16. Формула Тейлора (продолжение)

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "16. Формула Тейлора (продолжение)"

Транскрипт

1 6. Формула Тейлора (продолжение Докажем единственность представления из теоремы 5.7. Предложение 6.. Пусть f : (p; q R функция класса C n, и пусть a (p; q. Предположим, что f(x = c 0 + c (x a + : : : + c n (x a n + o((x a n : Тогда c j = f (j (a j! при 0 j n. Доказательство. Если положить b i = f (i (a=a!, то в свете теоремы 5.7 предложение будет вытекать из следующего утверждения. Пусть f произвольная функция на (p; q, удовлетворяющая соотношениям f(x = b 0 + b (x a + : : : + b n (x a n + o((x a n ; f(x = c 0 + c (x a + : : : + c n (x a n + o((x a n ; тогда b i = c i при 0 i n. Обратите внимание, что o(x a n в правых частях двух равенств это, вообще говоря, две разные функции. Для доказательства этого последнего утверждения положим b j c j = m j. Тогда, вычитая одно представление функции f из другого, получаем, что или m 0 + m (x a + : : : + m n (x a n + o((x a n = 0; m 0 + m (x a + : : : + m n (x a n = o((x a n : Если не все m j равны нулю, то пусть m 0 = : : : = m k = 0 и m k 0. Тогда имеем m k (x a k = (x a k+ (m k+ +m k+ (x a+: : :+m n (x a n k +o((x a n : (6. В правой части оба слагаемых есть, очевидно, o((x a k, так что и их сумма есть o(x a k ; с другой стороны, левая часть не есть o(x a k, так как ее отношение к (x a k есть ненулевая константа m k, к нулю не стремящаяся. Получили противоречие.

2 Более формально можно провести это рассуждение так. Поделив в (6. обе части на (x a k, получим, что m k = (x ap (x + o((x an (x a k = (x ap (x + (x a n k o((x an (x a n ; где P (x некоторый многочлен. Поскольку P (x и (x a n k ограничены в некоторой окрестности точки k, в то время как x a 0 и o((x a n =(x a n 0 (при x a, получаем, что правая часть стремится к нулю, в то время как левая часть ненулевая константа. Вот еще одно применение формулы Тейлора и символа o(. Предложение 6.. Пусть f : (p; q R функция класса C, и пусть a (p; q. Предположим, что f (a = 0. Тогда если f (a > 0, то в точке a достигается локальный минимум функции f, а если f (a < 0, то в точке a достигается локальный максимум. Доказательство. Разберем, например, случай, когда f (a > 0. По формуле Тейлора имеем f(x = f(a + f (a (x a + o((x a : }{{} В правой части второе слагаемое положительно при всех x a, так что все будет доказано, если мы установим, что при всех x, достаточно близких к a, третье слагаемое будет по модулю меньше второго: тогда сумма второго и третьего слагаемых по-прежнему будет положительна при всех x, достаточно близких к a, откуда будет следовать, что f(x > f(a при всех x, достаточно близких к a. Чтобы установить указанное соотношение между вторым и третьим r(x (x a слагаемыми, заметим, что x a = 0; значит, существует такое " > 0, что 0 < x a < " r(x (x a < f (a : При 0 < x a < " имеем теперь r(x что и требовалось. r(x < f (a f (a (x a + r(x > 0;

3 Если функция f бесконечно дифференцируема на (p; q, то ей можно сопоставить формальный ряд, называемый, как мы помним, рядом Тейлора этой функции в точке a (p; q: f(x f(a + f (a(x a + f (a (x a + : : : + f (n (a + : : :! n! Мы не случайно использовали в этой формуле ни к чему не обязывающий знак вместо знака равенства: как мы уже отмечали, ряд Тейлора может расходиться при всех x (кроме, естественно, x = a, а может сходится, но вовсе не к функции f. Так или иначе, сейчас мы выпишем ряды Тейлора для элементарных функций. Начнем с экспоненты, синуса и косинуса. Коэффициенты ряда Тейлора для них (в нуле находятся без труда: e x + x + x! + : : : + xn n! + : : : cos x x! + x4 4! x6 6! + : : : sin x x x3 3! + x5 5! : : : Как мы знаем, на самом деле эти ряды сходятся к соответствующим функциям для всех x R. Непосредственно находятся и коэффициенты ряда Тейлора в нуле для функции x ( + x a : ( + x a + a x + a(a x a(a : : : (a n + + : : : + + : : :! n! Этот ряд называется биномиальным рядом. Его радиус сходимости равен единице; позднее мы покажем, что на интервале ( ; он сходится к ( + x a. Если a натуральное число, то биномиальный ряд содержит лишь конечное количество ненулевых членов; в этом случае знак можно заменить на знак равенства при всех x, поскольку при этом получается обычная формула бинома Ньютона. Полезно явно выписать частный случай биномиального ряда, получающийся при a = : + x x + x + : : : (6. Построим теперь ряд Тейлора для логарифма. По традиции вместо ряда для логарифма в единице выписывают ряд для функции 3

