Лекция 8. Поверхности. Поверхности вращения

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "Лекция 8. Поверхности. Поверхности вращения"

Транскрипт

1 Лекция 8. Поверхности. Поверхности вращения Поверхность это множество точек пространства, координаты которых являются функциями двух параметров. Поверхность можно получить в результате перемещения в пространстве некоторой линии u (образующей) по определенному закону (кинематический способ образования поверхностей). Закон перемещения образующей может быть задан кривыми (направляющими). Совокупность независимых условий, однозначно определяющих поверхность, называется определителем поверхности. Например, определители сферы: (0,R), ( A, B, C, D). На чертеже кинематические поверхности можно задавать проекциями элементов определителя. Более наглядно задание поверхности очерковыми линиями. Очерковая линия k - проекция контурной линии k на плоскость j проекций j. Контурная линия множество точек касания проецирующих прямых с поверхностью. По виду образующей различают: линейчатые (образующая прямая), циклические (образующая окружность) и поверхности зависимых сечений (образующая плоская кривая переменной формы). По закону перемещения образующей различают поверхности параллельного переноса, вращения, винтовые.

2 Различают поверхности алгебраические и трансцендентные. Алгебраические поверхности в декартовой системе координат определяются уравнением в явной форме: z ( x, y ) или в неявной форме: ( x, y, z) 0, где ( x, y), ( x, y, z) - алгебраические многочлены n -го порядка. Если уравнение поверхности содержит трансцендентные функции (показательные, логарифмические, тригонометрические и обратные тригонометрические), то поверхность является трансцендентной. Порядок алгебраической поверхности равен степени ее уравнения. Графически порядок определяется числом точек пересечения поверхности с произвольной прямой или порядком кривой, по которой поверхность пересекается с произвольной плоскостью. Поверхность задана на чертеже полно, если по одной проекции точки, принадлежащей поверхности, можно найти недостающие проекции (критерий полноты задания поверхности на чертеже). Точка принадлежит поверхности, если она принадлежит некоторой линии, лежащей на данной поверхности. Поверхности вращения Поверхность вращения ( ki, ) образуется при вращении плоской или пространственной кривой линии k (образующей) вокруг неподвижной прямой i - оси поверхности. Если образующая - кривая n -го порядка, то в общем случае поверхность будет поверхностью 2n -го порядка. Однако, если образующая n -го порядка имеет плоскость симметрии, а ось вращения лежит в этой плоскости, то получается поверхность n -го порядка.

3 Окружности, которые описывают точки образующей при вращении, называются параллелями. Параллель, радиус которой меньше радиусов смежных параллелей, называется горловиной или горлом, а параллель с большим радиусом экватором Поверхность может иметь несколько горловин и экваторов. Меридиональная плоскость проходит через ось поверхности вращения. Меридиональные плоскости пересекают поверхность вращения по меридианам поверхности. Меридианы, расположенные в плоскостях, параллельных плоскостям проекций, называются главными. Свойства поверхностей вращения: - меридиан поверхности вращения, проходящий через две точки поверхности, является кратчайшей линией между этими точками (геодезической линией); -все меридианы поверхности конгруэнтны; -каждая из параллелей поверхности пересекает меридианы под прямым углом; -каждая из нормалей к поверхности вращения пересекает ось поверхности.

4 Пользуясь условием принадлежности точек поверхности, можно строить недостающие проекции точек, принадлежащие поверхности вращения. Рис. 8.7 Способы задания поверхностей вращения На комплексном чертеже поверхность вращения можно задать: - проекциями геометрической части определителя поверхности; - очерками; - каркасом параллелей (меридианов).

5 Примеры поверхностей вращения Тор Тором называют поверхность, образованную вращением окружности u вокруг оси i, лежащей в плоскости этой окружности. Тор может быть открытым, или закрытым.

6 Сфера Сфера образуется при вращении окружности вокруг одного из диаметров. Очерками сферы на фронтальной, горизонтальной и профильной плоскостях проекций являются одинаковые окружности, радиусы которых равны радиусу сферы. Недостающие проекции точки, принадлежащей сфере, можно найти с помощью параллели, на которой расположена данная точка.

7 Эллипсоид вращения Поверхность эллипсоида вращения получается при вращении эллипса вокруг его большой или малой осей. а б

8 Параболоид вращения оси. Параболоид вращения образуется при вращении параболы вокруг своей Гиперболоид вращения Однополостный гиперболоид вращения образуется при вращении гиперболы вокруг мнимой оси гиперболы. Двуполостный гиперболоид вращения образуется при вращении гиперболы вокруг действительной оси. а б Линейчатые поверхности вращения

9 Такие поверхности получаются при вращении прямой u вокруг оси i. Если прямая u параллельна оси i, то получается цилиндр вращения, если прямые u и i скрещиваются, получается однополостный гиперболоид, если u пересекает ось i - конус вращения. а б в Эти поверхности бесконечно простираются в направлении их образующих и называются незамкнутыми. При изображении незамкнутых поверхностей на комплексном чертеже их обычно ограничивают какимилибо линиями.

