ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ

Save this PDF as:
Размер: px
Начинать показ со страницы:

Download "ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ"

Транскрипт

1 1 ДИСКРЕТНЫЕ И НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ Одним из важнейших понятий теории вероятностей является понятие случайной величины. Случайной величиной называется переменная, которая в результате испытания принимает одно и только одно возможное значение, но какое именно заранее не известно. Примеры случайных величин: - количество студентов на лекции; - количество больных в городе; - число родившихся в течение суток в г. Кемерово; - продолжительность человеческой жизни. Случайные величины принято обозначать прописными латинскими буквами X, Y, Z,, а их возможные значения соответствующими строчными буквами x, y, z, Вероятности случайных величин обозначают буквами с соответствующими индексами P( X x1 ) P( x1) P1 - запись показывает вероятность того, что случайная величина X принимает значение x 1. Случайные величины разделяют на дискретные и непрерывные. Дискретной называют случайную величину, принимающую отдельные друг от друга возможные значения, которые можно пронумеровать. Число возможных значений дискретной случайной величины может быть конечным или бесконечным, но счетным. Например, количество мальчиков, родившихся в каком-либо месяце; количество рецептов, поступивших в аптеку в течение дня; число ударов пульса больного в минуту; количество осложнений после операций в данной больнице. Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного интервала. Число возможных значений непрерывной случайной величины бесконечно. Например, температура воздуха в течение дня; продолжительность человеческой жизни; время инкубационного периода заболевания. ДИСКРЕТНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА ЗАКОН РАСПРЕДЕЛЕНИЯ ДИСКРЕТНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Дискретная случайная величина X считается заданной, если перечислены все ее возможные значения и соответствующие им вероятности. Для описания случайной величины вводят понятие закона распределения.

2 Законом распределения дискретной случайной величины называют соответствие между ее возможными значениями и их вероятностями. Закон распределения дискретной случай величины может быть задан в виде таблицы, аналитически (в виде формулы) и графически. Простейшей формой задания закона распределения дискретной случайной величины X является таблица, в которой перечислены в порядке возрастания все возможные значения и соответствующие их вероятности, т.е. X x 1 x P p 1 p x p x p Такая таблица называется рядом распределения дискретной случайной величины. Ряд распределения можно представить графически, если по оси абсцисс откладывать значения случайной величины, а по оси ординат соответствующие их вероятности. Соединяют полученные точки отрезками. Построили ломаную, которая называется многоугольником распределения или полигоном распределения вероятностей (рис 1). рис 1 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН Закон распределения полностью описывает дискретную случайную величину. Однако во многих случаях он неизвестен или не всегда удобен для анализа. Поэтому вводят числовые характеристики случайной величины: математическое ожидание, дисперсия и среднее квадратическое отклонение. Математическим ожиданием M (X ) дискретной случайной величины X называется сумма произведений всех ее значений на соответствующие им вероятности M ( X ) x p x p x p x p

3 3 Математическое ожидание не может в достаточной степени характеризовать случайную величину, т.к. необходимо характеризовать разброс (рассеяние) значений случайной величины относительно математического ожидания. В качестве такой характеристики рассматривается дисперсия. Дисперсией дискретной случайной величины называют математическое ожидание квадрата разности случайной величины X и ее математического ожидания X M ( M ) D( X ) X или D( X ) 1 x p Дисперсия D (X ) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния используют среднее квадратическое отклонение. Средним квадратическим отклонением (стандартным отклонением) (X ) случайной величины X называется корень квадратный из ее дисперсии ( X ) D( X ) x p. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Случайную величину X можно характеризовать не только законом распределения. Закон распределения характеризует вероятности событий X x для разных x. Однако можно рассматривать вероятности события X x, где x - текущая переменная. Под выражением X x понимается событие «случайная величина X приняла значение меньшее x». Вероятность P( X является некоторой функцией от x, которая называется функцией распределения. Функцией распределения случайной величины X называется функция F (X ), равная вероятности P( X того, что случайная величина приняла значение, меньшее x. 1 F( X ) P( X (X Функцию распределения F ) иногда называют интегральной функцией распределения или интегральным законом распределения. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения. Функция распределения существует как для дискретных, так и для непрерывных случайных величин. Свойства функции распределения. 1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей 0 F ( X ) 1

