Уравнение Лапласа в круговых областях. Оператор Лапласа в полярных координатах имеет следующий вид. u = 2 u

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Уравнение Лапласа в круговых областях. Оператор Лапласа в полярных координатах имеет следующий вид. u = 2 u"

Транскрипт

1 Уравнение Лапласа в круговых областях. Рассмотрим решение уравнения Лапласа в круговых областях (внутренность круга, внешность круга, кольцо). Для решения этой задачи перейдем в полярные координаты { x = cos ϕ y = sin ϕ и применим метод разделения переменных. Найдем сначала простейшие решения уравнения Лапласа, представимые в виде произведения двух функций с разделенными полярными координатами: u = V ()Φ(ϕ). Оператор Лапласа в полярных координатах имеет следующий вид u = 2 u + u u 2 ϕ. 2 Подставляя в уравнение Лапласа функцию u = V ()Φ(ϕ), получаем V ()Φ(ϕ) + V ()Φ(ϕ) + 2 V ()Φ (ϕ) =. Перенесем слагаемое с Φ в правую часть равенства, умножим уравнение на 2 и поделим на V ()Φ(ϕ), получим 2 V () + V () V () = Φ (ϕ) Φ(ϕ). В разных частях полученного равенства стоят функции разных переменных. Это может быть только тогда, когда обе они постоянны. Обозначим эту постоянную через λ: 2 V () + V () V () = Φ (ϕ) Φ(ϕ) = λ. В результате получим два обыкновенных дифференциальных уравнения 2 V () + V () λv () =, () Φ (ϕ) + λφ(ϕ) =. (2) Рассмотрим сначала уравнение (2). Прежде всего отметим, что две пары полярных координат (, ϕ) и (, ϕ + 2π) отвечают одной и той же точке на плоскости. Следовательно, V ()Φ(ϕ + 2π) = V ()Φ(ϕ). Если мы ищем нетривиальные решения, то функция V () хотя бы в одной точке отлична от нуля. Сокращая на V (), получим условие 2π-периодичности функции Φ Φ(ϕ + 2π) = Φ(ϕ). Таким образом для функции Φ мы имеем дифференциальное уравнение с условием 2π-периодичности { Φ (ϕ) + λφ(ϕ) =, (3) Φ(ϕ + 2π) = Φ(ϕ).

2 Задача (3) во многом похожа на задачу Штурма Лиувилля. Сейчас мы в этом убедимся. Будем искать нетривиальные решения этой задачи, рассматривая разные знаки λ. ) λ <. Общее решение уравнения Φ(ϕ) = C e λϕ + C 2 e λϕ. Периодическое решение должно быть ограниченным. Однако, при C функция Φ(ϕ) неограничена при ϕ +, а при C 2 эта функция неограничена при ϕ. В рассматриваемом случае задача (3) имеет только тривиальные решения. 2) λ =. Общее решение уравнения Φ(ϕ) = C + C 2 ϕ. Аналогичные сображение показывают, что из условия периодичности следует, что C 2 = и Φ(ϕ) может быть только константой. С другой стороны, константа является периодической функцией (с любым периодом). 3) λ >. Общее решение уравнения Φ(ϕ) = C cos λϕ + C 2 sin λϕ. Эта функция является периодической и ее наименьший положительный период равен 2π/ λ. Величина 2π как период должна быть кратна этой величине, т. е. при некотором натуральном n 2π = n2π/ λ. Отсюда находим "собственные значения"и "собственные функции" λ n = n 2, Φ n (ϕ) = C cos nϕ + C 2 sin nϕ. Решения из пунктов 2 и 3 можно объединить, если считать, что n меняется, начиная с нуля. Перейдем к решению уравнения (), в котором λ n = n 2 (n =,,... ). Это уравнение Эйлера. Полагая V () = µ, получаем характеристическое уравнение или µ(µ ) + µ n 2 = µ 2 n 2 =. При n > имеем два корня µ = ±n и общее решение уравнения V () = C n + C 2 n. При n = имеем двукратный корень µ = и общее решение уравнения V () = C + C 2 ln. Таким образом, мы имеем следующие простейшие решения с точностью до пропорциональности, ln, n cos nϕ, n sin nϕ, cos nϕ n, sin nϕ n. (4)