11. ПОВЕРХНОСТИ. ОБРАЗОВАНИЕ И ЗАДАНИЕ ПОВЕРХНОСТЕЙ

11. ПОВЕРХНОСТИ. ОБРАЗОВАНИЕ И ЗАДАНИЕ ПОВЕРХНОСТЕЙ 11. ПОВЕРХНОСТИ. ОБРАЗОВАНИЕ И ЗАДАНИЕ ПОВЕРХНОСТЕЙ 11.1. Поверхности. Способ образования 11.2. Поверхности вращения 11.3. Точки и прямые линии, принадлежащие поверхности 11.1. Поверхности. Способ образования

Подробнее

ЛЕКЦИИ ПОВЕРХНОСТИ

ЛЕКЦИИ ПОВЕРХНОСТИ ЛЕКЦИИ 4-5-6-7 Кинематический способ образования поверхностей. Условия задания поверхностей. Образующая, определитель и закон образования поверхности. Классификация поверхностей. Развертываемые линейчатые

Подробнее

ЛЕКЦИЯ 14 ПОСТРОЕНИЕ КАСАТЕЛЬНОЙ ПЛОСКОСТИ И НОРМАЛИ К ПОВЕРХНОСТИ. Построение касательной плоскости и нормали к ЛИНЕЙЧАТОЙ поверхности

ЛЕКЦИЯ 14 ПОСТРОЕНИЕ КАСАТЕЛЬНОЙ ПЛОСКОСТИ И НОРМАЛИ К ПОВЕРХНОСТИ. Построение касательной плоскости и нормали к ЛИНЕЙЧАТОЙ поверхности ЛЕКЦИЯ 14 Построение касательной плоскости и нормали к линейчатым и не линейчатым поверхностям вращения в заданной точке. ПОСТРОЕНИЕ КАСАТЕЛЬНОЙ ПЛОСКОСТИ И НОРМАЛИ К ПОВЕРХНОСТИ Построение касательной

Подробнее

Дифференциальные характеристики кривых линий

Дифференциальные характеристики кривых линий Лекция 6. Кривые линии Кривая линия (или просто кривая) - это геометрическое место точек, координаты которых являются функциями одной переменной. Если уравнение кривой в декартовой системе координат алгебраическое,

Подробнее

Свойства ортогонального проецирования кривой

Свойства ортогонального проецирования кривой 6. КРИВЫЕ ЛИНИИ И ПОВЕРХНОСТИ. 6.1. КОМПЛЕКСНЫЙ ЧЕРТЕЖ КРИВОЙ ЛИНИИ Кривая линия представляет собой геометрическое место последовательных положений непрерывно перемещающейся в пространстве точки. Если

Подробнее

Центральные вопросы темы: сущность методов центрального, параллельного и прямоугольного проецирований и их свойства; обратимость чертежа.

Центральные вопросы темы: сущность методов центрального, параллельного и прямоугольного проецирований и их свойства; обратимость чертежа. Вопросы к блоку 1 спец. 230101 Введение. Предмет начертательной геометрии. Метод проецирования. Комплексный чертеж Монжа. Центральное (коническое) проецирование. Параллельное (Цилиндрическое) проецирование.

Подробнее

Методические указания по выполнению контрольно-графического задания

Методические указания по выполнению контрольно-графического задания Методические указания по выполнению контрольно-графического задания Студенты в первом семестре, кроме решения задач в рабочей тетради, должны выполнить контрольно-графическое задание, состоящее из семи

Подробнее

Лекция 10 ОСОБЫЕ СЛУЧАИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА

Лекция 10 ОСОБЫЕ СЛУЧАИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА Лекция 10 ОСОБЫЕ СЛУЧАИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА Поверхностью второго порядка называется геометрическое место точек, координаты x, y, z которых удовлетворяют алгебраическому уравнению второго

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ЗАДАНИЯ ПО ТЕМЕ ПОЗИЦИОННЫЕ ЗАДАЧИ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ЗАДАНИЯ ПО ТЕМЕ ПОЗИЦИОННЫЕ ЗАДАЧИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ЗАДАНИЯ ПО ТЕМЕ ПОЗИЦИОННЫЕ ЗАДАЧИ Москва 2015 М. А. АЙГУНЯН МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ВЫПОЛНЕНИЮ КУРСОВОГО ЗАДАНИЯ ПО ТЕМЕ ПОЗИЦИОННЫЕ ЗАДАЧИ Москва 2015 2

Подробнее

15. Поверхности второго порядка

15. Поверхности второго порядка 15 Поверхности второго порядка Поверхностью второго порядка называется геометрическое место точек в пространстве, декартовы координаты которых удовлетворяют уравнению F(,,) = 0, где F(,,) многочлен степени

Подробнее

РЕШЕНИЕ ПОЗИЦИОННЫХ ЗАДАЧ в 1 и 2 случаях Пример 1. I ГПЗ (1 случай). Пересечение прямой линии с цилиндрической поверхностью. Σ - цилиндрическая повер

РЕШЕНИЕ ПОЗИЦИОННЫХ ЗАДАЧ в 1 и 2 случаях Пример 1. I ГПЗ (1 случай). Пересечение прямой линии с цилиндрической поверхностью. Σ - цилиндрическая повер ЛЕКЦИИ 8 Классификация позиционных задач и выбор алгоритма решения. Примеры решения позиционных задач, если оба геометрических образа или один из геометрических образов занимают проецирующее положение

Подробнее

Поверхности второго порядка

Поверхности второго порядка Поверхности второго порядка Поверхностью второго порядка называется геометрическая фигура, которая в некоторой декартовой системе координат описывается уравнением 2 2 2 (1) 0. При этом предполагается,

