9. РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ, МАСС- СПЕКТРОМЕТРИЯ, РАССЕЯНИЕ СВЕТА

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "9. РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ, МАСС- СПЕКТРОМЕТРИЯ, РАССЕЯНИЕ СВЕТА"

Транскрипт

1 9. РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ, МАСС- СПЕКТРОМЕТРИЯ, РАССЕЯНИЕ СВЕТА Самый прямой способ определения размеров наночастиц это исследование на просвечивающем электронном микроскопе. Другой способ определения размеров наночастиц заключается в изучении рассеяния на них света. Рассеяние зависит от соотношения размеров частиц d и длины волны падающего света λ, а также от его поляризации. Рассеяние света При определении размеров частиц используется монохроматический (с одной длиной волны) лазерный луч, который рассеивается на определенный угол (обычно 90 0 С) при параллельной и перпендикулярной поляризации. Измерение интенсивностей рассеяния дает размер частиц, их концентрацию и показатель преломления. Для интерпретации данных о рассеянии на частицах с размерами d<0.1 λ, что имеет место при рассеянии видимого света наночастицами, используется теория Рэлея. По Рэлею общая интенсивность рассеянного неполяризованного света I равна: 9 n n 0 NVi I I 0[ (1 cos )] 4, n n0 R где I 0 - интенсивность падающего света; n и n 0 - показатели преломления частиц и среды соответственно; N - общее число светорассеивающих частиц; V i - объем частицы; - длина волны падающего света; R - расстояние от рассеивающего объема до места регистрации интенсивности рассеянного света; - угол между направлением распространения падающей и рассеянной световых волн. Выводы из уравнения Рэлея:

2 1. Для частиц одного размера интенсивность рассеянного света прямо пропорциональна числу светорассеивающих частиц (I N).. Интенсивность рассеянного света пропорциональна квадрату обьема частицы (I V i ). Для сферических частиц, объем которых равен V 4, r i радиус частицы, интенсивность рассеянного света i r i пропорциональна шестой степени их радиуса. Это обстоятельство позволяет определять размеры частиц по измерениям интенсивности светорассеяния.. Интенсивность рассеянного света обратно пропорциональна четвертой степени длины волны падающего света (I 1/ 4 ). Следовательно, с уменьшением длины волны падающего света рассеяние возрастает. 4. При равенстве показателей преломления дисперсионной среды и частиц дисперсной фазы в гетерогенной системе (n = n 0 ) рассеяние света отсутствует (I = 0). 5. При размерах частиц более 0,15 длины световой волны (r i > 0.15λ) возрастает роль процессов отражения света. Максимальное светорассеяние происходит в системах с размером частиц r i = λ, т.е нм, что соответствует коллоидной степени дисперсности. 6. Условия применимости уравнения Рэлея: - частица должна иметь сферическую или близкую к сферической форму; - радиус частицы должен быть много меньше длины волны падающего света; - частица не должна поглощать падающий свет; - частица не должна быть электропроводной (для золей металлов уравнение Рэлея не применимо); - частица должна быть оптически изотропной.

3 Метод применим к наночастицам с размерами более нм. Для меньших частиц следует использовать другие методы. Масс-спектрометрия Частицы с размерами менее нм удобно измерять масс-спектрометром. Схема типичного масс-спектрометра показана на рисунке. Схема масс-спектрометра, использующего 90 0 С магнитный масс-анализатор. Показаны детали источника ионов: А ускоряющая пластина, или экстрактор, Е электронная ловушка, f нить накаливания, I ионизационная камера, L фокусирующие линзы, R отражатель частиц, S щели. Магнитное поле в масс-анализаторе перпендикулярно плоскости рисунка. Наночастицы ионизируют бомбардировкой электронами, испускаемыми разогретым катодом (f) в ионизационной камере (I). Эти положительные ионы ускоряются разностью потенциалов V между выталкивающей (R) и ускоряющей (А) пластинами, затем фокусируются системой линз L, диафрагмируются щелью S и затем поступают в масс-анализатор. Магнитное