3 Уравнение Лапласа внутри круга. Рассмотрим решение уравнения Лапласа в круге. Пусть Ω круг радиуса R с центром в начале координат. Рассмотрим следующую задачу: u = в Ω, αu + β u ν = f на Ω, (5) где ν единичная внешняя нормаль к границе Ω области Ω. Среди простейших решений (4) нам подходят не все. Нужно выбросить неограниченные решения ln, cos nϕ/ n и sin nϕ/ n. Из остальных решений составляем сумму в виде ряда с произвольными коэффициентами u(, ϕ) = A + n (A n cos nϕ + B n sin nϕ). (6) Можно показать, что действительно любая гармоническая в круге функция представима формулой (6). Воспользуемся этой формулой для решения краевой задачи (5). Разложим граничную функцию (считая ее зависящей от ϕ) в ряд Фурье где f(ϕ) = a (a n cos nϕ + b n sin nϕ), a n = π b n = π f(ϕ) cos nϕdϕ, f(ϕ) sin nϕdϕ. Для круга u ν = u. Подставляя ряд (6) в краевое условие, получаем αa + αr n (A n cos nϕ + B n sin nϕ) + βnr n (A n cos nϕ + B n sin nϕ) = = a (a n cos nϕ + b n sin nϕ) Приравнивая справа и слева коэффициенты при одинаковых членах, имеем αa = a 2, (αrn + βnr n )A n = a n, (αr n + βnr n )B n = b n. (7) Рассмотрим случай когда α, тогда из полученных равенств однозначно находим все коэффициенты в формуле (6): A = a 2α, A n = a n (αr + nβ)r n, B n = b n (αr + nβ)r n.

4 Решение краевой задачи (5), следовательно, имеет следующий вид u(, ϕ) = a 2α + R (an cos nϕ + b n sin nϕ). (8) αr + nβ R Отметим частный случай задачи Дирихле (α =, β = ) когда на границе задается само решение: { u =, < R (9) u = f(ϕ), = R. В этом случае формула (8) принимает следующий вид: u(, ϕ) = a 2 + R (an cos nϕ + b n sin nϕ). () Перейдем к случаю α = (задача Неймана). В этом случае нужно обратить внимание на первое равенство в (7), из которого следует, что a =. Так как величина a определяется заданной граничной функцией, то мы получаем ограничение на исходные данные граничной задачи задача Неймана может быть разрешима не для любой граничной функции f(ϕ). Так как коэффициент a числовым множителем отличается от интеграла от граничной функции, то мы имеем следующее уловие разрешимости задачи Неймана: f(ϕ)dϕ =. () При этом величина A в формуле (6) не определяется и может быть произвольной. Таким образом, решение задачи Неймана определено с точностью до произвольной постоянной, которую удобно обозначать не буквой A, а общепринятой буквой для произвольной постоянной C. Коэффициенты A n и B n при n > определяются так же, как и раньше A n = a n nβr n, B n = и решение задачи Неймана имеет следующий вид u(, ϕ) = R β b n nβr n. (an cos nϕ + b n sin nϕ) + C. n R Обычно задача Неймана рассматривается при β = : u =, < R u (2) ν = f(ϕ), = R. Решение этой задачи дается формулой u(, ϕ) = R при условии, что выполнено соотношение (). (an cos nϕ + b n sin nϕ) + C (3) n R

5 Уравнение Лапласа во внешности круга. Рассмотрим решение уравнения Лапласа вне круга. Пусть Ω внешность круга радиуса R с центром в начале координат. Рассмотрим следующую задачу: u = в Ω, αu + β u ν = f на Ω, (4) где ν единичная внешняя нормаль к границе Ω области Ω. Во внешности круга из решений (4) мы должны выбрость неограниченные решения ln, n cos nϕ и n sin nϕ. Из остальных решений составляем сумму в виде ряда с произвольными коэффициентами u(, ϕ) = A + A n cos nϕ + B n sin nϕ n. (5) Можно показать, что действительно любая гармоническая вне круге функция представима формулой (5). Воспользуемся этой формулой для решения краевой задачи (4). Разложим граничную функцию (считая ее зависящей от ϕ) в ряд Фурье где f(ϕ) = a (a n cos nϕ + b n sin nϕ), a n = π b n = π f(ϕ) cos nϕdϕ, f(ϕ) sin nϕdϕ. Для внешности круга u ν = u. Подставляя ряд (5) в краевое условие, получаем αa + α A n cos nϕ + B n sin nϕ R n + = a (a n cos nϕ + b n sin nϕ) β n(a n cos nϕ + B n sin nϕ) R n+ = Приравнивая справа и слева коэффициенты при одинаковых членах, имеем αa = a ( α 2, R + nβ ) ( α A n R n+ n = a n, R + nβ ) B n R n+ n = b n, (6) Рассмотрим случай когда α, тогда из полученных равенств однозначно находим все коэффициенты в формуле (5): A = a 2α, A n = Rn+ a n (αr + nβ), B n = Rn+ b n (αr + nβ).