Подробнее

ЛЕКЦИЯ 8 8. КРИВЫЕ ПОВЕРХНОСТИ 8.1. ПОВЕРХНОСТИ ВРАЩЕНИЯ

ЛЕКЦИЯ 8 8. КРИВЫЕ ПОВЕРХНОСТИ 8.1. ПОВЕРХНОСТИ ВРАЩЕНИЯ ЛЕКЦИЯ 8 8. КРИВЫЕ ПОВЕРХНОСТИ 8.1. ПОВЕРХНОСТИ ВРАЩЕНИЯ Поверхности вращения образуются вращением линии l вокруг прямой i оси вращения. Они могут быть линейчатыми и нелинейчатыми (криволинейными). Определитель

Подробнее

КОНСПЕКТ ЛЕКЦИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ. Преподаватель Студент Группа

КОНСПЕКТ ЛЕКЦИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ. Преподаватель Студент Группа КОНСПЕКТ ЛЕКЦИЙ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Преподаватель Студент Группа 1 ПРЕДМЕТ И МЕТОД НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Начертательная геометрия это один из разделов геометрии, изучающий методы изображения

Подробнее

R min1 < R min < R min2

R min1 < R min < R min2 ЛЕКЦИИ 11-12 Решение II ГПЗ (3 случай) методом секущих плоскостей. Решение II ГПЗ (3 случай) методом концентрических сфер. Частные случаи пересечения поверхностей. Теорема Монжа. РЕШЕНИЕ II ГПЗ (3 случай)

Подробнее

Лекция 6 Поверхности второго порядка. Эллиптический тип

Лекция 6 Поверхности второго порядка. Эллиптический тип Лекция 6 Поверхности второго порядка Пространственным аналогом кривых второго порядка являются поверхности второго порядка, имеющие уравнение вида F(x,y,z) =, где F(x,y,z) многочлен второй степени от x,y,z.

Подробнее

ЛЕКЦИЯ 15. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

ЛЕКЦИЯ 15. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ЛЕКЦИЯ 15. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ 15.1. Частные случаи пересечения поверхностей второго порядка 15.2. Способ сфер 15.1. Частные случаи пересечения поверхностей второго порядка При взаимном пересечении

Подробнее

1. Указать правильный ответ Ось проекций 0У это

1. Указать правильный ответ Ось проекций 0У это НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 7 вариант Хабаровск 2014 0 Тема 1.Точка 1. Указать правильный ответ Ось проекций 0У это 1 линия пересечения плоскостей П 1 и П 2 2 линия пересечения плоскостей

Подробнее

1. МЕТОДЫ ПРОЕЦИРОВАНИЯ

1. МЕТОДЫ ПРОЕЦИРОВАНИЯ 1. МЕТОДЫ ПРОЕЦИРОВАНИЯ 1. Назовите основные методы проецирования геометрических форм. Приведите схему аппарата проецирования. 2. Какие виды параллельных проекций Вы знаете? Приведите схему аппарата проецирования.

Подробнее

2. Установить соответствие А(0, 28, 55) В(30, 0, 0) С(0, 0, 85) D(0, 45, 0) E(20, 0, 0) F(10, 0, 75) M(70, 25, 85) N(44, 27, 0)

2. Установить соответствие А(0, 28, 55) В(30, 0, 0) С(0, 0, 85) D(0, 45, 0) E(20, 0, 0) F(10, 0, 75) M(70, 25, 85) N(44, 27, 0) НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 5 вариант Хабаровск 2014 0 Тема 1. Точка 1. Указать правильный ответ Плоскость проекций П 1 называется 1 горизонтальная плоскость проекций 2 фронтальная плоскость

Подробнее

Исследование уравнений поверхностей второго порядка

Исследование уравнений поверхностей второго порядка Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Новгородский государственный университет имени Ярослава Мудрого Институт электронных

Подробнее

1. Учебный план дисциплины

1. Учебный план дисциплины 3 1. Учебный план дисциплины Рабочая программа составлена на основании примерной учебной программы дисциплины и в соответствии с Государственными требованиями к минимуму содержания и уровню подготовки

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Часть 2

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Часть 2 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Курганский государственный университет» Кафедра «Автоматизация

Подробнее

10. КРИВЫЕ ЛИНИИ Общие сведения о кривых линиях Некоторые кривые, часто встречающиеся в практике Общие сведения о кривых линиях

10. КРИВЫЕ ЛИНИИ Общие сведения о кривых линиях Некоторые кривые, часто встречающиеся в практике Общие сведения о кривых линиях 10. КРИВЫЕ ЛИНИИ 10.1. Общие сведения о кривых линиях 10.2. Некоторые кривые, часто встречающиеся в практике 7.1. Общие сведения о кривых линиях Линию можно рассматривать как множество последовательных

Подробнее

12. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ Пересечение плоскости с поверхностью частного и общего положения

12. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ Пересечение плоскости с поверхностью частного и общего положения . ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ ПЛОСКОСТЬЮ.. Пересечение плоскости с поверхностью частного и общего положения.. Плоскости касательные к поверхности.. Пересечение плоскости с поверхностью частного и общего положения

Подробнее

РАБОЧАЯ ТЕТРАДЬ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ для самостоятельной работы студентов профилей ВМ, МТС, ИС, УИТС

РАБОЧАЯ ТЕТРАДЬ ПО НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ для самостоятельной работы студентов профилей ВМ, МТС, ИС, УИТС Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет»

Подробнее

ε = <1, ε эксцентриситет эллипса;

ε = <1, ε эксцентриситет эллипса; эллипса КРИВЫЕ ВТОРОГО ПОРЯДКА Эллипсом называется множество всех точек плоскости, для которых сумма расстояний от двух данных точек этой плоскости, называемых фокусами эллипса, есть величина постоянная,