4 поле В анализатора, ориентированное перпендикулярно плоскости рисунка, действует на частицы с силой F=qνB, которая искривляет пучок на 90 0 С с радиусом r, после чего он попадает на коллектор ионов. Отношение массы частицы m к ее заряду q дается выражением: m q B r V В каждой конкретной установке радиус кривизны r обычно фиксирован, так что для фокусировки на детекторе ионов разных масс изменяют либо магнитное поле В, либо ускоряющее напряжение V. Заряд наноразмерных ионов обычно известен, так что практически определяется их масса. Так как m материал наночастиц также известен, то определена и их плотность, V а следовательно, линейный размер можно оценить как кубический корень из объема: d 1 1 V ( m ). Описанный масс-спектрометр использует стандартную конфигурацию магнитного поля масс-анализатора. Современные масс-спектрометры могут иметь другие конфигурации поля, например квадрупольную, или массспектрометр на основе измерения времени пролета, у которого каждый ион получает одинаковую кинетическую энергию mν / во время ускорения в ионизационной камере. Так что более легкие ионы движутся быстрее и достигают детектора раньше, чем более тяжелые ионы, обеспечивая таким способом разрешение по массе. Малоугловое рентгеновское рассеяние. При рассеянии рентгеновского излучения на аморфных телах и жидкостях угловая зависимость интенсивности рассеяния не имеет резких дифракционных максимумов. Однако Фурье-преобразование плавных колебаний фона, наблюдаемых на этой зависимости, позволяет получать кривую радиального распределения атомов (РРА), максимумы которой

5 соответствуют межатомным расстояниям [4]. Рассеяние на образцах, включающих нанокластеры, будет демонстрировать переход от аморфных веществ к кристаллам, при этом будут возникать дифракционные максимумы, ширина которых будет зависеть от размера наночастицы следующим образом: d cos где d диаметр кластера, λ длина волны излучения, ΔГ полуширина дифракционного максимума, θ угол дифракции. Выражение, приведенное выше, полезно при определении размеров нанокластеров и позволяет оценить минимальные размеры наноблоков на уровне ~5 нм. При использовании жесткого рентгеновского излучения амплитуды рассеяния на легких атомах становятся малыми и на кривых РРА проявляются только максимумы, соответствующие расстояниям между тяжелыми атомами. В связи с этим такие исследования применяются для неорганических материалов с разупорядоченной структурой и стекол. В соединениях с частично упорядоченной структурой (нанопленки, соединения внедрения, полимеры и т.д.) типы пространственной симметрии различны для разных направлений и для разных компонентов образца. В основе метода малоуглового рассеяния лежит явление рассеяния рентгеновских фононов на оптических неоднородностях образца как единого целого (кластерах, порах) с размерами несколько десятков нанометров. Измеряется зависимость спада интенсивности рассеянного излучения от угла рассеяния в угловом диапазоне от нескольких угловых минут до нескольких градусов, т.е. в интервале изменения волнового вектора 0 < k 0.. На дифрактограмме в малоугловой области также могут проявляться дифракционные максимумы, соответствующие отражениям от атомных плоскостей с межплоскостным расстоянием от 10 до 50 нм. Периодическая структура может быть образована упаковкой полимерных глобул,

6 нанокласетров, молекулярных агрегатов. Анализ кривой спада интенсивности рассеянного излучения дает возможность оценить средний размер кластера (области неоднородности), а также распределение кластеров по размерам и форме. Метод малоуглового рентгеновского рассеяния применяется для определения морфологии полимеров, коллоидов, наночастиц, исследования фазовой сегрегации в аморфных стеклах, зародышеобразовании, росте кристаллов, аморфизации и т.д. Стоимость только одной установки малоуглового рентгеновского рассеивания составляет около 500 тысяч евро. Но без такого дорогостоящего оборудования невозможно вести исследования в области нанотехнологий