6 Решение краевой задачи (4), следовательно, имеет следующий вид u(, ϕ) = a 2α + R αr + nβ (a n cos nϕ + b n sin nϕ). (7) Отметим частный случай задачи Дирихле (α =, β = ) когда на границе задается само решение: { u =, > R u = f(ϕ), = R. В этом случае формула (7) принимает следующий вид: (8) u(, ϕ) = a 2 + (a n cos nϕ + b n sin nϕ). (9) Случай α = (задача Неймана) рассматривается так же, как и для внутренней задачи. Здесь имеем условие разрешимости a = или, что тоже самое f(ϕ)dϕ =. (2) Величина A произвольна и ее удобно обозначить через C. Из формул (6) находим все остальные коэффициенты (n > ): A n = Rn+ a n, B n = Rn+ b n nβ nβ. Таким образом, решение внешней задачи Неймана имеет следующий вид u(, ϕ) = R β n (a n cos nϕ + b n sin nϕ) + C. При β = имеем задачу ее решение дается формулой u(, ϕ) = R u =, > R при условии, что выполнено соотношение (2). u (2) ν = f(ϕ), = R, n (a n cos nϕ + b n sin nϕ) + C (22)

Уравнение Лапласа в полярной системе координат.

Уравнение Лапласа в полярной системе координат. Линейные и нелинейные уравнения физики Уравнение Лапласа в полярной системе координат. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич 518 Глава 5. Уравнения эллиптического типа 25.2. Разделение

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z

= 0. (1) E 2z. ϕ(x, y, z) = f 1 (x) f 2 (y) f 3 (z). (3) f 1 (x) + f ) f 3 (z) f. f 3 (z) = γ2. f 3 (z) = Ae γz + B e γz. f 1 (x) = γ2 1, z=0 E 1z 1. Электростатика 1 1. Электростатика Урок 6 Разделение переменных в декартовых координатах 1.1. (Задача 1.49) Плоскость z = заряжена с плотностью σ (x, y) = σ sin (αx) sin (βy), где σ, α, β постоянные.

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Уравнение Лапласа в декартовой системе координат.

Уравнение Лапласа в декартовой системе координат. Линейные и нелинейные уравнения физики Уравнение Лапласа в декартовой системе координат. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич 25. Разделение переменных в уравнении Лапласа 511

Подробнее

Семинар 1. Вывод уравнений математической физики. Постановка краевых задач

Семинар 1. Вывод уравнений математической физики. Постановка краевых задач Семинар 1 Вывод уравнений математической физики. Постановка краевых задач Основные уравнения математической физики: уравнение теплопроводности описывает распространение тепла, диффузию, движение вязкой

Подробнее

Уравнения в частных производных

Уравнения в частных производных МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Дифференциальные уравнения Т С

Дифференциальные уравнения Т С Дифференциальные уравнения. 1999. Т.35. 6. С.784-792. УДК 517.957 ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ КРАЕВЫХ ЗАДАЧ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С НЕЛИНЕЙНОСТЯМИ Ю. В. Жерновый 1. Введение. Постановка задачи. Наиболее

Подробнее

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА В этой лекции мы введём альтернативы Фредгольма и докажем с их помощью существование классических решений задач Дирихле и Неймана в ограниченных и неограниченных

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Общие понятия Дифференциальные уравнения имеют многочисленные и самые разнообразные приложения в механике физике астрономии технике и в других разделах высшей математики (например

Подробнее

7. Теорема Гильберта-Шмидта.