Подробнее

Начертательная геометрия

Начертательная геометрия МИНИСТЕРСТВО ПУТЕЙ СООБЩЕНИИ РОССИЙСКОЙ ФЕДЕРАЦИИ УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЙ Кафедра графики Л.В. Туркина Начертательная геометрия Примеры решения задач Часть 2 Екатеринбург

Подробнее

Рис. 43. Пересечение пирамиды плоскостью

Рис. 43. Пересечение пирамиды плоскостью Пересечение поверхности плоскостью При пересечении любой поверхности плоскостью получается некоторая плоская фигура, которая называется сечением. Плоскости, с помощью которых получается сечение, называются

Подробнее

1. Поверхности второго порядка

1. Поверхности второго порядка 1 1. Поверхности второго порядка Здесь мы познакомимся с некоторыми вопросами теории поверхностей второго порядка, уравнения которых будут иметь вид A + B + Cz 2 + Dxy + Eyz + F yz + Gx + Hy + Kz + L =

Подробнее

Лекция 16. ПРОЕКЦИИ КОНУСА Коническая поверхность направляющей линии прямым кру- говым конусом Построение конуса в прямоуголь- ной изометрии

Лекция 16. ПРОЕКЦИИ КОНУСА Коническая поверхность направляющей линии прямым кру- говым конусом Построение конуса в прямоуголь- ной изометрии Лекция 16. ПРОЕКЦИИ КОНУСА Конус тело вращения. Прямой круговой конус относится к одному из видов тел вращения. Коническая поверхность образуется прямой линией, проходящей через некоторую неподвижную точку

Подробнее

Принадлежность точки и прямой данной плоскости Точка принадлежит плоскости, если она принадлежит какой-либо линии, принадлежащей этой плоскости. Пряма

Принадлежность точки и прямой данной плоскости Точка принадлежит плоскости, если она принадлежит какой-либо линии, принадлежащей этой плоскости. Пряма ЛЕКЦИЯ 3 Задание плоскости общего положения на комплексном чертеже. Принадлежность прямой и точки заданной плоскости. Главные линии плоскости. Признаки параллельности. Плоскости частного положения. Комплексный

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. к выполнению эпюра 2

МЕТОДИЧЕСКИЕ УКАЗАНИЯ. к выполнению эпюра 2 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Тольяттинский государственный университет Кафедра «Начертательная геометрия и черчение» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к выполнению эпюра 2 Тольятти 2004 Методические указания

Подробнее

Классификация поверхностей второго порядка

Классификация поверхностей второго порядка Классификация поверхностей второго порядка Основные понятия Поверхностью второго порядка называется множество всех точек пространства, координаты которых удовлетворяют алгебраическому уравнению второй

Подробнее

Н. И. Привалов, А. П. Иващенко КРИВЫЕ ПОВЕРХНОСТИ, ИХ ОБРАЗОВАНИЕ, КЛАССИФИКАЦИЯ И ИЗОБРАЖЕНИЕ

Н. И. Привалов, А. П. Иващенко КРИВЫЕ ПОВЕРХНОСТИ, ИХ ОБРАЗОВАНИЕ, КЛАССИФИКАЦИЯ И ИЗОБРАЖЕНИЕ Н. И. Привалов, А. П. Иващенко КРИВЫЕ ПОВЕРХНОСТИ, ИХ ОБРАЗОВАНИЕ, КЛАССИФИКАЦИЯ И ИЗОБРАЖЕНИЕ МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО

Подробнее

Содержательный модуль 3 Поверхности. Точка и линия на поверхности. Взаимное пересечение поверхностей УЧЕБНОЕ ПОСОБИЕ

Содержательный модуль 3 Поверхности. Точка и линия на поверхности. Взаимное пересечение поверхностей УЧЕБНОЕ ПОСОБИЕ Содержательный модуль 3 Поверхности. Точка и линия на поверхности. Взаимное пересечение поверхностей УЧЕБНОЕ ПОСОБИЕ 0 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ ГОРОДСКОГО

Подробнее

Лекция 13. Эллиптический тип

Лекция 13. Эллиптический тип Лекция 13 Поверхности второго порядка Пространственным аналогом кривых второго порядка являются поверхности второго порядка, имеющие уравнение вида F(x,y,z) =, где F(x,y,z) многочлен второй степени от,y,z.

Подробнее

Оглавление Введение... 2 Конструирование поверхностей-посредников... 3 Пример конструирования форм поверхностей-посредников (развёрнутый состав

Оглавление Введение... 2 Конструирование поверхностей-посредников... 3 Пример конструирования форм поверхностей-посредников (развёрнутый состав Введение... 2 Конструирование поверхностей-посредников... 3 Пример конструирования форм поверхностей-посредников (развёрнутый состав действий).... 5 Литература... 19 2 Введение Настоящее пособие составлено

Подробнее

СПОСОБЫ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ, ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ

СПОСОБЫ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ, ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ Министерство путей сообщения РФ Департамент кадров и учебных заведений Самарская государственная академия путей сообщения Кафедра «Инженерная графика» СПОСОБЫ ОБРАЗОВАНИЯ ПОВЕРХНОСТЕЙ, ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ

Подробнее

ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО МАТЕМАТИКЕ г. 1. Выписать уравнение плоскости, пересекающей поверхность x y2. 2 z2

ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО МАТЕМАТИКЕ г. 1. Выписать уравнение плоскости, пересекающей поверхность x y2. 2 z2 ГОСУДАРСТВЕННЫЙ ЭКЗАМЕН ПО МАТЕМАТИКЕ 2000 г. 1. Выписать уравнение плоскости, пересекающей поверхность 2 + y2 2 z2 3 = 1 по линии, центр которой находится в точке (4, 4, 3). 2. Выписать уравнение плоскости,

Подробнее

ПОВЕРХНОСТИ. СПОСОБЫ ОБРАЗОВАНИЯ И ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ

ПОВЕРХНОСТИ. СПОСОБЫ ОБРАЗОВАНИЯ И ИХ ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ, ЧЕРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ СТИХИЙНЫХ БЕДСТВИЙ Академия Государственной противопожарной службы О.В. Токарева, С.М. Червоноокая

Подробнее

И.Ю. Скобелева, И.А. Ширшова, М.Л. Мухина НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

И.Ю. Скобелева, И.А. Ширшова, М.Л. Мухина НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Нижегородский государственный технический университет И.Ю. Скобелева, И.А. Ширшова,

Подробнее

ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ

ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ Б. М. Маврин, Е. И. Балаев ИЗОБРАЖЕНИЕ ТЕЛ ВРАЩЕНИЯ Практикум Самара 2005 ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ

Подробнее

Поверхности вращения Позиционные и метрические задачи

Поверхности вращения Позиционные и метрические задачи 2868 Поверхности вращения Позиционные и метрические задачи Методические указания для студентов всех специальностей Иваново 2009 Федеральное агентство по образованию Государственное образовательное учреждение

Подробнее

Лекция 6 ЛИНИИ И ПОВЕРХНОСТИ

Лекция 6 ЛИНИИ И ПОВЕРХНОСТИ Лекция 6 ЛИНИИ И ПОВЕРХНОСТИ В предыдущих лекциях были рассмотрены чертежи основных геометрических объектов трехмерного пространства (точки, прямой и плоскости) и связанные с ними метрические и позиционные

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный

Подробнее

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ

ЧАСТЬ I ТЕМА 2. ЭЛЕМЕНТЫ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПОКУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ И АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОГО ПЕРЕМЕННОГО» ЧАСТЬ I ТЕМА. ЭЛЕМЕНТЫ

Подробнее

Лекция 8 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ)

Лекция 8 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ) Лекция 8 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ ПЛОСКОСТЕЙ) Две поверхности пересекаются по линии, которая одновременно принадлежит каждой из них. В зависимости от вида и взаимного

Подробнее

Федеральное агентство по образованию Восточно-Сибирский государственный технологический университет Кафедра «Инженерная и компьютерная графика»

Федеральное агентство по образованию Восточно-Сибирский государственный технологический университет Кафедра «Инженерная и компьютерная графика» Федеральное агентство по образованию Восточно-Сибирский государственный технологический университет Кафедра «Инженерная и компьютерная графика» МЕТОДИЧЕСКИЕ УКАЗАНИЯ И КОНТРОЛЬНЫЕ ЗАДАНИЯ по начертательной

Подробнее

Начертательная геометрия Методические указания к практическим занятиям для студентов заочного обучения

Начертательная геометрия Методические указания к практическим занятиям для студентов заочного обучения Министерство образования и науки Российской Федерации Федеральное агентство по образованию ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Начертательная геометрия Методические указания к практическим

Подробнее

Б 33. Комплексный чертеж цилиндра вращения. Его определитель

Б 33. Комплексный чертеж цилиндра вращения. Его определитель Б 33. Комплексный чертеж цилиндра вращения. Его определитель Поверхность, образованная прямолинейной образующей l, движущейся параллельно заданному направлению s и пересекающей направляющую m, называется

Подробнее

Лекция 7 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ И С ПРЯМОЙ ЛИНИЕЙ

Лекция 7 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ И С ПРЯМОЙ ЛИНИЕЙ Лекция 7 ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТИ С ПЛОСКОСТЬЮ И С ПРЯМОЙ ЛИНИЕЙ В предыдущих лекциях рассматривались чертежи простейших геометрических фигур (точек, прямых, плоскостей) и произвольных кривых линий и поверхностей,

Подробнее

1. Указать правильный ответ Ось проекций 0Z - это

1. Указать правильный ответ Ось проекций 0Z - это НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 4 вариант Хабаровск 2014 0 Тема 1. Точка 1. Указать правильный ответ Ось проекций 0Z - это 1 линия пересечения плоскостей П 1 и П 2 2 линия пересечения плоскостей

Подробнее

Конспект лекций по дисциплине «Начертательная геометрия» Часть 2 МНОГОГРАННИКИ. КРИВЫЕ ПОВЕРХНОСТИ

Конспект лекций по дисциплине «Начертательная геометрия» Часть 2 МНОГОГРАННИКИ. КРИВЫЕ ПОВЕРХНОСТИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Национальный исследовательский ядерный университет

Подробнее

Контрольные вопросы по курсу «Начертательная геометрия»

Контрольные вопросы по курсу «Начертательная геометрия» Контрольные вопросы по курсу «Начертательная геометрия» Тема: «Комплексный чертёж. Позиционные задачи» 1. Какие методы проецирования Вы знаете? 2. Сформулируйте основные свойства прямоугольного (ортогонального)

Подробнее

Взаимное пересечение поверхностей вращения Методические указания к выполнению заданий по курсу Начертательная геометрия

