6. Базис и координаты вектора. Прямоугольная декартова система координат

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "6. Базис и координаты вектора. Прямоугольная декартова система координат"

Транскрипт

1 6. Базис и координаты вектора. Прямоугольная декартова система координат Понятия вектора и линейных операций над векторами алгебраизируют геометрические высказывания т.е. заменяют геометрические утверждения векторными равенствами. Используя результаты предыдущих параграфов приведѐм теперь действия с векторами к действиям с числами т.е. арифметизируем векторноалгебраические соотношения. Для этого введѐм понятия базиса на данном множестве векторов. Определение 6.. Базисом данного множества векторов называется любой упорядоченный набор из n его линейно независимых векторов где n равно максимально возможному числу линейно независимых векторов этого множества. Введение базиса на множестве векторов служит основой для построения системы координат на прямой плоскости и в пространстве.. Базис множества векторов параллельных данной прямой. Пусть дана прямая l и множество векторов параллельных l это множество коллинеарных векторов. Любая пара векторов из по теореме 5. линейно зависима любой ненулевой вектор a из линейно независим (замечание 4.) поэтому максимально возможное число линейно независимых векторов в равно. Определение 6.. Любой вектор 0 a из называется базисом в и на данной прямой l. Для любого вектора b из в силу свойства коллинеарных векторов (теорема.) справедливо равенство b a R (6.) которое называется разложением вектора b по базису a число координатой вектора b в базисе a. Выбор базиса в вводит взаимно однозначное соответствие между векторами из и вещественными числами. Выбор базиса a на прямой l задает на ней направление и превращает еѐ в ось l. Пусть a e е вектор е называется ортом данной оси. Тогда b хe b как это следует из определения.. Знак «+» соответствует сонаправленности векторов b и e противонаправленности. Число в этом случае называется координатой вектора b на оси l.. Базис множества векторов параллельных данной плоскости. Пусть дана плоскость и множество векторов ей параллельных множество компланарных векторов. Любая тройка векторов из линейно зависима по теореме 5. любая пара неколлинеарных векторов из линейно независима по следствию из теоремы 5.. Поэтому максимальное возможное число линейно независимых векторов в равно.

2 Определение 6.. Любая упорядоченная пара неколлинеарных векторов e и e из множества векторов параллельных данной плоскости называется базисом в и на данной плоскости. Любой вектор a из по теореме 5. можно представить единственным образом в виде: ae e R. (6.) Числа и называются координатами вектора a в данном базисе ( e e ) равенство (6.) называется разложением вектора a по данному базису. Выбор базиса в устанавливает взаимно однозначное соответствие между векторами из и упорядоченными парами ( ) вещественных чисел. Так для вектора а из примера 5. числа / его координаты в базисе ( e e ). Пример 6.. а и b неколлинеарные векторы. При каких значениях параметра α векторы а b и а αb образуют базис в множестве? Найдѐм значения параметра α при которых векторы а b и а αb линейно независимы и следовательно неколлинеарны. Приравняем нуль-вектору линейную комбинацию данных векторов: λ ( а b) +λ ( а αb ) =0. Перегруппируем члены в левой части этого равенства: (λ +λ ) а + (λ + αλ )b =0. Линейная комбинация векторов а и b равная нуль-вектору может быть только тривиальной так как эти векторы неколлинеарны и следовательно линейно независимы (следствие из теоремы 5.). Поэтому для λ и λ получаем следующую систему уравнений: 0 Теперь задача α 0. формулируется так: найти значения параметра α для которых нулевое решение этой системы единственно. В силу теоремы Крамера это условие выполняется только в том случае если главный определитель Δ системы отличен от нуля. Поскольку Δ= α 6 то приходим к выводу что нужные значения параметра α определяются неравенством: α 6.. Базис множества всех векторов пространства. Любые четыре вектора из линейно зависимы по теореме 5.5 три некомпланарных вектора из линейно независимы по следствию из теоремы 5.. Поэтому максимальное возможное число линейно независимых векторов в равно. Определение 6.4. Любая упорядоченная тройка некомпланарных векторов ( e e e ) из множества всех векторов пространства называется базисом в и в пространстве. Любой вектор a из согласно теореме 5.4 можно единственным образом представить в виде: a e e e R. (6.) Числа называют координатами вектора a в данном базисе ( e e e) равенство (6.) называется разложением вектора a по данному базису. Выбор базиса в устанавливает взаимно однозначное соответствие между векторами из и упорядоченными тройками ( вещественных чисел. Для вектора а из примера 5. числа /4 /4 / его координаты в базисе e e ). ( e