7. Теорема Гильберта-Шмидта. Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ]

Подробнее

Метод разделения переменных (метод Фурье)

Метод разделения переменных (метод Фурье) Метод разделения переменных (метод Фурье) Общие принципы метода разделения переменных Для простейшего уравнения с частными производными разделение переменных это поиски решений вида только от t. u (x,t

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода

Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода Часть 4 МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ 1. Общие идеи метода Метод разделения переменных применяется для решения линейных однородных уравнений с линейными однородными граничными условиями вида α 0, β0, 0,

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

Интегралы и дифференциальные уравнения. Лекции 20-21

Интегралы и дифференциальные уравнения. Лекции 20-21 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 20-21 Линейные

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию:

Вариант 17. Данная функция определена на всей числовой оси, кроме точек x = 0 и x = 2. . Преобразуем функцию: Вариант 7 Найти область определения функции : y + / lg Область определения данной функции определяется следующими условиями:, >, те > / Далее, знаменатель не должен обращаться в нуль: или Объединяя результаты,

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы.

( ) ( ) 1 x (*) 2. Проинтегрировать обе части равенства, то есть: 3. Найти полученные интегралы. Памятка для практических занятий по теме «Обыкновенные дифференциальные уравнения» Решение различных задач методом математического моделирования сводится к отысканию неизвестной функции из уравнения, содержащего

Подробнее

4. ЭЛЕКТРОСТАТИКА Для неподвижных зарядов уравнения электромагнитного поля принимают вид (4.1)

4. ЭЛЕКТРОСТАТИКА Для неподвижных зарядов уравнения электромагнитного поля принимают вид (4.1) 4 ЭЛЕКТРОСТАТИКА Для неподвижных зарядов уравнения электромагнитного поля принимают вид ot E, div E ρ (4 Безвихревой характер поля позволяет ввести скалярный потенциал электрического поля: E gad, для которого

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

Критические размеры реакторов различной формы

Критические размеры реакторов различной формы Критические размеры реакторов различной формы При рассмотрении в виде бесконечной пластины в диффузионном приближении мы получили решение для одномерного нейтронного потока в виде суммы собственных функций

Подробнее

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя.

Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Линейные и нелинейные уравнения физики Модифицированные функции Бесселя. Ряды Фурье-Бесселя и Дини. Задача Штурма-Лиувилля для уравнения Бесселя. Старший преподаватель кафедры ВММФ Левченко Евгений Анатольевич

Подробнее

1. Цилиндрические функции

1. Цилиндрические функции . Цилиндрические функции.. Определение и взаимосвязь цилиндрических функций Уравнение Бесселя t Z (t + tz (t + ( t ν Z(t =. (. Всякое решение уравнения Бесселя называется цилиндрической функцией. Теорема..

Подробнее

. Преобразуем функцию:, если x

. Преобразуем функцию:, если x Вариант Найти область определения функции : + + + Неравенство + выполняется всегда Поэтому область определения данной функции определяется следующими неравенствами:, те, и, те Решением системы этих неравенств

Подробнее

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия

1. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА 1.1. Основные понятия . ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕР- ВОГО ПОРЯДКА.. Основные понятия Дифференциальным уравнением называется уравнение, в которое неизвестная функция входит под знаком производной или дифференциала.

Подробнее

Комплексные числа. ЛОДУ с постоянными коэффициентами.

Комплексные числа. ЛОДУ с постоянными коэффициентами. Занятие 14 Комплексные числа. ЛОДУ с постоянными коэффициентами. 14.1 Комплексные числа Комплексным числом называется выражение вида z = x+iy,где x R. Имеется взаимно однозначное соответствие между множеством

Подробнее

Предел функции. 4 1 Понятие предела функции

Предел функции. 4 1 Понятие предела функции Глава 4 Предел функции 4 1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы

Подробнее

Лекция 4. Идеальная несжимаемая жидкость.

Лекция 4. Идеальная несжимаемая жидкость. Лекция 4. Идеальная несжимаемая жидкость. Жидкость называется идеальной, если коэффициенты вязкости равны нулю. Предположим, что ρt, x является константой. Тогда уравнения, описывающие движение идеальной

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Образцы решения уравнений из «Сборника типовых заданий по курсу высшей математики» Кузнецова Л.А. Авторы: Смирнов А.Н., Беловодский В.Н., кафедра компьютерных систем мониторинга,

Подробнее

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1)

Тема 1. Дифференциальные уравнения первого порядка. F (x, y, y ) = 0, (1.1) 1 Тема 1. Дифференциальные уравнения первого порядка 1.0. Основные определения и теоремы Дифференциальное уравнение первого порядка: независимая переменная; y = y() искомая функция; y = y () ее производная.