Взаимное пересечение поверхностей вращения Методические указания к выполнению заданий по курсу Начертательная геометрия МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Ижевский государственный технический университет имени М.Т Калашникова (ФГБОУ ВПО

Подробнее

Камчатский государственный технический университет КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ. Е.А. Степанова, Н.И. Надольская ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ТЕЛ

Камчатский государственный технический университет КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ. Е.А. Степанова, Н.И. Надольская ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ТЕЛ Камчатский государственный технический университет КАФЕДРА ТЕОРЕТИЧЕСКОЙ МЕХАНИКИ Е.А. Степанова, Н.И. Надольская ПРОЕКЦИИ ГЕОМЕТРИЧЕСКИХ ТЕЛ Методическое пособие для студентов (курсантов) первого курса

Подробнее

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) ИНЖЕНЕРНАЯ ГРАФИКА ПРОЕКЦИИ

Подробнее

1. Указать правильный ответ Точка А(70, 20, 15) удалена дальше от

1. Указать правильный ответ Точка А(70, 20, 15) удалена дальше от НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Тестовые задания 10 вариант Хабаровск 2014 0 Тема 1. Точка 1. Указать правильный ответ Точка А(70, 20, 15) удалена дальше от 1 плоскости плоскостей П 1 2 плоскости плоскостей П

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Оренбургский государственный университет» Кафедра начертательной геометрии,

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ РАБОЧАЯ ТЕТРАДЬ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ РАБОЧАЯ ТЕТРАДЬ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Подробнее

А.В. Петухова Комплект электронных наглядных моделей по начертательной геометрии Учебное пособие Новосибирск, 2013

А.В. Петухова Комплект электронных наглядных моделей по начертательной геометрии Учебное пособие Новосибирск, 2013 Сибирский государственный университет путей сообщения А.В. Петухова Комплект электронных наглядных моделей по начертательной геометрии Учебное пособие Новосибирск, 2013 УДК 514 Петухова А.В. Комплект электронных

Подробнее

Методические указания.

Методические указания. Методические указания. Рабочая тетрадь предназначена для подготовки к практическим занятиям по курсу «Начертательной геометрии», а также для проработки материала в аудитории. При подготовке к практическому

Подробнее

1. Метод проекций. Проекции точки.

1. Метод проекций. Проекции точки. Теоретические разделы начертательной геометрии (краткое изложение). Метод проекций. Проекции точки. Метод проекций Пространство Способ отображения пространства Геометрические образы: Требования к чертежу

Подробнее

Конспект лекции 15 КВАДРИКИ В ЕВКЛИДОВОМ ПРОСТРАНСТВЕ

Конспект лекции 15 КВАДРИКИ В ЕВКЛИДОВОМ ПРОСТРАНСТВЕ Конспект лекции 15 КВАДРИКИ В ЕВКЛИДОВОМ ПРОСТРАНСТВЕ. План лекции Лекция Квадрики в евклидовом пространстве. 1. Канонические уравнения квадрики в пространстве. 1.1. Эллипсоид; 1.2. Двуполостный гиперболоид;

Подробнее

Л. И. Хмарова, Ж. В. Путина

Л. И. Хмарова, Ж. В. Путина МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ 744(07) Х644 Л. И. Хмарова, Ж. В. Путина ТЕОРЕТИЧЕСКИЕ И ПРАКТИЧЕСКИЕ ОСНОВЫ В Ы П О Л Н Е Н И Я ПРОЕКЦИОННОГО

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ 514.18(07) Н365 НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Методические указания для студентов заочной формы обучения Челябинск

Подробнее

Министерство образования и науки Российской Федерации

Министерство образования и науки Российской Федерации Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Комсомольский-на-Амуре государственный технический

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПОВЕРХНОСТИ. ТОЧКА И ЛИНИЯ, ПРИНАДЛЕЖАЩИЕ ПОВЕРХНОСТИ

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПОВЕРХНОСТИ. ТОЧКА И ЛИНИЯ, ПРИНАДЛЕЖАЩИЕ ПОВЕРХНОСТИ 1 ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ Брянский государственный технический университет Утверждаю Ректор университета А. В. Лагерев 2007 г. НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА ПОВЕРХНОСТИ. ТОЧКА

Подробнее

Кафедра «Начертательная геометрия и инженерная графика» НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

Кафедра «Начертательная геометрия и инженерная графика» НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Курганский государственный университет» Кафедра

Подробнее

ИСПОЛЬЗОВАНИЕ ЦВЕТНЫХ РИСУНКОВ ПРИ КОНСТРУИРОВАНИИ ПОВЕРХНОСТЕЙ В НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ

ИСПОЛЬЗОВАНИЕ ЦВЕТНЫХ РИСУНКОВ ПРИ КОНСТРУИРОВАНИИ ПОВЕРХНОСТЕЙ В НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ ИСПОЛЬЗОВАНИЕ ЦВЕТНЫХ РИСУНКОВ ПРИ КОНСТРУИРОВАНИИ ПОВЕРХНОСТЕЙ В НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Вертинская Н. Д. профессор, доктор технических наук Иркутский государственный технический университет, Россия

Подробнее

ОГЛАВЛЕНИЕ ЧАСТЬ I. Лекции 1 2 Определители и матрицы. Лекция 1

ОГЛАВЛЕНИЕ ЧАСТЬ I. Лекции 1 2 Определители и матрицы. Лекция 1 ОГЛАВЛЕНИЕ ЧАСТЬ I Лекции 1 2 Определители и матрицы Лекция 1 1.1. Понятие матрицы. Виды матриц... 19 1.1.1. Основные определения... 19 1.1.2. Виды матриц... 19 1.2.* Перестановки и подстановки... 21 1.3.*