3 Обобщая вышесказанное заключаем что на пути арифметизации векторноалгебраических соотношений сделан важный шаг установлено взаимно однозначное соответствие между векторами из множеств и упорядоченными наборами действительных чисел. Для достижения поставленной цели осталось установить правила выполнения линейных операций с векторами заданными разложениями в некотором базисе. Правило 6.. При сложении векторов заданных разложениями в некотором базисе складываются их соответствующие координаты. Пусть для определѐнности даны два вектора a и b из также ( e e e) базис в. Имеем a e e e (6.4) b e e (6.5) e где координаты a координаты b в выбранном базисе. Используя свойства линейных операций с векторами ( и ) сумму a b можно преобразовать следующим образом: a b ( e e e) ( e e e) ( ) e ( ) e ( ) e что и требовалось доказать. Правило 6.. При умножении вектора заданного разложением в некотором базисе на действительное число все его координаты умножаются на это число. Пусть для определѐнности дан вектор a из ( e e e) базис в. Имеем a e e e где координаты a в выбранном базисе. Используя свойства линейных операций с векторами ( и ) произведение a вектора a на число можно преобразовать так: a ( e e e) ( ) e ( ) e ( ) e что и требовалось доказать. Свойство координат коллинеарных векторов. Соответственные координаты коллинеарных векторов в любом базисе пропорциональны. Действительно пусть заданы векторы a и b из также ( e e e) базис в причем a b. Для этих векторов имеем разложения (6.4) (6.5). Согласно теореме. для a и b справедливо соотношение: b a где некоторое действительное число. Используя правило и единственность разложения вектора в данном базисе получаем равенства что и означает пропорциональность координат. Поставленная в начале параграфа задача решена линейные операции с векторами сведены к арифметическим операциям (сложению и умножению) над действительными числами.

4 4. Прямоугольный базис. Прямоугольная декартова система координат. Особую роль в аналитической геометрии играет так называемый прямоугольный базис в котором векторы попарно перпендикулярны и имеют единичную длину. В этом случае приняты обозначения: e i e j e k. Векторы i j k называются ортами прямоугольного базиса. С прямоугольным базисом связано понятие о прямоугольной декартовой системе координат. Определение 6.5. Прямоугольной декартовой системой координат в пространстве называется совокупность некоторой точки и прямоугольного базиса. Точка называется началом координат; прямые проходящие через начало в направлении ортов базиса называются координатными осями абсцисс ординат и аппликат соответственно (рис. 6.). Плоскости проходящие через какиелибо две координатные оси называются координатными плоскостями и. Прямоугольными координатами произвольной точки M пространства называются координаты еѐ радиуса-вектора M в данном прямоугольном базисе (рис. 6.). Их пишут в скобках после обозначения точки например M ( при этом называется абсциссой ординатой аппликатой точки M. Выбранное определение прямоугольных координат точки пространства устанавливает взаимно однозначное соответствие между точками пространства и упорядоченными тройками вещественных чисел (. Пример 6.. Дана точка М( 5). Найти координаты точек симметричных М относительно: а) каждой из координатных плоскостей; б) каждой из координатных осей; в) начала координат. Выберем в пространстве прямоугольную декартову систему координат и изобразим точку М на чертеже (рис. 6.). а) Точка М симметрична точке М относительно плоскости х 0 М ( 5); точка М симметрична точке М относительно плоскости i k j M( Рис. 6.. Прямоугольный базис и прямоугольная декартова система M M 6 5 M ( 5) M B i k j A M 7 5 M 4 M M 5 Рис. 6.. К примеру 6. 4 Рис 6.. К формуле для координат вектора АВ в прямоугольной декартовой системе координат

5 у 0 М ( 5); точка М симметрична точке М относительно плоскости 0 М ( 5) рис. 6.. б) Точка М 4 cимметрична точке М относительно оси Ох М 4 ( 5); точка М 5 симметрична точке М относительно оси Оу М 5 ( 5); точка М 6 симметрична точке М относительно оси О М 6 ( 5) рис. 6.. в) Точка М 7 симметрична точке М относительно начала координат М 7 ( 5) рис. 6.. Найдѐм зависимость между координатами вектора в прямоугольном базисе и координатами его начальной и конечной точек A и B. Пусть заданы точки A ( и B (. Очевидно АВ ОВ ОА (рис. 6.). Так как ОА i j k и ОВ i j k то в силу правила 6. рассмотренного выше имеем АВ ( ) i ( ) j ( k. (6.6) Таким образом приходим к выводу: для того чтобы получить координаты вектора в прямоугольном базисе i j k надо из прямоугольных координат конца этого вектора вычесть соответствующие прямоугольные координаты его начала. Замечание 6.. Координаты вектора в прямоугольном базисе часто пишут в скобках после обозначения вектора. Например АВ ). ( 5

a b, a если векторы имеют противоположное направление, то

a b, a если векторы имеют противоположное направление, то ВЕКТОРЫ В ПРОСТРАНСТВЕ R 3 4 Геометрические векторы 4Основные понятия Геометрическим вектором или просто вектором называется направленный отрезок Вектор как правило обозначают B, при этом точки и B обозначают

Подробнее

Лекция 2. Векторы. Определения.