4 x ln( + x в нуле. Для нахождения коэффициентов воспользуемся следующим приемом. Заметим, что (ln( + x = =( + x, так что (ln( + x (n = (=( + x (n, значения же производных от =( + x в нуле могут быть считаны с формулы (6.. Поэтому имеем: n : : : ( (n +x (0!! 3! 4! : : : (ln( + x (n (0 0!! 3! : : : Отсюда получаем ряд Тейлора для логарифма: ln( + x x x + x3 4 + : : : Позднее мы покажем, что этот ряд сходится к ln( + x для всех x ( ; ]. Чтобы получить ряд Тейлора для арктангенса, воспользуемся аналогичным приемом. Заметим, что (arctg x = =( + x ; ряд Тейлора для =( + x получается подстановкой x x в формулу (6.: + x x + x 4 x 6 + : : : (6.3 Формальное обоснование таково: из соотношения + x = x + x + : : : + ( n x n + o(x n вытекает, что + x = x +: : :+( n x n +o(x n = x +: : :+( n x (n +o(x n ; так что начальные отрезки ряда (6.3 совпадают с правыми частями формулы Тейлора для =( + x. Теперь, замечая, что (arctg x (n (0 = (=( + x (n (0 и считывая значения производных от =( + x с формулы (6.3, получаем: n ( (n +x (0 0! 0 4! 0 6! 0 : : : (arctg x (n (0 0 0! 0 4! 0 6! : : : arctg x x x3 3 + x5 5 x7 7 + x9 9 : : : Позднее мы покажем, что этот ряд сходится к arctg x для всех x [ ; ]. Приведем теперь несколько примеров работы с формулой Тейлора. 4

5 Пример 6.3. Найти предел Решение. Имеем, очевидно, e x e x x : sin x x стало быть, e x = + x + x + x3 6 + o(x3 ; e x = x + x x3 6 + o(x3 ; sin x = x x3 6 + o(x3 ; Теперь имеем e x e x x = x3 3 + o(x3 ; sin x x = x3 6 + o(x3 : e x e x x = sin x x 3 + o(x3 x3 6 + o(x3 = =3 + o(x3 =6 + o(x3 = o( = =3 + = =3 + 0 o(x =6 + 3 =6 + 0 = : Пример 6.4. Найти предел Решение. Имеем e x e x x : sin x e x e x x x 3 = + 3 o(x3 x = + o(x3 3 x sin x x + o(x = o(x x = = 0: Пример 6.5. Написать формулу Тейлора в нуле с остаточным членом o(x 4 для функции f(x = ln( + x sin x. 5

6 Решение. Выпишем формулы Тейлора с таким остаточным членом для каждого из сомножителей: sin x = x x3 6 + o(x4 ; ln( + x = x x + x3 4 + o(x4 : Теперь перемножим эти равенства и приведем подобные; будем при этом учитывать, что все слагаемые вида x m при m 4 имеют вид o(x 4 (так что находить коэффициенты при таких слагаемых незачем, а также что o(x 4, помноженное на любой многочлен и вообще на любую ограниченную при x 0 функцию, также будет иметь вид o(x 4. Так как сумма слагаемых вида o(x 4 также имеет вид o(x 4, получаем: f(x = (x x3 6 + o(x4 (x x + x3 4 + o(x4 = = x x3 + x4 6 + o(x4 (остальные слагаемые либо имеют степень > 4, либо являются произведениями многочлена на o(x 4. Приводя подобные, получаем окончательно: ln( + x sin x = x x3 + x4 6 + o(x4 : Пример 6.6. Написать формулу Тейлора в нуле с остаточным членом o(x 4 для функции f(x = sin(sin x. Решение. Поскольку sin x = x x3 6 + o(x4, имеем sin(sin x = sin x sin3 x 6 + o(sin 4 x: Заметим теперь, что sin x = O(x при x 0, так что o(sin 4 x = o(x 4. Теперь подставляем выражение для sin x и действуем, как в предыдущем примере: ( x x3 + sin(sin x = x x3 6 o(x4 6 +o(x4 +o(x 4 = x x3 6 6 x3 6 +o(x4 (все остальные слагаемые либо содержат x в степени, большей 4, либо содержат множителем o(x 4. Окончательно получаем: sin(sin x = x x3 3 + o(x4 : 6