Подробнее

Дробно-рациональные выражения

Дробно-рациональные выражения Дробно-рациональные выражения Выражения содержащие деление на выражение с переменными называются дробными (дробно-рациональными) выражениями Дробные выражения при некоторых значениях переменных не имеют

Подробнее

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА»

1 x y. y y. x y ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» ТЕМА 7 «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА» Задача 1. Найти общее решение дифференциального уравнения с разделяющимися переменными: 1. d d d d 1 1 0.. d d d. d d d 5. 6d 6d d d 6. d d 0 7. 8. (

Подробнее

1. Задача для уравнения теплопроводности в шаре.

1. Задача для уравнения теплопроводности в шаре. УМФ семинар К 6 1 1. Задача для уравнения теплопроводности в шаре. 1.1. Постановка 1-ой, 2-ой и 3-ей краевых задач в шаре Введём обозначения: r = x 2 + y 2 + z 2 B = { x, y, z : r 2 < 2} открытый шар радиуса

Подробнее

14. Задача Штурма-Лиувилля.

14. Задача Штурма-Лиувилля. Лекция 8 4 Задача Штурма-Лиувилля Рассмотрим начально-краевую задачу для дифференциального уравнения в частных производных второго порядка описывающего малые поперечные колебания струны Струна рассматривается

Подробнее

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений»

Решение типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» типового варианта «Дифференциальные уравнения и системы дифференциальных уравнений» Задание Выясните, являются ли функции ( ) e и e решениями дифференциального уравнения d ( ) d 0 на промежутке ( ; )..

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

6. ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

6. ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 6 ЛИНЕЙНЫЕ НЕОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное неоднородное дифференциальное уравнение -го порядка с постоянными коэффициентами ) ) ) L [] f ) 9) где i постоянные Так

Подробнее

Тема 8. МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА

Тема 8. МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА Тема 8. МЕТОД РАЗДЕЛЕНИЯ ПЕРЕМЕННЫХ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ ВТОРОГО ПОРЯДКА Краевые задачи на плоскости. Краевые задачи для уравнений Лапласа и Пуассона в простейших областях (круг кольцо прямоугольник

Подробнее

Контрольная работа 1. дифференциальному уравнению первого порядка. Р е ш е н и е. Найдем первую производную от заданной функции

Контрольная работа 1. дифференциальному уравнению первого порядка. Р е ш е н и е. Найдем первую производную от заданной функции Контрольная работа 1 Задание 1 Показать, что функция удовлетворяет обыкновенному дифференциальному уравнению первого порядка Р е ш е н и е Найдем первую производную от заданной функции ( После подстановки

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ. Государственное образовательное учреждение высшего профессионального образования МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАШИНОСТРОЕНИЯ ИИ Поспелов,

Подробнее

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия

8. ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ Основные понятия 8 ЛИНЕЙНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ВТОРОГО ПОРЯДКА С ПЕРЕМЕННЫМИ КОЭФФИЦИЕНТАМИ 8 Основные понятия Линейным дифференциальным уравнением -го порядка с переменными коэффициентами называется уравнение

Подробнее

1 Метод Фурье для эллиптического уравнения. 717 a).случай однородных краевых условий по x. Найти решение u(x, t) краевой задачи

1 Метод Фурье для эллиптического уравнения. 717 a).случай однородных краевых условий по x. Найти решение u(x, t) краевой задачи 1 Метод Фурье для эллиптического уравнения. 717 a).случай однородных краевых условий по x. u(, y) = u x (, y) =, y (, s), u(x, ) =, u(x, s) = f(x), x (, ). (1.1) Шаг 1. Будем искать решение уравнения u

Подробнее

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения.