Лекция 2. Векторы. Определения. Лекция 2 Векторы Определения. Вектором (геометрическим вектором) называется направленный отрезок, т.е. отрезок, у которого указаны начало и конец. B конец вектора A начало вектора Обозначение вектора:

Подробнее

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов

Лекция 1.2. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Лекция.. Геометрические векторы, линейная зависимость, базис. Скалярное, векторное и смешанное произведения векторов Аннотация: Вводится понятие линейной независимости системы геометрических векторов.

Подробнее

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2.

Тема 04. Скалярное произведение векторов. Координатное представление скалярного произведения. Векторное. Определение Определение 04.2. Тема 04 Скалярное произведение векторов Координатное представление скалярного произведения Векторное произведение векторов Координатное представление векторного произведения Смешанное произведение тройки

Подробнее

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости

L, проходящая через точку r, с лежащим на ней ненулевым век- Прямая на плоскости Тема 5 Способы задания прямой на плоскости Условие совпадения прямых задаваемых разными линейными уравнениями Геометрические свойства линейных неравенств Способы задания плоскости в пространстве Способы

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 4 ВЕКТОРЫ. БАЗИС 1. Базис векторов Определение 1. Векторы a 1,a 2,...,a n называются упорядоченными, если указано какой вектор из этой системы является первым, какой

Подробнее

и AC компланарны, а векторы AB, AD и AA не компланарны.

и AC компланарны, а векторы AB, AD и AA не компланарны. Лекция 3 Тема: Линейная зависимость векторов Базис векторного пространства План лекции Компланарные векторы Линейная зависимость/независимость системы векторов: определение свойства геометрический смысл

Подробнее

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты

Векторная алгебра Цель изучения Основные понятия 4.1. Векторы и координаты Векторная алгебра Понятие векторного пространства. Линейная зависимость векторов. Свойства. Понятие базиса. Координаты вектора. Линейные преобразования векторных пространств. Собственные числа и собственные

Подробнее

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ

ТЕМА 1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ И ЛИНЕЙНОЙ АЛГЕБРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА ЭЛЕМЕНТЫ

Подробнее

Лекция 3. Базис. Вычтем из первого разложения второе:

Лекция 3. Базис. Вычтем из первого разложения второе: Лекция 3 Базис Теорема 3.1. Любой вектор d единственным образом раскладывается по данному базису, b, c в пространстве. Аналогично, любой вектор c на плоскости единственным образом раскладывается по данному

Подробнее

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов

6. Векторы. Линейные операции на множестве векторов 1. Определение вектора. Основные отношения на множестве векторов Векторная алгебра Раздел математики, в котором изучаются свойства операций над векторами, называется векторным исчислением. Векторное исчисление подразделяют на векторную алгебру и векторный анализ. В

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я линейная зависимость и независимость векторов

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я линейная зависимость и независимость векторов А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я линейная зависимость и независимость векторов ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K

Занятие 1. Векторный анализ Краткое теоретическое введение. Физические величины, Z. для определения которых K Занятие 1. Векторный анализ. 1.1. Краткое теоретическое введение. Физические величины, Z Z (M) для определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются

Подробнее

Лекция 2: Линейные операции над векторами

Лекция 2: Линейные операции над векторами Лекция 2: Линейные операции над векторами Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Мы приступаем к изучению

Подробнее

7. Понятие линейного пространства

7. Понятие линейного пространства 7 Понятие линейного пространства 1 Определение и примеры Пусть L некоторое множество, элементы которого можно складывать и умножать на действительные числа (например, множество матриц одинакового размера,

Подробнее

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона.

Векторная алгебра. Термин вектор (от лат. Vector - несущий ) впервые появился в 1845 г. у ирландского математика Уильяма Гамильтона. Векторная алгебра Содержание 1. Вектор. Действия над векторами 3. Линейная зависимость векторов 4. Координаты вектора в базисе 5. Действия с векторами в коорд. форме 6. Декартова система координат 7. Проекция

Подробнее

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами.

ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ. 1 Основные понятия. Линейные операции над векторами. ЛЕКЦИЯ 3 ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ 1 Основные понятия. Линейные операции над векторами. Отрезок, имеющий определенную длину и определенное направление, называется вектором. Вектор служит для геометрического

Подробнее

Линейная алгебра Лекция 7. Векторы

Линейная алгебра Лекция 7. Векторы Линейная алгебра Лекция 7 Векторы Введение В математике есть два рода величин скаляры и векторы Скаляр это число, а вектор интуитивно понимается как объект, имеющий величину и направление Векторное исчисление

Подробнее

Министерство образования Российской Федерации

Министерство образования Российской Федерации Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика Н Д ВЫСК КОНСПЕКТ ЛЕКЦИЙ ПО ВЫСШЕЙ МАТЕМАТИКЕ Часть

Подробнее

Лекция 28 Глава 1. Векторная алгебра

Лекция 28 Глава 1. Векторная алгебра Лекция 8 Глава Векторная алгебра Векторы Величины, которые определяются только своим числовым значением, называются скалярными Примерами скалярных величин: длина, площадь, объѐм, температура, работа, масса

Подробнее

Тема 1-12: Линейные операции над векторами

Тема 1-12: Линейные операции над векторами Тема 1-12: Линейные операции над векторами А. Я. Овсянников Уральский федеральный университет Институт математики и компьютерных наук кафедра алгебры и дискретной математики алгебра и геометрия для механиков

Подробнее

3.4 Векторы. Метод координат

3.4 Векторы. Метод координат 3.4. ВЕКТОРЫ. МЕТОД КООРДИНАТ 167 3.4 Векторы. Метод координат 3.4.1 Понятие вектора. Свойства Будем называть направленным отрезком AB упорядоченную пару (см. определение 16) точек A; B трехмерного пространства

Подробнее

Векторная алгебра. Глава Векторы на плоскости и в пространстве

Векторная алгебра. Глава Векторы на плоскости и в пространстве Глава 6 Векторная алгебра 6.1. Векторы на плоскости и в пространстве Геометрическим вектором, или просто вектором, называется направленный отрезок, т. е. отрезок, в котором одна из граничных точек названа

Подробнее

Основы векторной алгебры

Основы векторной алгебры ) Понятие вектора и линейные операции над векторами ) Скалярное произведение векторов ) Векторное и смешанное произведение векторов 4) Выражение линейных операций и произведений векторов в декартовой системе

Подробнее

Алгебра и аналитическая геометрия

Алгебра и аналитическая геометрия Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Алтайская государственная педагогическая академия»

Подробнее

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1.

определения которых K Y отрицательное) называются скалярами. Два скаляра X X одинаковой размерности Рис. 1. Занятие 1. Векторный анализ. Краткое теоретическое введение. Физические величины, для Z Z ϕ (M) определения которых K достаточно задать одно число Y K (положительное или Y отрицательное) называются скалярами.

Подробнее

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости

Тема: Смешанное произведение векторов. Аффинные и прямоугольные координаты на плоскости Лекция 7 МЕТОД КООРДИНАТ ПРЯМАЯ И ПЛОСКОСТЬ Тема: Смешанное произведение векторов Аффинные и прямоугольные координаты на плоскости План лекции Определение и геометрический смысл смешанного произведения

Подробнее

Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c);

Лекция 4. Операции над векторами: сложение и умножение на число. AB = AC + CB. (a + b) + c = a + (b + c); Лекция 4 1. ВЕКТОРЫ Вектор направленный отрезок. Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны) Противоположные векторы: имеют одинаковые длины

Подробнее

ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ВЕКТОРНАЯ АЛГЕБРА АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ . ВЕКТОРНАЯ АЛГЕБРА и АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 1 1. Векторная алгебра 1. Понятие вектора Вектором будем называть направленный отрезок, т. е. отрезок с заданным на нём направлением. На рисунке направление

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число

Лекция 4. Скалярное произведение. Определение. Скалярным произведением (СП) двух векторов a и b называется число Лекция 4 Скалярное произведение φ Определение. Углом φ между ненулевыми векторами и называется тот из углов, образованных этими векторами, отложенными от единого начала, который лежит в пределах от до

Подробнее

КРАТКИЙ КУРС ГЕОМЕТРИИ Часть I

КРАТКИЙ КУРС ГЕОМЕТРИИ Часть I Министерство образования и науки РФ ФГБОУ ВПО «Камчатский государственный университет имени Витуса Беринга» О. В. Шереметьева КРАТКИЙ КУРС ГЕОМЕТРИИ Часть I Учебно-методическое пособие Петропавловск-Камчатский

Подробнее

ГЛАВА 1. Проективная геометрия

ГЛАВА 1. Проективная геометрия ГЛАВА 1. Проективная геометрия 1.1. Проективное пространство Пусть дано (n + 1)-мерное векторное пространство V ( 6.1, часть I) и непустое множество P произвольной природы. Говорят, что множество P наделено