Лабораторная работа по теме «Оптика»

Лабораторная работа по теме «Оптика» Лабораторная работа по теме «Оптика» Прохождение света через дисперсную систему сопровождается такими явлениями как поглощение, рассеяние, преломление и отражение. Особенности этих явлений для коллоидных

Подробнее

Гуржий В.В., Кривовичев С.В. Введение в КРИСТАЛЛОХИМИЮ и РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ. Лекция 4

Гуржий В.В., Кривовичев С.В. Введение в КРИСТАЛЛОХИМИЮ и РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ. Лекция 4 Гуржий В.В., Кривовичев С.В. Введение в КРИСТАЛЛОХИМИЮ и РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ Лекция 4 электроном Фотоны электромагнитного излучения обладают свойствами как волны, так и частицы. как частицы Фотоны

Подробнее

Государственный экзамен по физике Физический факультет МГУ имени М.В.Ломоносова Специальность "Физика" (бакалавриат)

Государственный экзамен по физике Физический факультет МГУ имени М.В.Ломоносова Специальность Физика (бакалавриат) Билет 1. 1. Материальное уравнение нелинейной среды. Нелинейная поляризация. Нелинейная восприимчивость. 2. Эффект Черенкова. Циклотронное и синхротронное излучение. 3. Определить доплеровское смещение

Подробнее

Эффект легко наблюдается в природе и в бытовых условиях.

Эффект легко наблюдается в природе и в бытовых условиях. Лекция 14. РАССЕЯНИЕ СВЕТА В КОЛЛОИДНЫХ СИСТЕМАХ Важную роль в дисперсных системах играет рассеяние света. При этом изменяется направление распространения излучения. Данный эффект называется опалесценцией.

Подробнее

Вариант 2 1. Найти напряженность E электрического поля в точке, лежащей посередине между точечными зарядами q 1 = 8нКл и q 2 = 6нКл. Расстояние между

Вариант 2 1. Найти напряженность E электрического поля в точке, лежащей посередине между точечными зарядами q 1 = 8нКл и q 2 = 6нКл. Расстояние между Вариант 1 1. Расстояние между двумя точечными зарядами 10 нкл и 10 нкл равно 10 см. Определить силу, действующую на точечный заряд 10 нкл, удаленный на 6 см от первого и на 8 см от второго заряда. 2. Элемент

Подробнее

Микроскопия, концепция разрешающей способности

Микроскопия, концепция разрешающей способности Микроскопия, концепция разрешающей способности Зависимость разрешающей способности от длины волны Зависимость энергии излучения от дины волны (без учета релятивистских эффектов) Взаимодействие высокоэнергетического

Подробнее

Поляризация света. Лекция 4.3.

Поляризация света. Лекция 4.3. Поляризация света Лекция 4.3. Поляризация явление выделения линейно поляризованного света из естественного или частично поляризованного. 1. Естественный и поляризованный свет. Закон Малюса Следствием теории

Подробнее

Оптика. Волновая оптика. Спектральные приборы. Дифракционная решетка

Оптика. Волновая оптика. Спектральные приборы. Дифракционная решетка Оптика Волновая оптика Спектральные приборы. Дифракционная решетка В состав видимого света входят монохроматические волны с различными значениями длин. В излучении нагретых тел (нить лампы накаливания)

Подробнее

Тема 2. Дифракция света

Тема 2. Дифракция света Тема 2. Дифракция света Задачи для самостоятельного решения. Задача 1. Между точечным источником света и экраном поместили диафрагму с круглым отверстием, радиус которого r можно менять. Расстояния от

Подробнее

«Фундаментальные основы нанотехнологий»

«Фундаментальные основы нанотехнологий» Московский Государственный Университет имени М. В. Ломоносова Научно-Образовательный Центр по нанотехнологиям Межфакультетский курс лекций «Фундаментальные основы нанотехнологий» Лекция 3. Методы исследования

Подробнее

Интерференция Скорость света в среде c n. Оптическая длина пути световой волны. Оптическая разность хода двух световых волн L L.

