017) КОНСПЕКТ ЛЕКТОРА математический анализ, курс, 2 семестр, 207, А.М. Красносельский Числовые ряды Лекция (3 января 207) Рассмотрим последовательность R и напишем «бесконечную сумму»: a k a + a 2 +... + a

Подробнее

Разложение функции в ряд Тейлора

Разложение функции в ряд Тейлора 82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

Рецензенты Канд. ф.-м. наук, доцент.

Рецензенты Канд. ф.-м. наук, доцент. Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

( ) ( ) K ( ) u x u x u x

( ) ( ) K ( ) u x u x u x Лекция. Функциональные ряды. Определение функционального ряда Ряд, членами которого являются функции от x, называется функциональным: u = u ( x ) + u + K+ u + K = Придавая x определенное значение x, мы

Подробнее

РЯДЫ А.А. ЗЛЕНКО, C.А. ИЗОТОВА, Л.А. МАЛЫШЕВА. МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике

РЯДЫ А.А. ЗЛЕНКО, C.А. ИЗОТОВА, Л.А. МАЛЫШЕВА. МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (МАДИ) АА ЗЛЕНКО, CА ИЗОТОВА, ЛА МАЛЫШЕВА РЯДЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ к самостоятельной работе по математике МОСКОВСКИЙ АВТОМОБИЛЬНО-ДОРОЖНЫЙ

Подробнее

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный

5. Степенные ряды Степенные ряды: определение, область сходимости. Функциональный 5 Степенные ряды 5 Степенные ряды: определение, область сходимости Функциональный ряд вида ( a + a ) + a ( ) + K + a ( ) + K a ) (, (5) где, a, a, K, a,k некоторые числа, называют степенным рядом Числа

Подробнее

Методические указания

Методические указания Московский государственный технический университет имени Н. Э. Баумана Методические указания В.Я. Томашпольский, М.Н. Шевченко, И.О. Янов ЧИСЛОВЫЕ РЯДЫ Издательство МГТУ им. Н. Э. Баумана Московский государственный

Подробнее

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание

РЯДЫ. ИНТЕГРАЛ ФУРЬЕ. В.А. Волков. Учебное электронное текстовое издание Министерство образования и науки Российской Федерации ВА Волков РЯДЫ ИНТЕГРАЛ ФУРЬЕ Учебное электронное текстовое издание Для студентов специальностей 4865 Электроника и автоматика физических установок;

Подробнее

Несобственные интегралы первого рода

Несобственные интегралы первого рода ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им НИЛобачевского» Несобственные интегралы

Подробнее

ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г.

ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г. ВОПРОСЫ ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ для подготовки к коллоквиуму Лектор: Пахомова Е.Г. Замечание. 1) вопросы, не содержащие доказательства; ) вопросы, с серьезным доказательством; 3) вопросы с небольшим

Подробнее

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Нижнетагильский технологический институт (филиал) Ряды

Нижнетагильский технологический институт (филиал) Ряды Министерство образования и науки РФ Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого Президента России

Подробнее

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,,

Подробнее

3 РЯДЫ Хабаровск 2004

3 РЯДЫ Хабаровск 2004 РЯДЫ Хабаровск 4 4 ЧИСЛОВЫЕ РЯДЫ Числовым рядом называется выражение, где,,, числа, которые образуют бесконечную числовую последовательность, общий член ряда, где N ( N множество натуральных чисел) Пример

Подробнее

Несобственные интегралы

Несобственные интегралы 7 Занятие Несобственные интегралы. Несобственные интегралы первого и второго рода Понятие определенного интеграла f() от ограниченной функции по конечному отрезку [; b] распространяют на случаи, когда

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ ВОЕННЫЙ УЧЕБНО-НАУЧНЫЙ ЦЕНТР ВВС «ВОЕННО-ВОЗДУШНАЯ АКАДЕМИЯ имени профессора Н. Е. ЖУКОВСКОГО и Ю. А. ГАГАРИНА» Н. Г. АФЕНДИКОВА, И. Н. ОМЕЛЬЧЕНКО, Г. В. РЫЖАКОВ, А. Ф. САЛИМОВА МАТЕМАТИЧЕСКИЙ АНАЛИЗ ПРИМЕРЫ

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ. В.Н. Алексеев, Д.А. Приказчиков, В.В. Ридель РЯДЫ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ ВН Алексеев, ДА Приказчиков, ВВ Ридель РЯДЫ Утверждено редакционно-издательским советом РОАТ в качестве учебного пособия РОАТ Москва 9 5 УДК 575(75)

Подробнее

ЛЕКЦИЯ 30. Несобственные интегралы и их свойства. Условная и абсолютная сходимость. Признаки сходимости.