7 Пример 6.7. Написать формулу Тейлора в нуле с остаточным членом o(x 4 для функции f(x = tg x. Решение. Воспользуемся «методом неопределенных коэффициентов». Именно, пусть формула Тейлора для тангенса имеет вид tg x = c x + c x + c 3 + c 4 x 4 + o(x 4 (c 0 = tg 0 = 0. Из тождества tg x cos x = sin x и формул Тейлора для синуса и косинуса получаем, действуя, как выше, следующее: tg x cos x = (c x + c x + c 3 + c 4 x 4 + o(x 4 ( x + x4 4 + o(x4 = = c x c x3 + c x c x4 + c 3 + c 4 x 4 + o(x 4 = ( = c x + c x + c 3 c ( + c 4 c x 4 : Поскольку, с другой стороны, sin x = x ( =6 + o(x 4, получаем из единственности коэффициентов Тейлора (предложение 6. такую систему уравнений: c = c = 0 c 3 = 6 c 4 c = 0: Решая ее, последовательно находим c =, c = 0, c 3 = =3, c 4 = 0. Стало быть, tg x = x + x3 3 + o(x4 : Стоит отметить, что коэффициент при x n в разложении тангенса через известные нам функции (факториалы и проч. не выражается. В примерах 6.3 и 6.4 мы показали, как с помощью формулы Тейлора можно находить пределы дробей, у которых и числитель, и знаменатель стремятся к нулю (и тем самым неприменима теорема о пределе частного. Нахождение таких пределов называют еще «раскрытием неопределенности вида 0=0»; вы можете прочитать в любом учебнике формулировку и доказательство «правила Лопиталя», помогающего иногда при раскрытии таких неопределенностей; на практике обычно удобнее пользоваться формулой Тейлора. 7

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2!

Лекция 3. Ряды Тейлора и Маклорена. Применение степенных рядов. Разложение функций в степенные ряды. Ряды Тейлора и Маклорена ( ) ( ) ( ) 1! 2! Лекция 3 Ряды Тейлора и Маклорена Применение степенных рядов Разложение функций в степенные ряды Ряды Тейлора и Маклорена Для приложений важно уметь данную функцию разлагать в степенной ряд, те функцию

Подробнее

17. Дополнения. Доказательство. Зададимся числом " > 0. Покажем для начала, что существует такое x 0, что. < " при x > x 0. (17.1)

17. Дополнения. Доказательство. Зададимся числом  > 0. Покажем для начала, что существует такое x 0, что. <  при x > x 0. (17.1) 17. Дополнения На этой сокращенной лекции последней лекции первого семестра мы осветим два вопроса, на которые не хватило времени в прошлый раз. Мы видели, что для раскрытия неопределенности вида 0=0,

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

Разложение функции в ряд Тейлора

Разложение функции в ряд Тейлора 82 4. Раздел 4. Функциональные и степенные ряды 4.2. Занятие 3 4.2. Занятие 3 4.2.. Разложение функции в ряд Тейлора ОПРЕДЕЛЕНИЕ 4.2.. Пусть функция y = f(x) бесконечно дифференцируема в некоторой окрестности

Подробнее

13. Экспонента и логарифм

13. Экспонента и логарифм 13. Экспонента и логарифм Для завершения доказательства предложения 12.8 нам остается дать одно определение и доказать одно предложение. Определение 13.1. Ряд a i называется абсолютно сходящимся, если

Подробнее

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более

Гл.1. Степенные ряды., постоянные, называемые коэффициентами ряда. Иногда рассматривают степенной ряд более Гл Степенные ряды a a a Ряд вида a a a a a () называется степенным, где,,,, a, постоянные, называемые коэффициентами ряда Иногда рассматривают степенной ряд более общего вида: a a( a) a( a) a( a) (), где

Подробнее

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр

20-е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр -е занятие. Степенные ряды. Ряды Тейлора Матем. анализ, прикл. матем., 3-й семестр Найти радиус сходимости степенного ряда, используя признак Даламбера: ( 89 ( ) n n (n!) ) p (n + )! n= Ряд Тейлора f(x)

Подробнее

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3

b) lim a) lim (4x + 3) = 1; d) lim c) lim x 2 1 5(x 2 + 1) = 114 x 2 (x2 4x + 8) = 4; x 2 x 2 +1 = 3 5 ; x 1 2(x+1) = 1 4. x 3 Занятие Вычисление пределов - : определения, теоремы о пределах, некоторые частные приемы вычисления пределов. Определение предела. Пусть f() функция, определенная в проколотой окрестности точки 0. Число

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля.

Лекция 19. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Лекция 9. Производные и дифференциалы высших порядков, их свойства. Точки экстремума функции. Теоремы Ферма и Ролля. Пусть функция y дифференцируема на некотором отрезке [b]. В таком случае ее производная

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ].

g(b) g(a) = f (c) a) y = x 3 + 4x 2 7x 10, [ 1, 2 ] ; b) y = x 2 + 3x 1, [ 3; 0 ] ; ] ; d) y = (x 1)(x 2)(x 3), [ 1, 3 ]. Занятие 7 Теоремы о среднем. Правило Лопиталя 7. Теоремы о среднем Теоремы о среднем это три теоремы: Ролля, Лагранжа и Коши, каждая следующая из которых обобщает предыдущую. Эти теоремы называют также

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

5. Еще о пределах; ряды

5. Еще о пределах; ряды 5. Еще о пределах; ряды Докажем сначала предложение, на которое нам не хватило времени на прошлой лекции. Предложение 5.. Для всякого b > 0 имеем lim n (ln n=n b ) = 0. (Переход к произвольному основанию