Интерференция Скорость света в среде c n. Оптическая длина пути световой волны. Оптическая разность хода двух световых волн L L. Интерференция Скорость света в среде c v, n где с скорость света в вакууме; п показатель преломления среды. Оптическая длина пути световой волны L nl, где l геометрическая длина пути световой волны в среде

Подробнее

ЛЕКЦИЯ 9 ОПТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ СИСТЕМ

ЛЕКЦИЯ 9 ОПТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ СИСТЕМ ЛЕКЦИЯ 9 ОПТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ СИСТЕМ Характерные оптические свойства коллоидных систем опалесценция, эффект Тиндаля и окраска. Рассеяние света (опалесценция) Когда луч света направлен на золь

Подробнее

17.1. Основные понятия и соотношения.

17.1. Основные понятия и соотношения. Тема 7. Волны де Бройля. Соотношения неопределенностей. 7.. Основные понятия и соотношения. Гипотеза Луи де Бройля. Де Бройль выдвинул предложение, что корпускулярно волновая двойственность свойств характерна

Подробнее

ДИДАКТИЧЕСКАЯ ЕДИНИЦА 5: Волновая и квантовая оптика

ДИДАКТИЧЕСКАЯ ЕДИНИЦА 5: Волновая и квантовая оптика ДИДАКТИЧЕСКАЯ ЕДИНИЦА 5: Волновая и квантовая оптика Задание На расстоянии м от лампы энергетическая освещенность небольшого листа бумаги, расположенном перпендикулярно световым лучам, равнялась Вт/м.

Подробнее

= 0 0 y 2. 2) Для света длиной волны см показатели преломления в кварце n =1, 0

= 0 0 y 2. 2) Для света длиной волны см показатели преломления в кварце n =1, 0 ) Под каким углом должен падать пучок света из воздуха на поверхность жидкости, чтобы при отражении от дна стеклянного сосуда (n =,5) наполненного водой (n 2 =,33) свет был полностью поляризован. 2) Какова

Подробнее

ЛЕКЦИЯ 10 (ЭЛЕКТИВ) ОПТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ СИСТЕМ

ЛЕКЦИЯ 10 (ЭЛЕКТИВ) ОПТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ СИСТЕМ ЛЕКЦИЯ 10 (ЭЛЕКТИВ) ОПТИЧЕСКИЕ СВОЙСТВА КОЛЛОИДНЫХ СИСТЕМ По оптическим свойствам коллоидные системы отличаются от истинных растворов и от грубодисперсных систем. Характерные оптические свойства коллоидных

Подробнее

Список вопросов для теста перед экзаменом по курсу «Оптика».

Список вопросов для теста перед экзаменом по курсу «Оптика». Список вопросов для теста перед экзаменом по курсу «Оптика». Электромагнитные волны. 1. Диапазон длин волн видимого света в вакууме с указанием порядка следования по цвету. 2. Связь между частотой света

Подробнее

Лабораторная работа 20. Определение длин волн линий спектра излучения с помощью дифракционной решетки

Лабораторная работа 20. Определение длин волн линий спектра излучения с помощью дифракционной решетки Лабораторная работа 20 Определение длин волн линий спектра излучения с помощью дифракционной решетки Цель работы: ознакомление с прозрачной дифракционной решеткой; определение длин волн спектра источника

Подробнее

Исследование дифракции света

Исследование дифракции света Исследование дифракции света Липовская М.Ю., Яшин Ю.П. Введение. Свет может проявлять себя либо как волна, либо как поток частиц, что носит название корпускулярно - волнового дуализма. Интерференция и

Подробнее

ЛЕКЦИЯ 14. картина в пространстве. Когерентные источники волн. Интерференция от двух точечных источников. Далекое поле.