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

Линейная алгебра Лекция 8. Векторы (продолжение)

Линейная алгебра Лекция 8. Векторы (продолжение) Линейная алгебра Лекция 8 Векторы продолжение) Геометрическая интерпретация Вектор в геометрии упорядоченная пара точек, одна из которых называется началом, вторая концом вектора В конце вектора ставится

Подробнее

12. ЛИНЕЙНЫЕ ПРОСТРАНСТВА

12. ЛИНЕЙНЫЕ ПРОСТРАНСТВА ЛИНЕЙНЫЕ ПРОСТРАНСТВА ОПРЕДЕЛЕНИЕ И ПРИМЕРЫ ЛИНЕЙНЫХ ПРОСТРАНСТВ Аксиомы линейного пространства Линейным векторным пространством называется множество V произвольных элементов, называемых векторами, в котором

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

Лекция 3. Вектора и линейные операции над ними.

Лекция 3. Вектора и линейные операции над ними. Лекция 3 Вектора и линейные операции над ними. 1. Понятие вектора. При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых

Подробнее

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ

1. ВЕКТОРЫ. ДЕЙСТВИЯ НАД ВЕКТОРАМИ Оглавление 1. Векторы. Действия над векторами 4 2. Скалярное произведение векторов 14 3. Векторное произведение векторов 19 4. Смешанное произведение векторов 24 5. Прямая на плоскости 28 6. Плоскость

Подробнее

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только

~ 1 ~ ВЕКТОРНАЯ АЛГЕБРА. Скалярные и векторные величины, виды векторов. Определение: Скалярной называется величина, которая характеризуется только ~ ~ ВЕКТОРНАЯ АЛГЕБРА калярные и векторные величины, виды векторов. Определение: калярной называется величина, которая характеризуется только o своим значением m, T C. Определение: Векторной называется

Подробнее

Лекция 5. Лекция 6. Лекция 7. Лекция 8.

Лекция 5. Лекция 6. Лекция 7. Лекция 8. Очная форма обучения. Бакалавры. I курс, I семестр. Направление 220700- «Автоматизация технологических процессов и производств» Дисциплина - «Математика». Лекции Лекция 1. Векторные и скалярные величины.

Подробнее

Лекция 6: Система координат. Координаты точки

Лекция 6: Система координат. Координаты точки Лекция 6: Система координат. Координаты точки Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА. МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ГОУ ВПО «СИБИРСКАЯ ГОСУДАРСТВЕННАЯ ГЕОДЕЗИЧЕСКАЯ АКАДЕМИЯ» Г.П. Мартынов МАТЕМАТИКА Часть ВЕКТОРНАЯ АЛГЕБРА Методические указания для студентов -го

Подробнее

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1. ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ ЗАНЯТИЕ МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ Дать определение матрицы Классификация матриц по размерам Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными?

Подробнее

Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет. Кафедра «Высшая математика»

Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет. Кафедра «Высшая математика» Министерство образования и науки Кыргызской республики ГОУВПО Кыргызско-Российский славянский университет Кафедра «Высшая математика» ЛГ Лелевкина, АК Курманбаева ВЕКТОРНАЯ АЛГЕБРА Учебно-методическое

Подробнее

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет,

Лекция 8: Плоскость. Б.М.Верников. Уральский федеральный университет, Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания Эта лекция посвящена изучению плоскости. Излагаемый в ней материал

Подробнее

Векторная алгебра Направленные отрезки и векторы.

Векторная алгебра Направленные отрезки и векторы. ГЛАВА 1. Векторная алгебра. 1.1. Направленные отрезки и векторы. Рассмотрим евклидово пространство. Пусть прямые (AB) и (CD) параллельны. Тогда лучи [AB) и [CD) называются одинаково направленными (соответственно

Подробнее

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости

МАТЕМАТИКА Векторы на плоскости и в пространстве. Уравнение плоскости Агентство образования администрации Красноярского края Красноярский государственный университет Заочная естественно-научная школа при КрасГУ Математика: Модуль 3 для класса. Учебно-методическая часть./

Подробнее

5. Система координат. Координаты точки

5. Система координат. Координаты точки 5. Система координат. Координаты точки 1. Понятие системы координат Определение. Системой координат в пространстве (на плоскости) называется совокупность базиса пространства (соответственно базиса плоскости)

Подробнее

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали.