Подробнее

Ответы к заданию Определение приращения аргумента Δx

Ответы к заданию Определение приращения аргумента Δx Ответы к заданию приращения аргумента Δ Приращением аргумента Δ f ( называется разность между значением аргумента в точке и любой другой точке из некоторой окрестности точки Δ, U ( : δ приращения f Δ (

Подробнее

11. Производная (продолжение); непрерывные функции

11. Производная (продолжение); непрерывные функции 11. Производная (продолжение); непрерывные функции На прошлой лекции мы вывели правило дифференцирования произведения функций; сейчас мы разберемся и с дифференцированием частного. Заметим для начала,

Подробнее

a k = a + k a k k=1 k=1 Сумма абсолютно сходящегося комплексного ряда z k определяется формулами k=1 k=1

a k = a + k a k k=1 k=1 Сумма абсолютно сходящегося комплексного ряда z k определяется формулами k=1 k=1 Основные определения 1. Сумма положительного ряда и массива. Частичной суммой ряда (массива t T a t ) называется сумма вида n ( t T a t, T конечное подмножество T ). Положительный ряд (массив) называется

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C 2 -гладкие функции.

Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C 2 -гладкие функции. Лекция 13. Выпуклые функции и формула Тейлора 1 Выпуклые и вогнутые C -гладкие функции. Определение 1 Функция называется выпуклой (вогнутой), если ее надграфик (подграфик) выпуклая область. Пример 1 x

Подробнее

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора.

ЛЕКЦИЯ N6. Правило Бернулли-Лопиталя. Формула Тейлора. ЛЕКЦИЯ N6 Правило Бернулли-Лопиталя Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Формула Тейлора Правило Бернулли-Лопиталя раскрытия неопределенностей Раскрытием неопределенностей

Подробнее

Основные определения, формулы и теоремы

Основные определения, формулы и теоремы Основные определения, формулы и теоремы Ряды 1. Супремум и инфинум. Наименьшее число, ограничивающее сверху некоторое множество чисел называется точной верхней гранью или супремумом этого множества. Двойственным

Подробнее

Лекция 14. Тейлоровское исчисление и оценки остаточных

Лекция 14. Тейлоровское исчисление и оценки остаточных Лекция 4. Тейлоровское исчисление и оценки остаточных членов. Теорема единственности Есть три равносильных оределения многочлена Тейлора. Первое - это многочлен наилучшего приближения к функции в точке.

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО

ТЕМА 3. МАТЕМАТИЧЕСКИЙ АНАЛИЗ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА МАТЕМАТИЧЕСКИЙ

Подробнее

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы

Т.И. Гавриш, Л.Н.Гайшун Р Я Д Ы МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ УО «Белорусский государственный экономический университет» ТИ Гавриш, ЛНГайшун Р Я Д Ы Учебно-методическое пособие для студентов -го курса дневной и заочной

Подробнее

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то:

Теорема 6.1. Если функция f(x) раскладывается в окрестности точки х0 в степенной ряд (6.1) с радиусом сходимости R, то: Лекция 6 Разложение функции в степенной ряд Единственность разложения Ряды Тейлора и Маклорена Разложение в степенной ряд некоторых элементарных функций Применение степенных рядов В предыдущих лекциях

Подробнее

15. Символы o и O, теорема о среднем, формула Тейлора

15. Символы o и O, теорема о среднем, формула Тейлора 15. Символы o и O, теорема о среднем, формула Тейлора Начнем эту лекцию с того, что введем два часто используемых в анализе обозначения. Именно: пусть f и g две функции переменной x, обе стремящиеся к

Подробнее

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3

. Определение производной даѐт и способ еѐ вычисления. Пример 1. 3 Лекции 56 Глава 6 Производная функции 6 Понятие производной Пусть функция определена и непрерывна на некотором промежутке X Взяв значение X придадим аргументу приращение так что и новое значение не выходит

Подробнее

Предел функции. 4 1 Понятие предела функции

Предел функции. 4 1 Понятие предела функции Глава 4 Предел функции 4 1 ПОНЯТИЕ ПРЕДЕЛА ФУНКЦИИ В этой главе основное внимание уделено понятию предела функции. Определено, что такое предел функции в бесконечности, а затем предел в точке, пределы

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

16-е занятие. Изолированные особые точки однозначного характера (ИОТОХ) Матем. анализ, прикл. матем., 4-й семестр

16-е занятие. Изолированные особые точки однозначного характера (ИОТОХ) Матем. анализ, прикл. матем., 4-й семестр стр. из 9 6-е занятие. Изолированные особые точки однозначного характера (ИОТОХ) Матем. анализ, прикл. матем., 4-й семестр A Разложить функцию ln z + 2 z 3 в ряд Лорана в окрестности точки. Корни и кратности

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Курс лекций. Министерство образования и науки Российской Федерации

Курс лекций. Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ "САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ

Подробнее

Дифференциальное исчисление

Дифференциальное исчисление Дифференциальное исчисление Введение в математический анализ Предел последовательности и функции. Раскрытие неопределенностей в пределах. Производная функции. Правила дифференцирования. Применение производной

Подробнее

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина

В.И. Иванов. Министерство образования Российской Федерации. Российский государственный университет нефти и газа имени И.М. Губкина Министерство образования Российской Федерации Российский государственный университет нефти и газа имени ИМ Губкина ВИ Иванов Методические указания к изучению темы «ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ» (для студентов

Подробнее

Лекции «НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ» Составитель: В.П.Белкин

Лекции «НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ» Составитель: В.П.Белкин Лекции «НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ» Составитель: ВПБелкин Лекция Неопределенный интеграл Основные понятия Свойства неопределенного интеграла 3 Основная таблица первообразных 3 4 Типовые примеры 3 5 Простейшие

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

Тема: Степенные ряды.