4 4. Функция распределения случайной величины есть неубывающая функция, т.е. если x1 x, то F( x1 ) F(. 3. Вероятность попадания случайной величины в интервал x 1, x равна приращению ее функции распределения на этом интервале, т.е. P x X x ) F( x ) F( ) ( 1 x1 НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ПЛОТНОСТЬ ВЕРОЯТНОСТИ Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного интервала. Для непрерывной случайной величины можно дать еще одно определение: Случайная величина X называется непрерывной, если ее функция распределения непрерывно в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек. Непрерывную случайную величину X можно задать не только с помощью функции распределения F (X ), но и с помощью плотности вероятности. Плотностью вероятности (плотностью распределения) f ( непрерывной случайной величины X называется производная ее функции распределения F( Иногда функцию f ( называют дифференциальной функцией распределения или дифференциальным законом распределения. График плотности вероятности f ( называют кривой распределения. Кривая распределения лежит не ниже оси абсцисс, и площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице. Свойства плотности вероятности непрерывной случайной величины 1. Плотность вероятности неотрицательная функция 0.. Вероятность попадания непрерывной случайной величины в интервал, равна определенному интегралу от ее плотности вероятности в пределах от до X P dx 3. Функция распределения непрерывной случайной величины может быть выражена через плотность вероятности по формуле x F (

5 5 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ НЕПРЕРЫВНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН Числовые характеристики непрерывной случайной величины X с плотностью вероятности f ( определяются аналогично числовым характеристикам дискретных случайных величин. Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку,, называют величину определенного интеграла M ( X ) xf( dx Если возможные значения x принадлежат всей числовой оси Ox, то M ( X ) xf( Дисперсией непрерывной случайной величины X, возможные значения которой принадлежат отрезку,, называют величину определенного интеграла D ( X ) ( x ) Если возможные значения x принадлежат всей числовой оси Ox, то D ( X ) ( x ) Среднее квадратическое отклонение непрерывной случайной величины D ( X ).


Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика»

Типовой расчет по теме «Теория вероятностей» разработан преподавателями. кафедры «Высшая математика» Типовой расчет по теме «Теория вероятностей» разработан преподавателями кафедры «Высшая математика» Руководство к решению типового расчета выполнила преподаватель Тимофеева Е.Г. Основные определения и

Подробнее

Непрерывная случайная величина

Непрерывная случайная величина Непрерывная случайная величина Непрерывная случайная величина принимает бесконечное количество значений из определенного интервала числовой прямой. 0 6 месяцев Срок службы лампочки 2 Пример. Рост человека

Подробнее

Случайные величины. Дискретная и непрерывная случайные величины

Случайные величины. Дискретная и непрерывная случайные величины Случайные величины Дискретная и непрерывная случайные величины Наряду с понятием случайного события в теории вероятности используется другое более удобное понятие случайной величины Случайной величиной

Подробнее

Теория вероятностей и математическая статистика. Случайные величины

Теория вероятностей и математическая статистика. Случайные величины Теория вероятностей и математическая статистика Случайные величины 1 Содержание Случайные величины Основные законы распределения 2 Случайные величины Понятие случайной величины и закона ее распределения

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Понятие случайной величины Современная теория вероятностей предпочитает где только возможно оперировать не случайными событиями а случайными величинами

Подробнее

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины

Практическая работа 7 Функция, плотность распределения и числовые характеристики непрерывной случайной величины Практическая работа 7 Функция плотность распределения и числовые характеристики непрерывной случайной величины Цель работы: Нахождение функции и плотности распределения числовых характеристик непрерывной

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Подробнее

)? (Вероятность попадания непрерывной СВ

)? (Вероятность попадания непрерывной СВ Случайные величины. Определение СВ ( Случайной называется величина, которая в результате испытания может принимать то или иное значение, заранее не известное).. Какие бывают СВ? ( Дискретные и непрерывные.

Подробнее

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно: 1

ПРИМЕР 1. Число появлений герба при трех бросаниях монеты. Возможные значения: 0, 1, 2, 3, их вероятности равны соответственно: 1 Лекция 11. Дискретные случайные величины Случайной величиной Х называется величина, которая в результате опыта может принять то или иное значение х i. Выпадение некоторого значения случайной величины Х

Подробнее

Медицинская информатика

Медицинская информатика Лукьянова Е. А. Медицинская информатика Теория вероятностей Специальность «Фармация» Заочное отделение 2010 Консультация 2 Темы контрольной работы 2 Случайные величины Числовые характеристики случайных

Подробнее

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь

Тема3. «Функция распределения вероятностей случайной величины» Минестерство образования Республики Беларусь Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема3. «Функция распределения вероятностей случайной величины» Кафедра теоретической и прикладной

Подробнее

Лекция 4 Тема. Содержание темы. Основные категории. Введение в случайные величины

Лекция 4 Тема. Содержание темы. Основные категории. Введение в случайные величины Лекция 4 Тема Введение в случайные величины Содержание темы Случайная величина. Понятия дискретной и непрерывной случайной величины. Ряд распределения дискретной случайной величины. Функция распределения,

Подробнее

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω)

Понятие случайной величины и её закона распределения. Одномерные дискретные случайные величины. Случайной величиной (СВ) называется функция ξ (ω) Понятие и её закона Одномерные дискретные случайные Определение случайной Случайной величиной (СВ) называется функция (ω), определённая на пространстве элементарных событий Ω, со значениями в одномерном

Подробнее

Лекция 7. Непрерывные случайные величины. Плотность вероятности.