ЛЕКЦИЯ 14. картина в пространстве. Когерентные источники волн. Интерференция от двух точечных источников. Далекое поле. 1 ЛЕКЦИЯ 14 Сложение колебаний, принцип суперпозиции. Интерференционная картина в пространстве. Когерентные источники волн. Интерференция от двух точечных источников. Далекое поле. Сложение колебаний,

Подробнее

Интерференция света. = 0,50 мкм) заменить красным ( λ 2. , - фазы колебаний. Воспользовавшись методом векторных диаграмм, получим

Интерференция света. = 0,50 мкм) заменить красным ( λ 2. , - фазы колебаний. Воспользовавшись методом векторных диаграмм, получим Интерференция света Примеры решения задач Пример Во сколько раз увеличится расстояние между соседними интерференционными полосами на экране в опыте Юнга если зеленый светофильтр ( = 5 мкм) заменить красным

Подробнее

8. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ И ИЗЛУЧЕНИЕ ДВИЖУЩИХСЯ ЗАРЯДОВ

8. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ И ИЗЛУЧЕНИЕ ДВИЖУЩИХСЯ ЗАРЯДОВ 8 ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ И ИЗЛУЧЕНИЕ ДВИЖУЩИХСЯ ЗАРЯДОВ Рассмотрим электромагнитное поле движущегося произвольным образом точечного заряда Оно описывается запаздывающими потенциалами которые запишем в виде

Подробнее

Поляризация электромагнитных волн. (по описаниям задач практикума 147 и 410)

Поляризация электромагнитных волн. (по описаниям задач практикума 147 и 410) Поляризация электромагнитных волн. (по описаниям задач практикума 47 и 4 Из электромагнитной теории света, базирующейся на системе уравнений Максвелла, следует, что световые волны поперечны. Это означает,

Подробнее

Оптика. Интерференция света Лекция 2-3. Постникова Екатерина Ивановна, доцент кафедры экспериментальной физики

Оптика. Интерференция света Лекция 2-3. Постникова Екатерина Ивановна, доцент кафедры экспериментальной физики Оптика Интерференция света Лекция -3 Постникова Екатерина Ивановна, доцент кафедры экспериментальной физики 5 Интерференция света Световые волны Свет сложное явление: в одних условиях он ведет себя как

Подробнее

Вариант 1. s 2 s 1 f f. б) Продолжить ход луча, показанного на рисунке, для двух случаев: 1) если линза Л рассеивающая и 2) если линза Л собирающая.

Вариант 1. s 2 s 1 f f. б) Продолжить ход луча, показанного на рисунке, для двух случаев: 1) если линза Л рассеивающая и 2) если линза Л собирающая. Вариант 1. 1. a) Источник света с яркостью L = 200 кд/м 2 находится на расстоянии s 1 = 20 см от тонкой линзы с фокусным расстоянием = 10 см. Построить ход лучей, найти, на каком расстоянии s 2 расположено

Подробнее

Индивидуальное задание N 6. «Волновая оптика»

Индивидуальное задание N 6. «Волновая оптика» Индивидуальное задание N 6 «Волновая оптика» 1.1. Экран освещается двумя когерентными источниками света, находящимися на расстоянии 1 мм друг от друга. Расстояние от плоскости источников света до экрана

Подробнее

Дисперсия света Поляризация. Волновая оптика

Дисперсия света Поляризация. Волновая оптика Дисперсия света Поляризация Волновая оптика Дисперсия света зависимость показателя преломления n вещества от частоты ν (длины волны λ) света, или зависимость фазовой скорости v световых волн от его частоты

Подробнее

ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ. для студентов II курса IV семестра всех факультетов

ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ. для студентов II курса IV семестра всех факультетов 1 ДОМАШНЕЕ ЗАДАНИЕ ПО ФИЗИКЕ ДЛЯ СТУДЕНТОВ II КУРСА IV СЕМЕСТРА ВСЕХ ФАКУЛЬТЕТОВ Варианты домашнего задания по физике для студентов II курса IV семестра всех факультетов Вариант Номера задач 1 1 13 5 37