Тема: Степенные ряды. Математический анализ Раздел: Числовые и функциональные ряды Тема: Степенные ряды. Разложение функции в степенной ряд Лектор Рожкова С.В. 3 г. 34. Степенные ряды Степенным рядом рядом по степеням называется

Подробнее

. (177) Возьмем от обеих частей равенства (177) неопределенный интеграл:

. (177) Возьмем от обеих частей равенства (177) неопределенный интеграл: Тема Неопределенный интеграл Основные методы интегрирования Интегрирование по частям Пусть u и v две дифференцируемые функции одного и того же аргумента Известно, что d( u v) udv vdu (77) Возьмем от обеих

Подробнее

О формулах суммирования и интерполяции

О формулах суммирования и интерполяции О формулах суммирования и интерполяции А В Устинов УДК 51117 1 Введение Известно, что числа Бернулли B n и полиномы Бернулли B n x) возникают в самых разных вопросах теории чисел и приближенного анализа

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени

Подробнее

С.А. Лавренченко. Лекция 9. Экстремумы

С.А. Лавренченко. Лекция 9. Экстремумы 1 СА Лавренченко Лекция 9 Экстремумы 1 Определения и примеры Определение 11 Говорят, что функция имеет (или достигает) абсолютный максимум в точке, если для всех из области определения Значение называется

Подробнее

13-е занятие. Частное и суперпозиция степенных рядов. Ряды Лорана для рациональных функций Матем. анализ, прикл. матем.

13-е занятие. Частное и суперпозиция степенных рядов. Ряды Лорана для рациональных функций Матем. анализ, прикл. матем. стр. из 9 3-е занятие. Частное и суперпозиция степенных рядов. Ряды Лорана для рациональных функций Матем. анализ, прикл. матем., 4-й семестр Вычисление коэффициентов композиции и частного Найти первые

Подробнее

Дифференциальные уравнения

Дифференциальные уравнения Глава 1 Дифференциальные уравнения 1.1 Понятие о дифференциальном уравнении 1.1.1 Задачи, приводящие к дифференциальным уравнениям. В классической физике каждой физической величине ставится в соответствие

Подробнее

С.А. Лавренченко. Доказательство: Повести самостоятельно. Указание: Применить произведения, взяв

С.А. Лавренченко. Доказательство: Повести самостоятельно. Указание: Применить произведения, взяв Лекция 4 1 СА Лавренченко Вычисление пределов 1 Правила вычисления пределов Пусть действительная константа и целое положительное число При условии, что существуют оба предела и, имеют место следующие десять

Подробнее

Т. В. Тарбокова, В. М. Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ. Производная, и её приложения. Издание третье. / x

Т. В. Тарбокова, В. М. Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ ЗАДАЧ. Производная, и её приложения. Издание третье. / x ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Т В Тарбокова, В М Шахматов САМОУЧИТЕЛЬ РЕШЕНИЯ

Подробнее

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е

называется функцией n аргументов x1, x2, xn В дальнейшем будем рассматривать функции 2-х или 3-х переменных, т.е Составитель ВПБелкин 1 Лекция 1 Функция нескольких переменных 1 Основные понятия Зависимость = f ( 1,, n ) переменной от переменных 1,, n называется функцией n аргументов 1,, n В дальнейшем будем рассматривать

Подробнее

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ Министерство образования и науки Российской Федерации Ярославский государственный университет им ПГ Демидова Кафедра дискретного анализа СБОРНИК ЗАДАЧ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ ПО ТЕМЕ ПРЕДЕЛ ФУНКЦИИ

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ Московский государственный университет приборостроения и информатики кафедра высшей

Подробнее

значений x и y, при которых определена функция z = f ( x,

значений x и y, при которых определена функция z = f ( x, I Определение функции нескольких переменных Область определения При изучении многих явлений приходится иметь дело с функциями двух и более независимых переменных Например температура тела в данный момент

Подробнее

21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр

21-е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр -е занятие. Ряды Тейлора. Суммирование степенных рядов Матем. анализ, прикл. матем., 3-й семестр Найти разложения функции в степенной ряд по степеням, вычислить радиус сходимости степенного ряда: A f()

Подробнее

РЯДЫ. 1. Числовые ряды

РЯДЫ. 1. Числовые ряды РЯДЫ. Числовые ряды. Основные определения Пусть дана бесконечная последовательность чисел Выражение (бесконечная сумма) a, a 2,..., a n,... a i = a + a 2 + + a n +... () i= называется числовым рядом. Числа