Лекция 5. Прямая на плоскости. 1. Уравнение прямой, задаваемой точкой и вектором нормали. Лекция 5 на плоскости. Определение. Любая прямая на плоскости может быть задана уравнением первого порядка причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

Подробнее

Лекция 2 Векторы Определители второго и третьего порядка

Лекция 2 Векторы Определители второго и третьего порядка Лекция 2 Векторы Определители второго и третьего порядка 1 ВЕКТОРЫ Вектор направленный отрезок Равные векторы: имеют одинаковые длины и совпадающие направления (параллельны и направлены в одну стороны)

Подробнее

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Государственное образовательное учреждение высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» Кафедра «Высшая математика» ЛИНЕЙНАЯ АЛГЕБРА

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

пространства. Четверка, состоящая из точки O и базиса е 1, e 2 или (O, e 1 17). Рис координатными векторами ( e 1

пространства. Четверка, состоящая из точки O и базиса е 1, e 2 или (O, e 1 17). Рис координатными векторами ( e 1 Лекция - Тема: Метод координат в пространстве Преобразование координат План лекции АСК в пространстве Расстояние между точками и деление отрезка в данном отношении (в пространстве) ПДСК в пространстве

Подробнее

Векторное и смешанное произведение векторов

Векторное и смешанное произведение векторов Векторное и смешанное произведение векторов 1. Правые и левые тройки векторов и систем координат Определение. Три вектора называются упорядоченной тройкой (или просто тройкой), если указано, какой из этих

Подробнее

Упражнения по теме ВЕКТОРНАЯ АЛГЕБРА

Упражнения по теме ВЕКТОРНАЯ АЛГЕБРА Упражнения по теме ВЕКТОРНАЯ АЛГЕБРА Доказать тождество: а y y y y б Доказать что Даны ненулевой вектор и скаляр Найти любое решение уравнения Подсказка: вектор характеризуется направлением и длиной так

Подробнее

1. a + b = b + a. 2. (a + b) + c = a + (b + c).

1. a + b = b + a. 2. (a + b) + c = a + (b + c). Занятие 5 Линейные операции над векторами 5.1 Сложение векторов. Умножение векторов на числа Закрепленным вектором называется направленный отрезок, определенный двумя точками A и B. Точка A называется

Подробнее

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14.

Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ. Лекция 14. Раздел 7. УРАВНЕНИЯ ПРЯМОЙ И ПЛОСКОСТИ В ПРОСТРАНСТВЕ Лекция 4. Тема: Уравнения прямой и плоскости в пространстве 7. Система координат в пространстве Рассмотрим прямоугольную декартову систему координат

Подробнее

8.1. Уравнение прямой в пространстве по точке и направляющему вектору.

8.1. Уравнение прямой в пространстве по точке и направляющему вектору. Глава 8 Уравнение линии в пространстве Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе

Подробнее

Конспект лекции 10 АФФИННЫЕ ПРОСТРАНСТВА

Конспект лекции 10 АФФИННЫЕ ПРОСТРАНСТВА Конспект лекции 10 АФФИННЫЕ ПРОСТРАНСТВА 0. План лекции Лекция Аффинные пространства. 1. Аффинный базис. 2. Аффинные координаты точек. 3. Векторное уравнение прямой. 4. Векторное уравнение плоскости. 5.

Подробнее

«Элементы векторной алгебры и аналитической геометрии»

«Элементы векторной алгебры и аналитической геометрии» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

9.2 Геометрические свойства смешанного произведения.

9.2 Геометрические свойства смешанного произведения. Смешанное произведение трех векторов. Геометрические свойства смешанного произведения. Смешанное произведение в декартовых координатах. Двойное векторное произведение. 9 Лекция 9 9.1 Смешанное произведение

Подробнее

Лекция 4: Векторное произведение векторов

Лекция 4: Векторное произведение векторов Лекция 4: Векторное произведение векторов Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой и следующей

Подробнее

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства.

ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства. ЛЕКЦИЯ N5. Скалярное, векторное, смешанное произведение векторов, арифметические векторные пространства, евклидовы пространства..скалярное произведение векторов..... Векторное произведение двух векторов...

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я Произведения векторов ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я прямая на плоскости

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я прямая на плоскости А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я прямая на плоскости ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов

Подробнее

Глава 1. Элементы линейной алгебры.