Подробнее

КР-6/ Вариант 1. 1. Рассчитать температуру печи, если известно, что из отверстия в ней размером 6,1 см 2 излучается в 1 с 8,28 калорий. Излучение считать близким к излучению абсолютно чёрного тела. (1

Подробнее

Работа 4 ПОЛЯРИЗАЦИЯ СВЕТА Цель работы: Введение

Работа 4 ПОЛЯРИЗАЦИЯ СВЕТА Цель работы: Введение Работа 4 ПОЛЯРИЗАЦИЯ СВЕТА Цель работы: наблюдение явления линейной поляризации света; измерение интенсивности поляризованного света в зависимости от угла поворота поляризатора (проверить закона Малюса)

Подробнее

том случае, если шаг решетки больше половины длины волны света d >.

том случае, если шаг решетки больше половины длины волны света d >. Экзамен. Дифракция рентгеновских лучей на кристалле. Лауэграммы. При упругом рассеянии или дифракции рентгеновских лучей каждый рентгеновский квант рассеивается не на конкретном электроне, а сразу на всем

Подробнее

КОНТРОЛЬНАЯ РАБОТА 5 ВАРИАНТ 1.

КОНТРОЛЬНАЯ РАБОТА 5 ВАРИАНТ 1. КОНТРОЛЬНАЯ РАБОТА 5 ВАРИАНТ 1. 1. Во сколько раз увеличится расстояние между соседними интерференционными полосами на экране в опыте Юнга, если зеленый светофильтр (λ 1 = 500 нм) заменить красным (λ 2

Подробнее

Определение длины световой волны при помощи дифракционной решетки

Определение длины световой волны при помощи дифракционной решетки Лабораторная работа 3 Определение длины световой волны при помощи дифракционной решетки ЦЕЛЬ РАБОТЫ Ознакомление с прозрачной дифракционной решеткой, определение длин волн спектра источника света (лампы

Подробнее

Рис. 1. Рис. 2. , а модуль результирующего вектора (амплитуду колебаний) A

Рис. 1. Рис. 2. , а модуль результирующего вектора (амплитуду колебаний) A Примеры решения задач Пример Свет с длиной волны падает нормально на длинную прямоугольную щель ширины b Найдите угловое распределение интенсивности света при фраунгоферовой дифракции а также угловое положение

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 18-1 ИЗУЧЕНИЕ ДИФРАКЦИОННОЙ РЕШЕТКИ

ЛАБОРАТОРНАЯ РАБОТА 18-1 ИЗУЧЕНИЕ ДИФРАКЦИОННОЙ РЕШЕТКИ ЛАБОРАТОРНАЯ РАБОТА 8- ИЗУЧЕНИЕ ДИФРАКЦИОННОЙ РЕШЕТКИ Цель работы: изучение дифракции света на одномерной дифракционной решетке и определение ее характеристик: периода дифракционной решетки, угловой дисперсии.

Подробнее

12. В точке А (рис.1) находится точечный источник монохроматического света (λ = 500 нм). Диафрагма

12. В точке А (рис.1) находится точечный источник монохроматического света (λ = 500 нм). Диафрагма ДИФРАКЦИЯ СВЕТА 1. Вычислить радиус r шестой зоны Френеля для плоской монохроматической волны (λ = 546 нм), если точка наблюдения находится на расстоянии b = 4,4 м от фронта волны. 2. Вычислить радиус

Подробнее

ГЕОМЕТРИЧЕСКАЯ ОПТИКА Закон преломления света

ГЕОМЕТРИЧЕСКАЯ ОПТИКА Закон преломления света ГЕОМЕТРИЧЕСКАЯ ОПТИКА Закон преломления света n Sinα = n Sinβ, 1 где α угол падения; β угол преломления; n 1 и n абсолютные показатели преломления соответственно первой и второй сред. Предельный угол полного