Лекция 7. Непрерывные случайные величины. Плотность вероятности. Лекция 7. Непрерывные случайные величины. Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

Пример Пусть Х число очков выпавшее на игральной кости при одном броске. Тогда, эта с.в. распределена по закону

Пример Пусть Х число очков выпавшее на игральной кости при одном броске. Тогда, эта с.в. распределена по закону Случайные величины Случайные величины (с.в.) численное значение, появляющееся в результате опыта, и принимающее произвольное значение из заранее определенного множества. Существует два типа случайных величин:

Подробнее

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ТЕМА 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Понятие непрерывной случайной величины. Функция распределения, плотность распределения, их взаимосвязь и свойства. Математическое ожидание непрерывной случайной величины

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Понятие случайной величины

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Понятие случайной величины СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Понятие случайной величины Мы переходим к изучению еще одного важного понятия теории вероятностей, к понятию случайная величина. Чтобы лучше понять это, приведем несколько примеров.

Подробнее

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности.

ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. 1 ЛЕКЦИЯ 12. НЕПРЕРЫВНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА. 1 Плотность вероятности. Помимо дискретных случайных величин на практике приходятся иметь дело со случайными величинами, значения которых сплошь заполняет некоторые

Подробнее

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ)

Лекция 5 Тема. Содержание темы. Основные категории. Непрерывные случайные величины (НСВ) Лекция 5 Тема Непрерывные случайные величины (НСВ) Содержание темы Способы задания: интегральный закон распределения, плотность распределения. Связь между ними. Свойства плотности распределения. Применение

Подробнее

Случайные величины и законы их распределения.

Случайные величины и законы их распределения. Случайные величины и законы их распределения. Одним из основных понятий теории вероятностей является понятие случайной величины. Сначала рассмотрим примеры. Число вызовов, поступивших от абонентов в течение

Подробнее

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной

случайных величин f(x) и ее свойства Дифференциальной функцией распределения называется 1-я производная от интегральной Лекция 6 План лекции.3.3 Дифференциальная функция распределения непрерывных случайных величин.4 Числовые характеристики случайных.4. Математическое ожидание и его свойства..4. Дисперсия случайных величин

Подробнее

Основные понятия и определения

Основные понятия и определения 1 Основные понятия и определения Вспомним основные понятия и определения, которые употреблялись в курсе теории вероятностей. Вероятностный эксперимент (испытание) эксперимент, результат которого не предсказуем

Подробнее

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания:

Лекция 8. Числовые характеристики случайных величин. Основные свойства математического ожидания: МВДубатовская Теория вероятностей и математическая статистика Лекция 8 Числовые характеристики случайных величин При изучении случайных величин важную роль играют их числовые характеристики Математическим

Подробнее

9. Двумерная случайная величина. Законы распределения Определения и формулы для решения задач

9. Двумерная случайная величина. Законы распределения Определения и формулы для решения задач 9 Двумерная случайная величина Законы распределения 9 Определения и формулы для решения задач Определение Двумерной случайной величиной называется упорядоченная пара (, ) одномерных случайных величин и

Подробнее

Краткий конспект лекций по теории вероятностей и математической статистике

Краткий конспект лекций по теории вероятностей и математической статистике Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Владимирский государственный университет имени

Подробнее

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i

называют пару гипотез. 9. Случаями называют равновозможные гипотезы. n событий A i, A i . ЭЛЕМЕНТЫ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Основные понятия теории вероятностей Многие объекты в математике определяются указанием операций которые можно выполнять над объектами и перечислением свойств которым удовлетворяют

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Лекция 5

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Лекция 5 ЧАСТЬ 4 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Лекция 5 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие случайной величины и закона распределения; для дискретной случайной величины определить

Подробнее

Практическая работа 7 Закон распределения и числовые характеристики случайных величин.