Глава 1. Элементы линейной алгебры. Глава Элементы линейной алгебры Матрицы О п р е д е л е н и е Матрицей размерности m n называется прямоугольная таблица чисел, расставленных в m строк и n столбцов Обозначаются матрицы латинскими буквами,,

Подробнее

МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации

МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации МИНИСТЕРСТВО ТРАНСПОРТА И СВЯЗИ УКРАИНЫ Государственный департамент по вопросам связи и информатизации ОДЕССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СВЯЗИ им АС ПОПОВА Кафедра высшей математики ВЕКТОРНАЯ АЛГЕБРА Учебное

Подробнее

Преобразование АСК на плоскости Рассмотрим на плоскости две аффинные системы координат O e 1

Преобразование АСК на плоскости Рассмотрим на плоскости две аффинные системы координат O e 1 Лекция 9 Тема: Преобразование координат Полярные координаты План лекции Преобразование АСК на плоскости Преобразование ПДСК на плоскости 3 Полярные координаты 4 Переход от полярной системы к присоединенной

Подробнее

a b =S пар. = a b sin( a,b );

a b =S пар. = a b sin( a,b ); Практическое занятие 4 Тема: Векторное произведение векторов План Определение и свойства векторного произведения Векторное произведение в координатах Приложение векторного произведения к вычислению площадей

Подробнее

Линейная алгебра и аналитическая геометрия. Тема: Плоскость. Лектор Пахомова Е.Г г.

Линейная алгебра и аналитическая геометрия. Тема: Плоскость. Лектор Пахомова Е.Г г. Линейная алгебра и аналитическая геометрия Тема: Плоскость Лектор Пахомова Е.Г. г. 3. Плоскость. Общее уравнение плоскости и его исследование ЗАДАЧА. Записать уравнение плоскости, проходящей через точку

Подробнее

Глава 7 Плоскость в пространстве

Глава 7 Плоскость в пространстве Глава 7 Плоскость в пространстве Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:, где А, В, С координаты вектора i j k -вектор нормали к плоскости. Возможны

Подробнее

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица.

4) Какая матрица является обратной по отношению к данной матрице? Условия существования обратной матрицы. Как вычисляется обратная матрица. ВОПРОСЫ ТЕОРИИ I. МАТРИЦЫ, ОПРЕДЕЛИТЕЛИ 1) Дать определение матрицы. Что такое нулевая и единичная матрицы? При каких условиях матрицы считаются равными? Как выполняется операция транспонирования? Когда

Подробнее

0.5 setgray0 0.5 setgray1

0.5 setgray0 0.5 setgray1 0.5 setgray0 0.5 setgray1 1 Лекция 3 ВЕКТОРЫ 1. Определение вектора. Свободные и скользящие векторы Дадим определение направленного отрезка. Определение 1. Отрезок, концы которого упорядочены, называется

Подробнее

ординат, - базисные векторы, - абсцисса точки M ( - проекция точки M на ось Ох параллельно оси Оy), -

ординат, - базисные векторы, - абсцисса точки M ( - проекция точки M на ось Ох параллельно оси Оy), - Тема 7.2. Прямоугольные координаты на плоскости и в пространстве. Формулы вычисления длины вектора, расстояние между двумя точками. Системы координат на плоскости Декартовы прямоугольные координаты (рис.

Подробнее

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b.

a + x = a + ( ( a) + b ) = ( a + ( a) ) + b = 0 + b = b. ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» А.Н. Канатников, А.П. Крищенко

Подробнее

ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций)

ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций) МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНБАССКАЯ ГОСУДАРСТВЕННАЯ МАШИНОСТРОИТЕЛЬНАЯ АКАДЕМИЯ ВЕКТОРНАЯ АЛГЕБРА. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ (конспект лекций) МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ

Подробнее

ЛЕКЦИИ ПО ВЫСШЕЙ АЛГЕБРЕ

ЛЕКЦИИ ПО ВЫСШЕЙ АЛГЕБРЕ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» АИ Шерстнёва,

Подробнее

2 Два вектора x, y R n будем считать равными тогда и только тогда, когда x k = y k для всех k = 1,..., n.

2 Два вектора x, y R n будем считать равными тогда и только тогда, когда x k = y k для всех k = 1,..., n. ГЛАВА 6. ЛИНЕЙНЫЕ ПРОСТРАНСТВА 1 1. Пространства R n и C n. Пространство R n это множество всех упорядоченных наборов x = (x 1, x 2,..., x n ) вещественных чисел, n 1 фиксированное целое число. Элементы

Подробнее

1. Векторные пространства и линейные операторы

1. Векторные пространства и линейные операторы ЛИНЕЙНАЯ АЛГЕБРА 1 Векторные пространства и линейные операторы Определение 1 Множество V называется векторным пространством (над полем действительных чисел R), если его элементы можно складывать между

Подробнее

Элементы векторной алгебры и аналитическая геометрия на плоскости

Элементы векторной алгебры и аналитическая геометрия на плоскости Саратовский государственный университет им. Н.Г. Чернышевского Шаталина А.В., Кучер Н.А., Борисова Л.В. Элементы векторной алгебры и аналитическая геометрия на плоскости Учебное пособие для студентов механико-математического,