Подробнее

ФИЗИКА. Контрольные материалы, 3 семестр

ФИЗИКА. Контрольные материалы, 3 семестр ФИЗИКА Контрольные материалы, 3 семестр Модуль 1 Тема 1. Волны 1.1. Плоская продольная волна с амплитудой A = 0,1 мм и длиной волны λ = 10 см распространяется в упругой среде с плотностью ρ = 4 г/см 3

Подробнее

Контрольная работа 3, заочный факультет. 1. Два параллельных световых пучка падают нормально на грань кварцевой призмы (n =

Контрольная работа 3, заочный факультет. 1. Два параллельных световых пучка падают нормально на грань кварцевой призмы (n = Контрольная работа 3, заочный факультет Вариант 0 1. Два параллельных световых пучка падают нормально на грань кварцевой призмы (n = α 1,49) на расстоянии d = 3 см друг от друга. Э Преломляющий угол призмы

Подробнее

Применение рентгеновской дифракции для исследования тонких пленок. Рефлектометрия. Малоугловое рассеяние рентгеновских лучей.

Применение рентгеновской дифракции для исследования тонких пленок. Рефлектометрия. Малоугловое рассеяние рентгеновских лучей. Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ Применение рентгеновской дифракции для исследования тонких пленок. Рефлектометрия. Малоугловое рассеяние

Подробнее

Вариант 1. Дифракция, поляризация Интерференция Вариант 2. Дифракция, поляризация

Вариант 1. Дифракция, поляризация Интерференция Вариант 2. Дифракция, поляризация Вариант 1. 1. Монохроматический свет длиной волны 0,6мкм падает нормально на диафрагму с отверстием диаметром 6мм. Сколько зон Френеля укладывается в отверстии, если экран расположен в 3м за диафрагмой

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 57 ДИФРАКЦИЯ ЭЛЕКТРОНОВ НА ПРОСТРАНСТВЕННОЙ РЕШЕТКЕ

ЛАБОРАТОРНАЯ РАБОТА 57 ДИФРАКЦИЯ ЭЛЕКТРОНОВ НА ПРОСТРАНСТВЕННОЙ РЕШЕТКЕ ЛАБОРАТОРНАЯ РАБОТА 57 ДИФРАКЦИЯ ЭЛЕКТРОНОВ НА ПРОСТРАНСТВЕННОЙ РЕШЕТКЕ Цель работы наблюдение дифракции электронов на пространственной решетке, определение длины волны де Бройля для электрона. 1. Теоретические

Подробнее

Оптика (наименование дисциплины) Направление подготовки физика. Профиль подготовки «Фундаментальная физика», «Физика атомного ядра и частиц»

Оптика (наименование дисциплины) Направление подготовки физика. Профиль подготовки «Фундаментальная физика», «Физика атомного ядра и частиц» 1 Аннотация рабочей программы дисциплины Оптика (наименование дисциплины) Направление подготовки 03.03.02 физика Профиль подготовки «Фундаментальная физика», «Физика атомного ядра и частиц» Квалификация

Подробнее

«КОЛЕБАНИЯ И ВОЛНЫ» ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3. Вариант 1.

«КОЛЕБАНИЯ И ВОЛНЫ» ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3. Вариант 1. «КОЛЕБАНИЯ И ВОЛНЫ» ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 3. Вариант 1. 1. В опыте Юнга на пути одного из лучей поставили трубку, заполненную хлором. При этом вся картина сместилась на 20 полос. Чему равен показатель

Подробнее

Приложения по курсу «ВВЕДЕНИЕ В СТРУКТУРНЫЙ АНАЛИЗ МАТЕРИАЛОВ» 1.Домашние задания для студентов

Приложения по курсу «ВВЕДЕНИЕ В СТРУКТУРНЫЙ АНАЛИЗ МАТЕРИАЛОВ» 1.Домашние задания для студентов Приложения по курсу «ВВЕДЕНИЕ В СТРУКТУРНЫЙ АНАЛИЗ МАТЕРИАЛОВ» 1.Домашние задания для студентов 1. Определить базис для кристаллической решетки алмаза. Решетка алмаза - это две гранецентрированные кубические