Практическая работа 7 Закон распределения и числовые характеристики случайных величин. Практическая работа 7 Закон распределения и числовые характеристики случайных величин. Цель работы: Нахождение закона распределения, функции распределения и числовых характеристик случайной величины. Содержание

Подробнее

Случайные величины и законы их распределения

Случайные величины и законы их распределения Случайные величины и законы их распределения 9. Дискретные и непрерывные случайные величины Случайной называют величину, которая в результате опыта примет одно и только одно из возможных значений, заранее

Подробнее

Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция 6 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики положения и моменты непрерывных и дискретных случайных величин Числовые характеристики положения Закон

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЗАНЯТИЕ 4 СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. СПОСОБЫ ИХ ЗАДАНИЯ. ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Понятие случайной величины одно из важнейших понятий теории вероятностей. Под случайной величиной понимается величина,

Подробнее

n, тем реже встречаются сколько-либо значительные отклонения

n, тем реже встречаются сколько-либо значительные отклонения Лекция 3. Статистические методы обработки информации в нефтегазовом деле. Составитель асс. каф. БНГС СамГТУ, магистр Никитин В.И... Вероятность. ТЕОРИЯ ВЕРОЯТНОСТИ Вероятность - числовая характеристика

Подробнее

Практическая работа 6 Закон распределения и числовые характеристики дискретной случайной величины.

Практическая работа 6 Закон распределения и числовые характеристики дискретной случайной величины. Практическая работа 6 Закон распределения и числовые характеристики дискретной случайной величины. Цель работы: Нахождение закона распределения, функции распределения и числовых характеристик дискретной

Подробнее

2. Случайные величины. Числовые характеристики случайных величин

2. Случайные величины. Числовые характеристики случайных величин Минестерство образования Республики Беларусь УО «Витебский государственный технологический университет». Случайные величины. Числовые характеристики случайных величин Кафедра теоретической и прикладной

Подробнее

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ

НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ВАЖНЕЙШИЕ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ 1 Случайная величина X называется непрерывной, если она принимает более, чем счётное число значений. Случайная величина X называется

Подробнее

6. Элементы математической статистики.

6. Элементы математической статистики. Минестерство образования Республики Беларусь УО «итебский государственный технологический университет» 6. Элементы математической статистики. Кафедра теоретической и прикладной математики. 90 80 70 60

Подробнее

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН.

Лекция 10 ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН -МЕРНЫЙ СЛУЧАЙНЫЙ ВЕКТОР ЦЕЛЬ ЛЕКЦИИ: определить числовые характеристики системы двух случайных величин: начальные и центральные моменты ковариацию

Подробнее

Кафедра высшей математики МАТЕМАТИКА. Ч.III ТЕОРИЯ ВЕРОЯТНОСТЕЙ Тема III «ДИСКРЕТНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА»

Кафедра высшей математики МАТЕМАТИКА. Ч.III ТЕОРИЯ ВЕРОЯТНОСТЕЙ Тема III «ДИСКРЕТНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА» Министерство сельского хозяйства РФ Кафедра высшей математики МАТЕМАТИКА Ч.III ТЕОРИЯ ВЕРОЯТНОСТЕЙ Тема III «ДИСКРЕТНАЯ СЛУЧАЙНАЯ ВЕЛИЧИНА» Методические указания для самостоятельной работы обучающихся

Подробнее

Большинство исследований проводимых в химической технологии сводятся к решению оптимальных задач. Существует два подхода к решению оптимальных задач:

Большинство исследований проводимых в химической технологии сводятся к решению оптимальных задач. Существует два подхода к решению оптимальных задач: Лекция Большинство исследований проводимых в химической технологии сводятся к решению оптимальных задач. Существует два подхода к решению оптимальных задач: 1. Для решения оптимальных задач необходимо

Подробнее

Числовые характеристики случайной величины

Числовые характеристики случайной величины Числовые характеристики случайной величины Числовые характеристики случайной величины Применяются вместо закона распределения случайной величины В сжатой форме выражают наиболее существенные особенности

Подробнее

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин

Лекция 12 ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ. Метод линеаризации функций случайных величин Лекция ХАРАКТЕРИСТИЧЕСКАЯ ФУНКЦИЯ ЦЕЛЬ ЛЕКЦИИ: построить метод линеаризации функций случайных величин; ввести понятие комплексной случайной величины и получить ее числовые характеристики; определить характеристическую

Подробнее

Практическое занятие 8. Числовые характеристики случайных величин

Практическое занятие 8. Числовые характеристики случайных величин Практическое занятие 8. Числовые характеристики случайных величин Закон распределения вероятностей случайной величины содержит полную информацию о случайной величине. Однако полная информация не всегда

Подробнее

Учебное пособие. Основы теории вероятностей. Раздел 2. Случайные величины. Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК

Учебное пособие. Основы теории вероятностей. Раздел 2. Случайные величины. Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК Министерство образования и науки Краснодарского края ГБОУ СПО «АМТ» КК Учебное пособие Основы теории вероятностей Раздел 2. Случайные величины для студентов специальности 2305 «Программирование в компьютерных