Подробнее

РЕШЕНИЯ ЗАДАЧ по теме "ВЕКТОРНАЯ АЛГЕБРА" Составитель: В.П.Белкин. Занятие 1. Действия над векторами. x 1

РЕШЕНИЯ ЗАДАЧ по теме ВЕКТОРНАЯ АЛГЕБРА Составитель: В.П.Белкин. Занятие 1. Действия над векторами. x 1 РЕШЕНИЯ ЗАДАЧ по теме "ВЕКТОРНАЯ АЛГЕБРА" Составитель: ВПБелкин Пример Занятие Действия над векторами Построить векторы,,, где ( 4;) и ( ; ) Найти их проекции на координатные оси Решение Построим точки

Подробнее

2. Эллипс и его свойства

2. Эллипс и его свойства . Эллипс и его свойства Определение.. Эллипсом называется кривая второго порядка, определяемая в некоторой прямоугольной декартовой системе координат уравнением b, b 0. (.) Равенство (.) называется каноническим

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки:

Вопросы к коллоквиуму по математике 1 семестр для студентов 1 курса ИСиА, 1-6 гр. направление подготовки: Министерство образования и науки РФ Северный (Арктический) федеральный университет им МВЛомоносова Кафедра математики Вопросы к коллоквиуму по математике семестр для студентов курса ИСиА, -6 гр направление

Подробнее

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я системы координат

А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я системы координат А Н А Л И Т И Ч Е С К А Я Г Е О М Е Т Р И Я системы координат ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru Санкт-Петербургский государственный университет Факультет прикладной математики процессов управления

Подробнее

Уравнения прямой и плоскости

Уравнения прямой и плоскости Уравнения прямой и плоскости Уравнение прямой на плоскости.. Общее уравнение прямой. Признак параллельности и перпендикулярности прямых. В декартовых координатах каждая прямая на плоскости Oxy определяется

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ,

Подробнее

Лекция 7: Векторные пространства

Лекция 7: Векторные пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В этой лекции мы приступаем к изучению линейной алгебры как таковой,

Подробнее

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ «ВЕКТОРНАЯ АЛГЕБРА В ПРИМЕРАХ И ЗАДАЧАХ»

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ «ВЕКТОРНАЯ АЛГЕБРА В ПРИМЕРАХ И ЗАДАЧАХ» МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирский государственный университет геосистем и технологий»

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ Пензенский государственный педагогический университет им В Г Белинского О П Сурина М В Сорокина АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ Учебное пособие Пенза 9 Печатается по решению редакционно-издательского

Подробнее

Лекция 3. Алгебра векторов. Скалярное произведение

Лекция 3. Алгебра векторов. Скалярное произведение Лекция 3. Алгебра векторов. Скалярное произведение ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ СКАЛЯРНЫЕ ВЕКТОРНЫЕ Определяются только числовым значением (площадь S, длина L, объем, работа, масса ) Модулем (длиной) вектора AB

Подробнее

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ На http://technofile.ru чертежи, 3d модели, учебники, методички, лекции. Материалы студентам технических вузов! 1. Векторы. Линейные, операции над векторами. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ 9.1. ТЕОРЕТИЧЕСКИЕ

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» В.В. Конев КОМПЛЕКСНЫЕ ЧИСЛА Издательство Томского

Подробнее

РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: В.П.Белкин

РЕШЕНИЕ ЗАДАЧ по теме АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ Составитель: В.П.Белкин РЕШЕНИЕ ЗАДАЧ по теме "АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ" Составитель: ВПБелкин Занятие Прямая на плоскости Пример Определить коэффициенты k, b в уравнении прямой y = kx+ b, если прямая определена уравнением x y=

Подробнее

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) 8. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ) Общие сведения 1. Кафедра Информатики, вычислительной техники и информационной безопасности 2. Направление

Подробнее

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости

Лекция 29,30 Глава 2. Аналитическая геометрия на плоскости Лекция 9,30 Глава Аналитическая геометрия на плоскости Системы координат на плоскости Прямоугольная и полярная системы координат Системой координат на плоскости называется способ, позволяющий определять

Подробнее

Лекция 8: Базис векторного пространства

Лекция 8: Базис векторного пространства Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики Вступительные замечания В курсе аналитической геометрии важную роль играли понятия базиса

Подробнее

z удовлетворяют уравнению F ( x,

z удовлетворяют уравнению F ( x, Аналитическая геометрия в пространстве В главе будут рассмотрены некоторые линии и поверхности в пространстве Будем исходить из наглядного представление о линии и поверхности известного из курса математики

Подробнее