Подробнее

Практикум: «Формула Тейлора». Если функция f (x)

Практикум: «Формула Тейлора». Если функция f (x) Практикум: «Формула Тейлора» Если функция f () имеет производные до (п +)-го порядка включительно в интервале ( 0, 0 ), 0, то для всех х из этого интервала справедлива формула Тейлора (порядка п) ( ) f

Подробнее

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0

Ряды Лорана. n=1. c n (z z 0 ) n сходится в круге с центром в точке. n=0 Ряды Лорана Более общим типом степенных рядов являются ряды, содержащие как положительные, так и отрицательные степени z z 0. Как и ряды Тейлора, они играют важную роль в теории аналитических функций.

Подробнее

Неопределенный и определенный интегралы

Неопределенный и определенный интегралы ~ ~ Неопределенный и определенный интегралы Понятие первообразной и неопределѐнного интеграла. Определение: Функция F называется первообразной по отношению к функции f, если эти функции связаны следующим

Подробнее

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми.

равны нулю. При формальных операциях с нулями обращаемся с ними как с бесконечно малыми. Контрольная работа Тема Пределы и производные функций Найти пределы нижеследующих функций одной переменной (без правила Лопиталя) а) б) в) г) Пример а) Решение Определяем вид неопределенности При формальных

Подробнее

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013

Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 Вопросы и задания к коллоквиуму по математическому анализу «Предел последовательности и предел функции» Первый поток. Осень 2013 1 Определения Сформулируйте определение: 2 ноября 2013 г. 1. ограниченного

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

ПРОГРАММА ЭКЗАМЕНА ПО КУРСУ "МАТЕМАТИЧЕСКИЙ АНАЛИЗ" (физический факультет, дневное отделение) 1-й семестр. ЧАСТЬ 1 (1-й коллоквиум)

ПРОГРАММА ЭКЗАМЕНА ПО КУРСУ МАТЕМАТИЧЕСКИЙ АНАЛИЗ (физический факультет, дневное отделение) 1-й семестр. ЧАСТЬ 1 (1-й коллоквиум) ПРОГРАММА ЭКЗАМЕНА ПО КУРСУ "МАТЕМАТИЧЕСКИЙ АНАЛИЗ" (физический факультет, дневное отделение) 1-й семестр ЧАСТЬ 1 (1-й коллоквиум) Глава 1. ОСНОВНЫЕ ПОНЯТИЯ МАТЕМАТИЧЕСКОГО АНАЛИЗА 1. ЧИСЛОВЫЕ МНОЖЕСТВА

Подробнее

4. Некоторые классические пределы

4. Некоторые классические пределы 4. Некоторые классические пределы После экскурса в теорию множеств вернемся к более конкретным задачам. Предложение 4.1. Если q < 1, то lim n q n = 0. Доказательство. Заметим, что в силу самог о определения

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя

Лекция 2.8. Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Лекция 8 Теоремы Ферма, Ролля, Коши, Лагранжа и Лопиталя Аннотация: Доказываются все названные теоремы и приводятся примеры раскрытия неопределенностей по правилу Лопиталя Определение Функция y=f() достигает

Подробнее

1. Производная функции в точке

1. Производная функции в точке приращения аргумента Δ приращения Δ функции f производной функции точке f в Основные правила дифференцирования функций функции в точке Приращением аргумента Δ функции f называется разность между значением

Подробнее

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ

4. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ В результате изучения данной темы студент должен: уметь применять таблицу производных и правила дифференцирования для вычисления производных элементарных функций находить производные

Подробнее

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v

. К этому моменту точка прошла путь s 0. Рис. 2. фиксированным, а промежуток времени t - переменным. Тогда средняя скорость v 6 Задачи, приводящие к понятию производной Пусть материальная точка движется по прямой в одном направлении по закону s f (t), где t - время, а s - путь, проходимый точкой за время t Отметим некоторый момент

Подробнее

Предел и непрерывность функции одной переменной

Предел и непрерывность функции одной переменной Министерство образования и науки Российской Федерации Московский государственный университет геодезии и картографии МЕЧанга Предел и непрерывность функции одной переменной Рекомендовано учебно-методическим

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

1. Бета функция. определяется равенством (1)

1. Бета функция. определяется равенством (1) Лекционные наброски на тему Бета и гамма функции Содержание. 1. Бета функция 1 2. Гамма функция 5 3. Выражение бета-функции через гамма-функцию 7 4. Таблица основных формул 9 Графики гамма функции 11 Графики

Подробнее

cos t = Re(e it ); sin t = Im(e it ): cos x = 1 x2 2! + x 4 4! x 6 7 sin x = x x3 3! + x 5! x n E n) = cos x; n E n) = sin x: cos x = lim

cos t = Re(e it ); sin t = Im(e it ): cos x = 1 x2 2! + x 4 4! x 6 7 sin x = x x3 3! + x 5! x n E n) = cos x; n E n) = sin x: cos x = lim 4. Тригонометрия Теперь все готово для того, чтобы дать строгие определения тригонометрических функций. На первый взгляд они, видимо, покажутся довольно странными; тем не менее мы покажем, что определенные