Подробнее

Глоссарий. Вариационный ряд группированный статистический ряд

Глоссарий. Вариационный ряд группированный статистический ряд Глоссарий Вариационный ряд группированный статистический ряд Вариация - колеблемость, многообразие, изменчивость значения признака у единиц совокупности. Вероятность численная мера объективной возможности

Подробнее

ЧАСТЬ І ОСНОВЫ ТЕОРИИ

ЧАСТЬ І ОСНОВЫ ТЕОРИИ .. Скалярные гиперслучайные величины 4 ЧАСТЬ І ОСНОВЫ ТЕОРИИ ГЛАВА ГИПЕРСЛУЧАЙНЫЕ СОБЫТИЯ И ВЕЛИЧИНЫ Введены понятия гиперслучайного события и гиперслучайной величины. Предложен ряд характеристик и параметров

Подробнее

Решение типовика выполнено на сайте Переходите на сайт, смотрите больше примеров или закажите свою работу

Решение типовика выполнено на сайте  Переходите на сайт, смотрите больше примеров или закажите свою работу МИРЭА. Пример решения типового расчета по теории вероятностей Вариант 16 Задача 1. Из двух орудий поочередно ведется стрельба по цели до первого попадания одним из орудий. Вероятность попадания в цель

Подробнее

а) отношение числа случаев, благоприятствующих событию А к общему числу

а) отношение числа случаев, благоприятствующих событию А к общему числу ТЕОРИЯ ВЕРОЯТНОСТЕЙ. РАСПРЕДЕЛЕНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН Задание. Выберите правильный ответ:. Относительной частотой случайного события А называется величина, равная... а) отношению числа случаев, благоприятствующих

Подробнее

Лекция 5. Случайные величины. Числовые характеристики случайных величин. Дискретная случайная величина.

Лекция 5. Случайные величины. Числовые характеристики случайных величин. Дискретная случайная величина. Лекция 5. Случайные величины. Числовые характеристики случайных величин. Дискретная случайная величина. Случайной называют величину, которая в результате испытания принимает одно и только одно, значение,

Подробнее

Система линейных уравнений. Система m уравнений с n неизвестными: 8 a 11 x 1 + a 12 x a 1n x n =b 1 a 21 x 1 + a 22 x a 2n x n =b 2

Система линейных уравнений. Система m уравнений с n неизвестными: 8 a 11 x 1 + a 12 x a 1n x n =b 1 a 21 x 1 + a 22 x a 2n x n =b 2 Раздел VI. Глоссарий Матрица. Совокупность чисел, расположенных в виде прямоугольной таблицы, содержащей n строк и m столбцов называется матрицей размерности Определитель матрицы. Определителем квадратной

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени Н.Э. БАУМАНА С.П.Еркович ПРИМЕНЕНИЕ РЕГРЕССИОННОГО И КОРРЕЛЯЦИОННОГО АНАЛИЗА ДЛЯ ИССЛЕДОВАНИЯ ЗАВИСИМОСТЕЙ В ФИЗИЧЕСКОМ ПРАКТИКУМЕ. Москва, 994.

Подробнее

Дисциплина «Математика»

Дисциплина «Математика» Дисциплина «Математика» Основные разделы: теория вероятностей; математическая статистика; дифференциальное исчисление. Рекомендуемая литература: Кремер Н.Ш. Теория вероятностей и математическая статистика:

Подробнее

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины.

Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Лекция 3. Основные характеристики и законы распределения случайных величин Цель : Напомнить основные понятия теории надежности, характеризующие случайные величины. Время: часа. Вопросы: 1. Характеристики

Подробнее

М.П. Харламов Конспект

М.П. Харламов  Конспект М.П. Харламов http://vlgr.ranepa.ru/pp/hmp Конспект Теория вероятностей и математическая статистика Краткий конспект первого раздела (вопросы и ответы) Доктор физ.-мат. наук профессор Михаил Павлович Харламов

Подробнее

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей

Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к решению контрольной работы 4 по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск 018 018 Кафедра высшей

Подробнее

Часть 2 ЭЛеМенТы МАТеМАТиЧесКОй статистики

Часть 2 ЭЛеМенТы МАТеМАТиЧесКОй статистики Часть 2 Элементы математической статистики Глава I. Выборочный метод 1. Задачи математической статистики. Статистический материал Пусть требуется определить функцию распределения F(x) некоторой непрерывной

Подробнее

Непрерывные случайные величины.

Непрерывные случайные величины. Непрерывные случайные величины. Случайная величина, значения которой заполняют некоторый промежуток, называется непрерывной. В частных случаях это может быть не один промежуток, а объединение нескольких

Подробнее

Непрерывные случайные величины.