ЛЕКЦИЯ 12. Поверхности в пространстве и их уравнения. ЛЕКЦИЯ Поверхности в пространстве и их уравнения Поверхность Поверхность, определенная некоторым уравнением в данной системе координат, есть геометрическое место точек, координаты которых удовлетворяют

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2

Так как y, то уравнение примет вид x и найдем его решение. x 2 Отсюда. x dy C1 2 и получим общее решение уравнения 2 Лекции -6 Глава Обыкновенные дифференциальные уравнения Основные понятия Различные задачи техники естествознания экономики приводят к решению уравнений в которых неизвестной является функция одной или

Подробнее

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами

Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 1 Тема 3. Линейные дифференциальные уравнения с постоянными коэффициентами 3.1 Линейное однородное уравнение Дифференциальное уравнение вида y (n) + a n 1 y (n 1) +... + a 1 y + a 0 y = 0, (3.1) где a

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Московский государственный технический университет им Н Э Баумана Соболев СК Дифференциальные уравнения Методические указания к решению задач Москва МГТУ им Баумана 008 СК Соболев Дифференциальные уравнения

Подробнее

Глава 6. Неопределенный интеграл

Глава 6. Неопределенный интеграл Глава Неопределенный интеграл Непосредственное интегрирование Функцию F() называют первообразной для функции f(), если выполняется равенство F'() f() Совокупность всех первообразных данной функции f()

Подробнее

ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» 1 семестр

ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» 1 семестр ТЕМАТИКА КОНТРОЛЬНЫХ РАБОТ ПО ДИСЦИПЛИНЕ «МАТЕМАТИКА» направление «Экология и природопользование» семестр. Разложить вектор X по векторам P, Q, R. Систему решить ) методом Крамера, ) матричным методом,

Подробнее

Интегралы и дифференциальные уравнения. Лекция 24

Интегралы и дифференциальные уравнения. Лекция 24 кафедра «Математическое моделирование» проф П Л Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов -го курса -го семестра специальностей РЛ,,3,6, БМТ, Лекция 4 Однородные системы

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

α, отсчитываемый от положительного направления оси до прямой L против

α, отсчитываемый от положительного направления оси до прямой L против ЛЕКЦИЯ 9 Уравнение прямой на плоскости угол Уравнение прямой с угловым коэффициентом Пусть дана некоторая прямая L Углом наклона прямой L к оси O называется α, отсчитываемый от положительного направления

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Министерство образования и науки Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Кафедра прикладной механики и математики ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ

Подробнее

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x)

Интегрирование рациональных дробей. Рациональной дробью называется дробь вида P ( x) ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Интегрирование рациональных дробей Рациональной дробью называется дробь вида P Q, где P и Q многочлены Рациональная дробь называется правильной, если степень многочлена P ниже степени

Подробнее

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x

, которые реализует по фиксированным ценам p. y, которые связаны между собой так, что каждому набору числовых значений переменных x Лекции Глава Функции нескольких переменных Основные понятия Некоторые функции многих переменных хорошо знакомы Приведем несколько примеров Для вычисления площади треугольника известна формула Герона S

Подробнее

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков.

Цель: Изучение линейных дифференциальных уравнений высших порядков. 1. Рассмотреть линейные дифференциальные уравнения высших порядков. ЛЕКЦИЯ 3 Линейные дифференциальные уравнения высших порядков Линейные неоднородные и однородные дифференциальные уравнения второго порядка Интегрирование ЛОДУ и ЛНДУ второго порядка с постоянными коэффициентами

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В.В. Конев КОМПЛЕКСНЫЕ ЧИСЛА Издательство Томского

Подробнее

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности

Производная сложной и неявно заданной функции нескольких переменных. Касательная плоскость и нормаль к поверхности ПРАКТИЧЕСКОЕ ЗАНЯТИЕ Производная сложной и неявно заданной функции нескольких переменных Касательная плоскость и нормаль к поверхности Пусть f ( где (t (t причём функции f ( (t (t дифференцируемы Тогда

Подробнее

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3 Вариант Найти область определения функции : y arccos Область определения данной функции определяется неравенством Умножим неравенство на и освободимся от знака модуля: Из левого неравенства находим или

Подробнее

СПЕЦИАЛЬНЫЕ ФУНКЦИИ В ЗАДАЧАХ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Учебное пособие. Санкт Петербург