Подробнее

Степенные ряды. Ряды Тейлора

Степенные ряды. Ряды Тейлора Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

9. Первообразная и неопределенный интеграл

9. Первообразная и неопределенный интеграл 9. Первообразная и неопределенный интеграл 9.. Пусть на промежутке I R задана функция f(). Функцию F () называют первообразной функции f() на промежутке I, если F () = f() для любого I, и первообразной

Подробнее

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ

ТЕМА 2. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ДВУХ И ТРЕХ ПЕРЕМЕННЫХ» ЧАСТЬ II ТЕМА ДИФФЕРЕНЦИАЛЬНОЕ

Подробнее

Тригонометрические уравнения. 1

Тригонометрические уравнения. 1 И. В. Яковлев Материалы по математике MathUs.ru Тригонометрические уравнения. 1 В данной статье рассматриваются самые простые виды тригонометрических уравнений. Методы решения таких уравнений стандартны

Подробнее

Типовые задачи c решениями.

Типовые задачи c решениями. Типовые задачи c решениями. Формальное суммирование рядов. Формула рекурсии k a k a + a k k Формула умножения λ a k λa k Формула сложения k k k a k + b k a k + k b k k Пример Геометрическая прогрессия.

Подробнее

Интегралы и дифференциальные уравнения. Лекция 17

Интегралы и дифференциальные уравнения. Лекция 17 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 17 Дифференциальные

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ

ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ С П ПРЕОБРАЖЕНСКИЙ, СР ТИХОМИРОВ ИНТЕГРИРОВАНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОМОЩЬЮ СТЕПЕННЫХ РЯДОВ 987 ОГЛАВЛЕНИЕ Предисловие Формулировка задания 3 Варианты задания 3 Пример выполнения задания и комментарии

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции.

МАТЕМАТИЧЕСКИЙ АНАЛИЗ Часть 1. Предел числовой последовательности. Предел функции. Непрерывность функции. МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «МАМИ» Кафедра «Высшая математика» Бодунов МА, Бородина СИ, Показеев ВВ, Теуш БЛ, Ткаченко ОИ МАТЕМАТИЧЕСКИЙ

Подробнее

ПРОГРАММА И ЗАДАНИЯ. МАТЕМАТИЧЕСКИЙ АНАЛИЗ «Прикладные математика и физика» для всех факультетов высшей математики I

ПРОГРАММА И ЗАДАНИЯ. МАТЕМАТИЧЕСКИЙ АНАЛИЗ «Прикладные математика и физика» для всех факультетов высшей математики I УТВЕРЖДАЮ Проректор по учебной работе Ю.А. Самарский 10 июня 2010 г. ПРОГРАММА И ЗАДАНИЯ по дисциплине: по направлению подготовки: факультеты: кафедра: курс: Трудоёмкость: семестры: лекции: МАТЕМАТИЧЕСКИЙ

Подробнее

l : y y 0 = f (x 0 )(x x 0 ). n : y y 0 = 1 f (x 0 ) (x x 0). y (n) = y (n 1)) dx n.

l : y y 0 = f (x 0 )(x x 0 ). n : y y 0 = 1 f (x 0 ) (x x 0). y (n) = y (n 1)) dx n. Занятие 4 Вычисление производных-1 4.1 Определение производной Производной функции y = f(x) в точке x 0 называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента

Подробнее

Введение. Правило Декарта. Число положительных корней многочлена P (x) = a k x m k a1 x m 1

Введение. Правило Декарта. Число положительных корней многочлена P (x) = a k x m k a1 x m 1 Введение В курсе математического анализа первого семестра одно из центральных мест занимает теорема Ролля. Теорема Ролля. Пусть функция f(x) непрерывна на отрезке [a, b], дифференцируема на интервале (a,

Подробнее

Асимптотики и оценки комбинаторных величин

Асимптотики и оценки комбинаторных величин Асимптотики и оценки комбинаторных величин В данной лекции речь пойдёт об аналитических оценках различных комбинаторных величин, которые были изучены в курсе основ комбинаторики и теории чисел Эти знания

Подробнее

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1)

1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения ( , сем.1) 1. Математический анализ, первый семестр Список вопросов к экзамену 1.1. Определения (2006-2007, сем.1 1. Сформулируйте определение ограниченного множества вещественных чисел. 2. Сформулируйте определение

Подробнее

12. Степень с рациональным показателем; экспонента

12. Степень с рациональным показателем; экспонента 2. Степень с рациональным показателем; экспонента В дополнение к сказанному в предыдущей лекции укажем еще, как можно свести понятие предела к понятию непрерывности. Именно, выполнено следующее очевидное

Подробнее

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ

ПРЕДЕЛЫ ПОСЛЕДОВАТЕЛЬНОСТЕЙ И ФУНКЦИЙ Министерство образования Московской области Государственное бюджетное образовательное учреждение высшего профессионального образования Московской области «Международный университет природы, общества и