Непрерывные случайные величины. Тема Непрерывные случайные величины. Случайная величина, значения которой заполняют некоторый промежуток, называется непрерывной. В частных случаях это может быть не один промежуток, а объединение нескольких

Подробнее

6.4. Системы случайных величин

6.4. Системы случайных величин Лекция 4.9. Системы случайных величин. Функция распределения системы двух случайных величин (СДСВ). Свойства функции 6.4. Системы случайных величин В практике часто встречаются задачи которые описываются

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Кафедра математики и информатики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Учебно-методический комплекс для студентов ВПО, обучающихся с применением дистанционных технологий Модуль 3 МАТЕМАТИЧЕСКАЯ

Подробнее

ИССЛЕДОВАНИЕ СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК НАДЕЖНОСТИ ОДНОКОНТУРНОЙ АВТОМАТИЧЕСКОЙ СИСТЕМЫ РЕГУЛИРОВАНИЯ

ИССЛЕДОВАНИЕ СТАТИСТИЧЕСКИХ ХАРАКТЕРИСТИК НАДЕЖНОСТИ ОДНОКОНТУРНОЙ АВТОМАТИЧЕСКОЙ СИСТЕМЫ РЕГУЛИРОВАНИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ

Подробнее

Математическое ожидание.

Математическое ожидание. Лекция. Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры. Закон распределения (функция

Подробнее

Лекция 15. Выборочный метод в математической статистике. Основные понятия и определения

Лекция 15. Выборочный метод в математической статистике. Основные понятия и определения МДубатовская Теория вероятностей и математическая статистика Лекция 5 ыборочный метод в математической статистике Основные понятия и определения Математическая статистика позволяет получать обоснованные

Подробнее

Глава 3. Непрерывные случайные величины

Глава 3. Непрерывные случайные величины Глава 3. Непрерывные случайные величины. Функция распределения. Если множество значений случайной величины X не конечно и не счетно, то такая случайная величина не может характеризоваться вероятностью

Подробнее

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ

8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 8. ПРИМЕРНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ (ЗАЧЕТУ) ПО ДИСЦИПЛИНЕ 1. Основные понятия и определения теории вероятностей. Виды случайных событий. Классическое и статистическое определение вероятности

Подробнее

1.2. Элементы теории вероятностей.

1.2. Элементы теории вероятностей. .. Элементы теории вероятностей.... Случайные события. Случайные события обычное явление в жизни. Примеры случайных событий: выпадение «орла» или «решки» при бросании монеты, выпадение числа при бросании

Подробнее

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ. Математическое моделирование и проектирование

КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ. Математическое моделирование и проектирование МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное образовательное учреждение высшего образования КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ Математическое моделирование

Подробнее

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН

ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН Для решения многих практических задач совсем не обязательно знать все возможные значения случайной величины и соответствующие им вероятности, а достаточно указать

Подробнее

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ.

ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ Математическая статистика (МС) раздел прикладной математики, который, основываясь на положении теории вероятностей, разрабатывает методы сбора, анализа и обработки результатов

Подробнее

3 0,1 0,2 0,7 a) Найдите функцию распределения случайной величины X

3 0,1 0,2 0,7 a) Найдите функцию распределения случайной величины X Задачи по курсу ТВиМС для самостоятельного решения Часть II 1) Числовые характеристики и законы дискретного распределения вероятностей 1 Имеются десять билетов в театр, 4 из которых на места первого ряда

Подробнее

Теория вероятностей. Алгебра событий. , или обоих этих событий; б) Умножение (пересечение) событий. Произведением событий B = A 1

Теория вероятностей. Алгебра событий. , или обоих этих событий; б) Умножение (пересечение) событий. Произведением событий B = A 1 Теория вероятностей В контрольную работу по этой теме входят четыре задания Приведем основные понятия теории вероятностей необходимые для их выполнения Для решения задач 50 50 необходимо знание темы Случайные

Подробнее

по дисциплине «Математика» для студентов второго курса строительных специальностей

по дисциплине «Математика» для студентов второго курса строительных специальностей Методические указания к самостоятельной подготовке за четвертый семестр по дисциплине «Математика» для студентов второго курса строительных специальностей Кафедра высшей математики 3 А.В. Капусто Минск

Подробнее

1 при x 0. x - плотность распределения (плотность распределения вероятностей, плотность, дифференциальная. x , то. x 4

1 при x 0. x - плотность распределения (плотность распределения вероятностей, плотность, дифференциальная. x , то. x 4 ) Случайная величина X задана плотностью распределения вероятности при f при при Найти интегральную функцию F и математическое ожидание M X. f - плотность распределения (плотность распределения вероятностей,

Подробнее

Элементы математической статистики

Элементы математической статистики Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский национальный исследовательский медицинский университет имени Н.И. Пирогова» Министерства здравоохранения

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА БИНОМИАЛЬНОЕ РАСПРЕДЕЛЕНИЕ это распределение числа успехов наступлений определенного события в серии из n испытаний при условии, что для каждого из n испытаний вероятность успеха имеет одно и то же значение

Подробнее

1. Биномиальный закон распределения

1. Биномиальный закон распределения Лекция 4 Тема: Законы распределения СВ 1. Биномиальный закон распределения Опр. Дискретная СВ Х имеет биномиальный закон распределения, если выполнены следующие условия: 1) эксперимент заключается в последовательном

Подробнее

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ Пермский национальный исследовательский политехнический университет Кафедра математического моделирования систем и процессов МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ к.ф.-м.н., доц. П.С.