Подробнее

СВОЙСТВА ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ С ОБЩЕЙ ПЛОСКОСТЬЮ СИММЕТРИИ

СВОЙСТВА ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ С ОБЩЕЙ ПЛОСКОСТЬЮ СИММЕТРИИ УДК 514.18(076.1) СВОЙСТВА ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВРАЩЕНИЯ С ОБЩЕЙ ПЛОСКОСТЬЮ СИММЕТРИИ Э. В. Козырев, Л. А. Филоненко, Н. В. Метелькова ФГБОУ ВПО «Донской государственный технический университет»,

Подробнее

z удовлетворяют уравнению F ( x,

z удовлетворяют уравнению F ( x, Аналитическая геометрия в пространстве В главе будут рассмотрены некоторые линии и поверхности в пространстве Будем исходить из наглядного представление о линии и поверхности известного из курса математики

Подробнее

Функции нескольких переменных

Функции нескольких переменных Функции нескольких переменных Функции нескольких переменных Поверхности второго порядка. Определение функции х переменных. Геометрическая интерпретация. Частные приращения функции. Частные производные.

Подробнее

ЛЕКЦИЯ 9 9. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

ЛЕКЦИЯ 9 9. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ЛЕКЦИЯ 9 9. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ Линия пересечения двух поверхностей в общем виде представляет собой пространственную кривую, которая может распадаться на несколько частей. Надо иметь в виду,

Подробнее

ЛЕКЦИЯ 14. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ Способ вспомогательных секущих плоскостей

ЛЕКЦИЯ 14. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ Способ вспомогательных секущих плоскостей ЛЕКЦИЯ 4. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ 4.. Способ вспомогательных секущих плоскостей Линия пересечения двух поверхностей есть линия, принадлежащая обеим поверхностям. Следовательно, для построения

Подробнее

Развертки поверхностей

Развертки поверхностей Развертки поверхностей Разверткой поверхности называется плоская фигура, полученная в результате совмещения всех точек поверхности с одной плоскостью. Между поверхностью и ее разверткой устанавливается

Подробнее

Аналитическая геометрия

Аналитическая геометрия Аналитическая геометрия 5.. Прямая на плоскости Различные способы задания прямой на плоскости. Общее уравнение прямой на плоскости. Расположение прямой относительно системы координат. Геометрический смысл

Подробнее

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Задания контрольной работы 1. по дисциплине «Начертательная геометрия, инженерная и машинная графика»

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ Задания контрольной работы 1. по дисциплине «Начертательная геометрия, инженерная и машинная графика» Контрольная работа 1 по дисциплине «Начертательная геометрия, инженерная и машинная графика» Телефон кафедры: 47-00-37 (спрашивать кафедру «Инженерная графика») Кабинет графики: ауд. 4-508 Кафедра: ауд.

Подробнее

Инженерная графика. Лекция 5

Инженерная графика. Лекция 5 Инженерная графика Кривальцевич Татьяна Владимировна Лекция 5 «Пересечение геометрических тел плоскостями. Построение разверток» Омск-2010 Пересечение поверхностей плоскостью Инженерная графика Кривальцевич

Подробнее

Лекция 11 ПЛОСКОСТЬ, КАСАТЕЛЬНАЯ К ПОВЕРХНОСТИ

Лекция 11 ПЛОСКОСТЬ, КАСАТЕЛЬНАЯ К ПОВЕРХНОСТИ Лекция 11 ПЛОСКОСТЬ, КАСАТЕЛЬНАЯ К ПОВЕРХНОСТИ Первоначальное понятие о касающихся друг друга линиях или поверхностях мы приобретаем из повседневного опыта. Например, интуитивно ясно, что лежащие на столе

Подробнее

Лекция 9 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ СФЕР)

Лекция 9 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ СФЕР) Лекция 9 ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ (СПОСОБ ВСПОМОГАТЕЛЬНЫХ СФЕР) В начертательной геометрии точки, принадлежащие линии пересечения двух поверхностей, находят с помощью способа вспомогательных

Подробнее

ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ОБРАЗОВ

ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ ОБРАЗОВ МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Брестский государственный технический университет» Кафедра начертательной геометрии и инженерной графики ПЕРЕСЕЧЕНИЕ ГЕОМЕТРИЧЕСКИХ

Подробнее

Введение в курс. Начертательная геометрия Обозначения и символика. Знакокодовая система обозначений. Метод проецирования.

Введение в курс. Начертательная геометрия Обозначения и символика. Знакокодовая система обозначений. Метод проецирования. 1 Введение в курс. Курс лекций Начертательная геометрия в которой рассматриваются следующие основные вопросы : 1) Построение изображений или чертежей предметов; 2) Решение геометрических задач в пространстве

Подробнее

ПРЕОБРАЗОВАНИЯ ОРТОГОНАЛЬНЫХ ПРОЕКЦИЙ В НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ С ИСПОЛЬЗОВАНИЕМ ЦВЕТНЫХ РИСУНКОВ Вертинская Н.Д. Иркутский государственный