ЛЕКЦИЯ 30. Несобственные интегралы и их свойства. Условная и абсолютная сходимость. Признаки сходимости. ЛЕКЦИЯ Несобственные интегралы и их свойства Условная и абсолютная сходимость Признаки сходимости Определение определенного интеграла, его свойства и методы интегрирования рассматривались в предположении,

Подробнее

«5» Шаг 1 (достаточность) «5» Шаг 2 () «5» Шаг 3 (необходимость) «3» Теорема 3 (теорема сравнения для рядов/мажорантный признак)

«5» Шаг 1 (достаточность) «5» Шаг 2 () «5» Шаг 3 (необходимость) «3» Теорема 3 (теорема сравнения для рядов/мажорантный признак) БИЛЕТ 1 «3» Определение первообразной «3» Пример (гармонический ряд расходится) «3» Пример ( 1/n 2 сходится) «3» Теорема 6 (интегральный признак) БИЛЕТ 2 «3» Определение обобщенной первообразной «3» Теорема

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

2. Какая из указанных величин является формулой n-ого члена(n N) ряда: , если. 2 ; г) a n 1 n = ( 1)n 1? 2 n 1

2. Какая из указанных величин является формулой n-ого члена(n N) ряда: , если. 2 ; г) a n 1 n = ( 1)n 1? 2 n 1 Тесты по теме «Числовые ряды» Вариант. Вставьте в выражение недостающий символ,, ): Общий член числового ряда a 0 при )... Числовой ряд a сходится). 2. Какая из указанных величин является формулой -ого

Подробнее

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение

Пусть задана последовательность чисел a 1, a 2,..., a n,... Числовым рядом называется выражение џ. Понятие числового ряда. Пусть задана последовательность чисел a, a 2,..., a,.... Числовым рядом называется выражение a = a + a 2 +... + a +... (.) Числа a, a 2,..., a,... называются членами ряда, a

Подробнее

Конспекты семинаров по курсу математического анализа

Конспекты семинаров по курсу математического анализа И.Х. Сабитов Конспекты семинаров по курсу математического анализа Тема: Числовые ряды 1. Определения и общие свойства. Числовым рядом называется формальная сумма счетного числа слагаемых, которые называются

Подробнее

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр -е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр Найти радиус сходимости степенного ряда, используя признак Даламбера: ( 89 ( ) n n (n!) ) p (n + )! n= Ряд Тейлора f(x)

Подробнее

Математический анализ Ряды

Математический анализ Ряды Тема 6. Пределы последовательностей и функций, их свойства и приложения Математический анализ Ряды Краткий конспект лекций Составитель В.А.Чуриков Кандидат физ.-мат. наук, доцент кафедры Высшей математики

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» КАФЕДРА МАТЕМАТИЧЕСКОГО АНАЛИЗА Т. И. Коршикова, Л.

Подробнее

Несобственные интегралы 1.Определения, теоремы и формулы для решения задач.

Несобственные интегралы 1.Определения, теоремы и формулы для решения задач. Несобственные интегралы.определения, теоремы и формулы для решения задач. Интегралы с бесконечными пределами и интегралы от неограниченных функций называются несобствнными интегралами I и II рода соответственно.

Подробнее

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие

Пензенский государственный педагогический университет имени В.Г.Белинского. О.Г.Никитина РЯДЫ. Учебное пособие Пензенский государственный педагогический университет имени ВГБелинского РЯДЫ ОГНикитина Учебное пособие Пенза Печатается по решению редакционно-издательского совета Пензенского государственного педагогического

Подробнее

Глава 2. Пределы функций одной переменной.

Глава 2. Пределы функций одной переменной. Глава Пределы функций одной переменной Предел переменной величины Определение Постоянное число а называется пределом переменной величины х, если для каждого наперед заданного числа ε > можно указать такое

Подробнее

Несобственные интегралы

Несобственные интегралы Министерство образования и науки Российской Федерации Государственное образовательное учреждение высшего профессионального образования «РОСТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ЕРЛяликова, ЛИСпинко Несобственные

Подробнее

Дифференциальные уравнения и ряды

Дифференциальные уравнения и ряды Федеральное агентство по образованию ГОУ ВПО «Уральский государственный технический университет УПИ» НМ Кравченко Дифференциальные уравнения и ряды Учебно-методическое пособие Научный редактор доц, канд

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА.

Кафедра инженерной математики. И. В. Прусова Н. А. Кондратьева Н. К. Прихач ВЫСШАЯ МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Белорусский национальный технический университет Кафедра инженерной математики И В Прусова Н А Кондратьева Н К Прихач ВЫСШАЯ МАТЕМАТИКА РЯДЫ, ТЕОРИЯ ФУНКЦИЙ

Подробнее