Подробнее

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА 2

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА 2 Некоммерческое акционерное общество АЛМАТИНСКИЙ УНИВЕРСИТЕТ ЭНЕРГЕТИКИ И СВЯЗИ Кафедра высшей математики ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Конспект лекций для студентов специальности 5В074600

Подробнее

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11

ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН. Лекция 11 ЧАСТЬ 6 ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН Лекция ЗАКОН РАСПРЕДЕЛЕНИЯ И ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ ФУНКЦИЙ СЛУЧАЙНЫХ ВЕЛИЧИН ЦЕЛЬ ЛЕКЦИИ: ввести понятие функции случайной величины и провести классификацию возникающих

Подробнее

М. М. Попов Теория вероятности Конспект лекций

М. М. Попов Теория вероятности Конспект лекций 2009 М. М. Попов Теория вероятности Конспект лекций Выполнил студент группы 712 ФАВТ А. В. Димент СПбГУКиТ Случайное событие всякий факт, который в результате опыта может произойти или не произойти, и

Подробнее

НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ

НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ НАДЕЖНОСТЬ ТЕХНИЧЕСКИХ СИСТЕМ И ТЕХНОГЕННЫЙ РИСК МАТЕМАТИЧЕСКИЕ ЗАВИСИМОСТИ ДЛЯ ОЦЕНКИ НАДЕЖНОСТИ Отказы, возникающие в процессе испытаний или эксплуатации, могут быть различными факторами: рассеянием

Подробнее

Краткие теоретические сведения. Понятие функции, способы ее задания.

Краткие теоретические сведения. Понятие функции, способы ее задания. Краткие теоретические сведения Материал предложен в сжатой форме и служит в основном для того, чтобы при решении задач можно было бы делать точные ссылки на нужные формулы, определения, теоремы и правила

Подробнее

Случайные величины. Непрерывной называется случайная величина, которая может принимать все значения из некоторого промежутка.

Случайные величины. Непрерывной называется случайная величина, которая может принимать все значения из некоторого промежутка. Случайные величины Определение. Величину называют случайной, если в результате испытания она примет лишь одно возможное значение, заранее не известное и зависящее от случайных причин. Каждой случайной

Подробнее

АНАЛИЗ СЛУЧАЙНЫХ ВЕЛИЧИН ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ

АНАЛИЗ СЛУЧАЙНЫХ ВЕЛИЧИН ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра «Металловедение, термическая

Подробнее

={ }, которая каждому элементарному событию ставит в

={ }, которая каждому элементарному событию ставит в 1.11. Определение одномерной случайной величины, закон распределения, функция распределения Пусть ={} множество всех элементарных событий опыта E. def Одномерной случайной величиной называется числовая

Подробнее

ТЕСТЫ ПО МАТЕМАТИКЕ. имеет в данной стационарной точке экстремум, если при переходе через эту точку производная функции y (x)

ТЕСТЫ ПО МАТЕМАТИКЕ. имеет в данной стационарной точке экстремум, если при переходе через эту точку производная функции y (x) 3 ТЕСТЫ ПО МАТЕМАТИКЕ РАЗДЕЛ. ВЫСШАЯ МАТЕМАТИКА. Составьте определение производной функции из предложенных фраз. Производной от функции y = f () в точке называется. приращение функции. когда 3. разность

Подробнее

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна

1. (10;20) 2. (15;25) 3. (10;15) 4. (5;25) 5. (0;20) Тогда статистическая оценка математического ожидания равна Тема: Математическая статистика Дисциплина: Математика Авторы: Нефедова Г.А.. Точечная оценка параметра равна 5. Укажите, какой вид может иметь интервальная оценка:. (0;0). (5;5) 3. (0;5) 4. (5;5) 5. (0;0).