ПРЕОБРАЗОВАНИЯ ОРТОГОНАЛЬНЫХ ПРОЕКЦИЙ В НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ С ИСПОЛЬЗОВАНИЕМ ЦВЕТНЫХ РИСУНКОВ Вертинская Н.Д. Иркутский государственный ПРЕОБРАЗОВАНИЯ ОРТОГОНАЛЬНЫХ ПРОЕКЦИЙ В НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ С ИСПОЛЬЗОВАНИЕМ ЦВЕТНЫХ РИСУНКОВ Вертинская Н.Д. Иркутский государственный технический университет Две ортогональные проекции геометрической

Подробнее

Н.В. Макарова ИНЖЕНЕРНАЯ ГРАФИКА. Курс лекций

Н.В. Макарова ИНЖЕНЕРНАЯ ГРАФИКА. Курс лекций ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Н.В. Макарова ИНЖЕНЕРНАЯ ГРАФИКА Курс лекций Красноярск

Подробнее

Центр поверхности второго порядка

Центр поверхности второго порядка Центр поверхности второго порядка Напомним определение Определение Точка M 0 называется центром симметрии множества точек {M} (например, поверхности), если вместе с каждой точкой M, множеству {M} принадлежит

Подробнее

УДК 515.0(075.8)000 Д 82 2 Думицкая, Н.Г. Рабочая тетрадь по начертательной геометрии [Текст]: метод. указания / Н.Г. Думицкая. - Ухта: УГТУ,

УДК 515.0(075.8)000 Д 82 2 Думицкая, Н.Г. Рабочая тетрадь по начертательной геометрии [Текст]: метод. указания / Н.Г. Думицкая. - Ухта: УГТУ, Федеральное агентство по образованию УХТИНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРИТЕТ Рабочая тетрадь по начертательной геометрии Методические указания Ухта, 2006 г. УДК 515.0(075.8)000 Д 82 2 Думицкая,

Подробнее

Зачетное задание по аналитической геометрии. Семестр 2. Вариант 1

Зачетное задание по аналитической геометрии. Семестр 2. Вариант 1 Зачетное задание по аналитической геометрии. Семестр 2. Вариант 1 1. Найдите уравнения касательных к окружности (x + 3) 2 + (y + 1) 2 = 4, параллельных прямой 5x 12y + 1 = 0. 2. Напишите уравнение касательной

Подробнее

УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия»

УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия» Федеральное агентство по образованию Тольяттинский государственный университет Кафедра «Начертательная геометрия и черчение» УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия» МОДУЛЬ 2 Тольятти 2007 УДК

Подробнее

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Т.В. Белавина, Я.Д. Золотоносов ИНЖЕНЕРНАЯ ГРАФИКА КУРС НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ Учебно-методическое

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Федеральное государственное образовательное учреждение высшего профессионального образования

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ. Федеральное государственное образовательное учреждение высшего профессионального образования ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Федеральное государственное образовательное учреждение высшего профессионального образования «Сибирский федеральный университет» Авторы: Супрун Л.И. Супрун Е.Г. Лошакова

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ для самостоятельных работ по дисциплине «Инженерная графика». РАЗДЕЛ «Начертательная геометрия» для групп СПО

МЕТОДИЧЕСКИЕ УКАЗАНИЯ для самостоятельных работ по дисциплине «Инженерная графика». РАЗДЕЛ «Начертательная геометрия» для групп СПО Департамент внутренней и кадровой политики Белгородской области Областное государственное автономное образовательное учреждение среднего профессионального образования «Белгородский политехнический колледж»

Подробнее

ПОСТРОЕНИЕ ОКРУЖНОСТИ В ПЕРСПЕКТИВЕ В перспективе изображение окружности может иметь различное начертание. Это зависит от того, как расположена

ПОСТРОЕНИЕ ОКРУЖНОСТИ В ПЕРСПЕКТИВЕ В перспективе изображение окружности может иметь различное начертание. Это зависит от того, как расположена ПОСТРОЕНИЕ ОКРУЖНОСТИ В ПЕРСПЕКТИВЕ В перспективе изображение окружности может иметь различное начертание. Это зависит от того, как расположена плоскость окружности относительно картины и точки зрения.

Подробнее

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОЕКЦИЙ ЛИНИЙ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА С ОБЩЕЙ ПЛОСКОСТЬЮ СИММЕТРИИ

ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОЕКЦИЙ ЛИНИЙ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА С ОБЩЕЙ ПЛОСКОСТЬЮ СИММЕТРИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ Донецкий национальный технический университет Червоненко А. П., Катькалова Е. А. ГЕОМЕТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОЕКЦИЙ ЛИНИЙ ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА

Подробнее

«Сибирский федеральный университет»

«Сибирский федеральный университет» ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Федеральное государственное образовательное учреждение высшего и профессионального образования «Сибирский федеральный университет» Институт горного дела, геологии и

Подробнее

УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия»

УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия» Федеральное агентство по образованию Тольяттинский государственный университет Кафедра «Начертательная геометрия и черчение» УЧЕБНОЕ ПОСОБИЕ по курсу «Начертательная геометрия» МОДУЛЬ 3 Тольятти 2007 УДК

Подробнее

A 1. В Рис. 14 б. Рис. 14 а. t O B. Рис. 15. Лекция 10 Тема: Изображение пространственных фигур в параллельной проекции

A 1. В Рис. 14 б. Рис. 14 а. t O B. Рис. 15. Лекция 10 Тема: Изображение пространственных фигур в параллельной проекции Лекция Тема: Изображение пространственных фигур в параллельной проекции План лекции. Изображение призмы и пирамиды в параллельной проекции. 2. Изображение цилиндра, конуса, шара в параллельной проекции.

Подробнее