Подробнее

Многочленом (полиномом) степени k называется функция вида. . Тогда x

Многочленом (полиномом) степени k называется функция вида. . Тогда x http://vk.ucoz.et/ Операции над многочленами k a k Многочленом (полиномом) степени k называется функция вида a, где переменная, a - числовые коэффициенты (=,.k), и. Любое ненулевое число можно рассматривать

Подробнее

, а всю числовую последовательность - y

, а всю числовую последовательность - y Лекции Глава Числовые последовательности Основные понятия Числовую функцию y f N y R заданную на множестве N натуральных чисел называют числовой последовательностью Число f называют -м элементом последовательности

Подробнее

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3

Вариант 2. Область определения данной функции определяется неравенством 1. Умножим неравенство на 3 и освободимся от знака модуля: 3 Вариант Найти область определения функции : y arccos Область определения данной функции определяется неравенством Умножим неравенство на и освободимся от знака модуля: Из левого неравенства находим или

Подробнее

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие

Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Математический анализ Часть 3. Числовые и функциональные ряды. Кратные интегралы. Теория поля. учебное пособие Н.Д.Выск МАТИ-РГТУ им. К.Э. Циолковского Кафедра «Высшая математика» МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Подробнее

,, -- данные углы. Так как все они положительны, а сумма. + ) = sin cos + cos sin < cos + cos, а значит cos cos + cos.

,, -- данные углы. Так как все они положительны, а сумма. + ) = sin cos + cos sin < cos + cos, а значит cos cos + cos. Задача 1 Сумма трѐх положительных углов равна 90 o. Может ли сумма косинусов двух из них быть равна косинусу третьего? Пусть,, -- данные углы. Так как все они положительны, а сумма равна 90 o, все они

Подробнее

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется:

Лекция 2. Дифференциальные уравнения 2-го порядка (ДУ-2). Общий вид дифференциального уравнения порядка n запишется: Лекция Дифференциальные уравнения -го порядка (ДУ-) Общий вид дифференциального уравнения порядка n запишется: ( n) F,,,,, = 0 ( ) Уравнение -го порядка ( n = ) примет вид F(,,, ) = 0 Подобные уравнения

Подробнее

Вопросы и задачи к экзамену по математическому анализу ( )

Вопросы и задачи к экзамену по математическому анализу ( ) Вопросы и задачи к экзамену по математическому анализу (2013 2014) 29 августа 2013 г. Тема I. Вещественные числа 1. Определения 1.1. Сформулируйте правило сравнения вещественных чисел. Сформулируйте определение:

Подробнее

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера.

(1 x) ctg(2x). 4. Метод хорд графического интегрирования (пример). 5. Обоснование правила Крамера. Билет.. Определение матрицы (с примерами квадратной и прямоугольной матриц).. Геометрический смысл многочлена Тейлора первого порядка (формулировка, пример, рисунок). ( x) ctg(x). 4. Метод хорд графического

Подробнее

Дифференциальное исчисление функций одной переменной

Дифференциальное исчисление функций одной переменной Дифференциальное исчисление функций одной переменной Тема: Производная функции Лекция Правила нахождения производной Производная основных элементарных функций СОДЕРЖАНИЕ: Правила дифференцирования Производная

Подробнее

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых.

ЛЕКЦИЯ N2. 1. Свойства бесконечно малых. ЛЕКЦИЯ N Свойства бесконечно малых и бесконечно больших функций Замечательные пределы Непрерывность функций Свойства бесконечно малых Признаки существования предела 3Свойства бесконечно больших 4Первый

Подробнее

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2

Вариант 4. 3) 0 всегда, то данная функция определена на всей числовой оси. Преобразуем 2 Вариант Найти область определения функции : y + Область определения данной функции определяется неравенством Кроме того знаменатель не должен обращаться в нуль Найдём корни знаменателя: Объединяя результаты

Подробнее

Элементы высшей математики

Элементы высшей математики Кафедра математики и информатики Элементы высшей математики Учебно-методический комплекс для студентов СПО, обучающихся с применением дистанционных технологий Модуль Дифференциальное исчисление Составитель:

Подробнее

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x)

Приложение 1 1. Определение производной Пусть x 1 и x 2 значения аргумента, а y f ) и y f ) - соответствующие значения функции y f (x) Приложение Определение производной Пусть и значения аргумента, а f ) и f ) - ( ( соответствующие значения функции f () Разность называется приращением аргумента, а разность - приращением функции на отрезке,

Подробнее

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры.

ВОПРОСЫ К ЭКЗАМЕНУ. a n. последовательность. 8. Дайте определение пределов lim a a, lim a,,. Приведите примеры. Математический анализ, 27/28 Группы БПМ7 75 Промежуточный экзамен, модули 2 На устном экзамене студент получает два теоретических вопроса и две задачи ВОПРОСЫ К ЭКЗАМЕНУ Расскажите о числах: натуральных,

Подробнее