Подробнее

ОСНОВНЫЕ СВЕДЕНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Надежность технических систем и техногенный риск

ОСНОВНЫЕ СВЕДЕНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ. Надежность технических систем и техногенный риск ОСНОВНЫЕ СВЕДЕНИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ Надежность технических систем и техногенный риск 2018 ОСНОВНЫЕ ПОНЯТИЯ 2 ОСНОВНЫЕ ПОНЯТИЯ отказы ТС* ошибки операторов ТС внешние негативные воздействия *Отказ это

Подробнее

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Лекция 14

МАТЕМАТИЧЕСКАЯ СТАТИСТИКА. Лекция 14 ЧАСТЬ 8 МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Лекция 4 ОСНОВНЫЕ ПОНЯТИЯ И ЗАДАЧИ МАТЕМАТИЧЕСКОЙ СТАТИСТИКИ ЦЕЛЬ ЛЕКЦИИ: определить понятие генеральной и выборочной совокупности и сформулировать три типичные задачи

Подробнее

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ И ИХ ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ 1 ОПРЕДЕЛЕНИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ И ЕЁ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ Случайной величиной называется числовая функция X(ω), заданная на пространстве элементарных событий

Подробнее

Retinskaya.jimdo.com

Retinskaya.jimdo.com ЛЕКЦИЯ 1 Классификация экспериментальных исследований Определение и свойства функции распределения. Вероятность попадания случайной величины на заданный интервал Квантиль распределения Выборочная функция

Подробнее

Функции многих переменных

Функции многих переменных Функции многих переменных Задача 7 Найти все производные второго порядка функции f ( x, y) : f ( x, y) y x Искомые производные: Задача 9 Найти полный дифференциал и градиент функции А: 3 4 f ( x, y) ln

Подробнее

, - вероятность того, что из n бросков t раз выпадет «пятерка»,

, - вероятность того, что из n бросков t раз выпадет «пятерка», .6 Бросают три игральных кубика. Найти ряд и функцию распределения числа выпавших «пятерок» Х, а также M(X), D(X) и вероятность того, что Х>. Решение: Пусть Х число выпавших «пятерок». Перечислим все возможные

Подробнее

Тема Основные понятия математической статистики

Тема Основные понятия математической статистики Лекция 6 Тема Основные понятия математической статистики Содержание темы Задача математической статистики Научные предпосылки математической статистики Основные понятия математической статистики Основные

Подробнее

Лекция 1. Выборочное пространство

Лекция 1. Выборочное пространство Лекция 1. Выборочное пространство Буре В.М., Грауэр Л.В. ШАД Санкт-Петербург, 2013 Буре В.М., Грауэр Л.В. (ШАД) Лекция 1. Выборочное пространство Санкт-Петербург, 2013 1 / 35 Cодержание Содержание 1 Выборка.

Подробнее

Формулы по теории вероятностей

Формулы по теории вероятностей Формулы по теории вероятностей I. Случайные события. Основные формулы комбинаторики а) перестановки P =! = 3...( ). б) размещения A m = ( )...( m + ). A! в) сочетания C = =. P ( )!!. Классическое определение

Подробнее

Одномерные случайные величины

Одномерные случайные величины МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Нижегородский государственный университет им Н.И. Лобачевского» Факультет

Подробнее

2.5.3 Закон Пуассона (закон редких явлений)

2.5.3 Закон Пуассона (закон редких явлений) Лекция 8 План лекции 53 Закон Пуассона 54 Показательный закон распределения 55 Нормальный (гауссов) закон распределения вероятностей 53 Закон Пуассона (закон редких явлений) Дискретная случайная величина

Подробнее

А.В. Иванов, А.П. Иванова. А.В. Иванов, А.П. Иванова МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН, СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ И СЛУЧАЙНЫХ ПРОЦЕССОВ

А.В. Иванов, А.П. Иванова. А.В. Иванов, А.П. Иванова МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ВЕЛИЧИН, СИСТЕМ МАССОВОГО ОБСЛУЖИВАНИЯ И СЛУЧАЙНЫХ ПРОЦЕССОВ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра Прикладная математика-1 МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ (МИИТ) Кафедра Прикладная математика-1 А.В. Иванов,

Подробнее

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г.

Зав. кафедрой математики, физики и медицинской информатики, доцент. /Авачева Т.Г./ «22» сентября 2017г. Перечень Основных контрольных вопросов для зачета (экзамена) по дисциплине Физика, математика, модуль М атематика, для студентов 1 курса медикопрофилактического факультета 1. Понятие функции. Способы задания

Подробнее

Биномиальное распределение B(n,p) Дискретная случайная величина Х, которая может принимать только целые неотрицательные значения с вероятностью:

Биномиальное распределение B(n,p) Дискретная случайная величина Х, которая может принимать только целые неотрицательные значения с вероятностью: ОСНОВНЫЕ ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Случайные величины измеряются и анализируются в терминах их статистических и вероятностных свойств, главным выразителем которых является функция

Подробнее