СПЕЦИАЛЬНЫЕ ФУНКЦИИ В ЗАДАЧАХ МАТЕМАТИЧЕСКОЙ ФИЗИКИ. Учебное пособие. Санкт Петербург СПЕЦИАЛЬНЫЕ ФУНКЦИИ В ЗАДАЧАХ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Учебное пособие Санкт Петербург 0 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. В. М. Сафро, А. В. Скачко, Е. С. Чумерина МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ МИИТ Кафедра «Прикладная математика-1» В. М. Сафро,

Подробнее

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ С П ПРЕОБРАЖЕНСКИЙ, СР ТИХОМИРОВ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ 987 ОГЛАВЛЕНИЕ Предисловие Формулировка задания 3 Варианты задания 3 Пример выполнения задания и комментарии

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО Комплексные числа и действия над н ими

ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО Комплексные числа и действия над н ими ЭЛЕМЕНТЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО Комплексные числа и действия над н ими Определение 6.. Комплексным числом называется выражение = а + ib, где, b любые действительные числа, i мнимая единица.

Подробнее

Задача 396. Решить уравнение y = t +4. Решение: Заметим, что условие задачи исключает случай t = 4. dy dt = dt t +4 e y =ln t +4 + C 1,C 1 IR

Задача 396. Решить уравнение y = t +4. Решение: Заметим, что условие задачи исключает случай t = 4. dy dt = dt t +4 e y =ln t +4 + C 1,C 1 IR Пояснения к тексту: знак читается как "равносильно" и обозначает, что у уравнений справа от знака и слева от знака множество решений совпадает, знак IR обозначает ммножество вещественных чисел, знак IN

Подробнее

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2 Вариант Найти область определения функции : y + Область определения данной функции определяется неравенством Кроме того знаменатель не должен обращаться в нуль Найдём корни знаменателя: Объединяя результаты

Подробнее

для всех k. Ответ: График представлен на рисунке. 3. Построить график функции: y = 2. Область определения функции: вся числовая ось: x (,

для всех k. Ответ: График представлен на рисунке. 3. Построить график функции: y = 2. Область определения функции: вся числовая ось: x (, Вариант 9 Найти область определения функции : y + lg Область определения данной функции определяется следующим неравенством: >, те > Далее, знаменатель не должен обращаться в нуль: или ± Объединяя результаты,

Подробнее

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Министерство образования и науки молодежи и спорта Донбасская государственная машиностроительная академия Составитель Костиков А.А. УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Методические указания к выполнению практических

Подробнее

Система двух автономных обыкновенных линейных дифференциальных уравнений (ОДУ). Решение системы двух линейных автономных ОДУ. Типы особых точек.

Система двух автономных обыкновенных линейных дифференциальных уравнений (ОДУ). Решение системы двух линейных автономных ОДУ. Типы особых точек. СЕМИНАР 4 Система двух автономных обыкновенных линейных дифференциальных уравнений (ОДУ). Решение системы двух линейных автономных ОДУ. Типы особых точек. РЕШЕНИЕ СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Подробнее

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах

Линейные уравнения первого порядка, уравнение Бернулли. Уравнение в полных дифференциалах ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1 Линейные уравнения первого порядка, уравнение Бернулли Уравнение в полных дифференциалах Линейным дифференциальным уравнением первого порядка называется уравнение + p( = q( Если

Подробнее

МАТЕМАТИЧЕСКАЯ ФИЗИКА

МАТЕМАТИЧЕСКАЯ ФИЗИКА ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ» Кафедра «Математика и теоретическая механика» Методические рекомендации

Подробнее

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПРАКТИКУМ ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ» С ИСПОЛЬЗОВАНИЕМ СИСТЕМЫ MATHCAD

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПРАКТИКУМ ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ» С ИСПОЛЬЗОВАНИЕМ СИСТЕМЫ MATHCAD РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПРАКТИКУМ ПО ТЕМЕ «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ» С ИСПОЛЬЗОВАНИЕМ СИСТЕМЫ MATHCAD Рязань 009 Предисловие Практикум является приложением к учебному

Подробнее

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы.

Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Разностная аппроксимация начально-краевой задачи для уравнения колебаний. Явная (схема «крест») и неявная разностные схемы. Рассмотрим несколько вариантов разностной аппроксимации линейного уравнения колебаний:

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения ~ ~ Дифференциальные уравнения Общие сведения о дифференциальных уравнений Задача на составление дифференциальных уравнений Определение: дифференциальным уравнением называется такое уравнение, которое

Подробнее

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально,

I курс, задача 1. Докажите, что функция Римана. 1, если x 0, 1 R( x), если x, m, n, m 0, и дробь несократима, 0, если x иррационально, I курс, задача. Докажите, что функция Римана, если 0, m m R( ), если, m,, m 0, и дробь несократима, 0, если иррационально, разрывна в каждой рациональной точке и непрерывна в каждой иррациональной. Решение.

Подробнее

1. КОМПЛЕКСНЫЕ ЧИСЛА

1. КОМПЛЕКСНЫЕ ЧИСЛА Основные понятия 1 КОМПЛЕКСНЫЕ ЧИСЛА Комплексным числом называется выражение вида i, где и действительные числа, i мнимая единица, удовлетворяющая условию i 1 Число называется действительной частью комплексного

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

Глава 7 Плоскость в пространстве

Глава 7 Плоскость в пространстве Глава 7 Плоскость в пространстве Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:, где А, В, С координаты вектора i j k -вектор нормали к плоскости. Возможны

Подробнее

1 = = 0. (1) R + 1 = C, (2) 1(R)

1 = = 0. (1) R + 1 = C, (2) 1(R) . Электростатика. Электростатика Урок 7 Разделение переменных в сферической и цилиндрической системах координат Оператор Лапласа в сферической системе координат записывается в виде = 2 = 2 ) + sin θ )

Подробнее

МАТЕМАТИКА ПОСОБИЕ. по изучению дисциплины и. выполнению контрольных работ по темам. «Дифференциальные уравнения» и «Ряды»

МАТЕМАТИКА ПОСОБИЕ. по изучению дисциплины и. выполнению контрольных работ по темам. «Дифференциальные уравнения» и «Ряды» МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ ------------------------------------------------------------------------------------------------- О.Г. Илларионова, В.А. Ухова МАТЕМАТИКА

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ КРАТНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ III ТЕМА ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ОГЛАВЛЕНИЕ

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. 1. Основные понятия ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1. Основные понятия Дифференциальным уравнением относительно некоторой функции называется уравнение, связывающее эту функцию с её независимыми перемпнными и с её производными.

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. Геометрической прогрессией называется числовая последовательность b

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ. Геометрической прогрессией называется числовая последовательность b ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ. ГЕОМЕТРИЧЕСКАЯ ПРОГРЕССИЯ Геометрической прогрессией называется числовая последовательность b, первый член которой отличен от нуля, а каждый последующий член, начиная со второго,

Подробнее

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ: НЕМНОГО ТЕОРИИ И РЕШЕНИЯ ЗАДАЧ. Балакина Е.Ю.

СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ: НЕМНОГО ТЕОРИИ И РЕШЕНИЯ ЗАДАЧ. Балакина Е.Ю. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новосибирский национальный исследовательский государственный университет» СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ

Подробнее

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии

Занятие 1. Числовые ряды. Сумма ряда. Признаки сходимости. суммам двух рядов для бесконечной геометрической прогрессии Числовые и степенные ряды Занятие. Числовые ряды. Сумма ряда. Признаки сходимости.. Вычислить сумму ряда. 6 Решение. Сумма членов бесконечной геометрической прогрессии q равна, где q - знаменатель прогрессии.

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными

ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия. Дифференциальные уравнения с разделяющимися переменными ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА Основные понятия Дифференциальные уравнения с разделяющимися переменными Многие задачи науки и техники приводятся к дифференциальным уравнениям Рассмотрим

Подробнее

Т е м а 4 Неопределенный интеграл

Т е м а 4 Неопределенный интеграл 17 Т е м а 4 Неопределенный интеграл Интегральное исчисление является составной частью математического анализа, и применяется при решении множества задач из области физики, химии, биологии, а именно в

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

Область определения данной функции определяется неравенством 5x x 6> 0 являются числа x =, x 3. Так как ветви параболы

Область определения данной функции определяется неравенством 5x x 6> 0 являются числа x =, x 3. Так как ветви параболы Вариант 5 Найти область определения функции lg5 Область определения данной функции определяется неравенством 5 > Корнями уравнения 5+ являются числа, Так как ветви параболы + 5 направлены вниз, то неравенство

Подробнее