Подробнее

Волновая оптика. Световая волна

Волновая оптика. Световая волна Волновая оптика Свет - сложное явление: в одних случаях свет ведет себя как электромагнитная волна, в других - как поток особых частиц. Будем сначала изучать волновую оптику - круг явлений, в основе которых

Подробнее

Интерференция световых волн

Интерференция световых волн Интерференция световых волн Интерференция возникает при наложении волн, создаваемых двумя или несколькими источниками, колеблющимися с одинаковыми частотами и некоторой постоянной разностью фаз Такие источники

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 4.7 СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ДЛЯ ФОТОНОВ. выполнения соотношения неопределенностей для фотонов.

ЛАБОРАТОРНАЯ РАБОТА 4.7 СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ДЛЯ ФОТОНОВ. выполнения соотношения неопределенностей для фотонов. 1 ЛАБОРАТОРНАЯ РАБОТА 4.7 СООТНОШЕНИЕ НЕОПРЕДЕЛЕННОСТЕЙ ДЛЯ ФОТОНОВ Ц е л ь р а б о т ы : экспериментальное подтверждение выполнения соотношения неопределенностей для фотонов. П р и б о р ы и п р и н а

Подробнее

Работа 2 КОЛЬЦА НЬЮТОНА Цель работы: определение радиуса кривизны слабовыпуклой линзы с помощью интерференционной картины колец Ньютона.

Работа 2 КОЛЬЦА НЬЮТОНА Цель работы: определение радиуса кривизны слабовыпуклой линзы с помощью интерференционной картины колец Ньютона. Работа КОЛЬЦА НЬЮТОНА Цель работы: определение радиуса кривизны слабовыпуклой линзы с помощью интерференционной картины колец Ньютона. Введение При прохождении света через тонкую прослойку воздуха между

Подробнее

Краткая теория. l 1. l 2. - n 1

Краткая теория. l 1. l 2. - n 1 Занятие 18 Тема: Интерференция света. Цель: Сложение световых волн. Опыт Юнга. Опыты Френеля и Ллойда. Интерференция света в клиньях и тонких пленках. Кольца Ньютона. Краткая теория Явление интерференции

Подробнее

ИНТЕРФЕРЕНЦИЯ СВЕТА В ПЛОСКОПАРАЛЛЕЛЬНОЙ СТЕКЛЯННОЙ ПЛАСТИНЕ Ф.С.Насрединов, Т.А.Хрущева, К.Ф.Штельмах

ИНТЕРФЕРЕНЦИЯ СВЕТА В ПЛОСКОПАРАЛЛЕЛЬНОЙ СТЕКЛЯННОЙ ПЛАСТИНЕ Ф.С.Насрединов, Т.А.Хрущева, К.Ф.Штельмах ИНТЕРФЕРЕНЦИЯ СВЕТА В ПЛОСКОПАРАЛЛЕЛЬНОЙ СТЕКЛЯННОЙ ПЛАСТИНЕ Ф.С.Насрединов, Т.А.Хрущева, К.Ф.Штельмах ЦЕЛЬ РАБОТЫ Изучение интерференционных полос равного наклона ЗАДАЧИ 1. Получить на экране картину

Подробнее

Дифракция света. Лекция 4.2.

Дифракция света. Лекция 4.2. Дифракция света Лекция 4.2. Дифракция света Дифракция - совокупность явлений, наблюдаемых при распространении света в среде с резкими неоднородностями (края экранов, малые отверстия) и связанных с отклонениями

Подробнее

Дифракционная решетка. Экзамен. Главные дифракционные максимумы решетки. Дифракционная решетка может работать как в отраженном свете, так и в

Дифракционная решетка. Экзамен. Главные дифракционные максимумы решетки. Дифракционная решетка может работать как в отраженном свете, так и в Дифракционная решетка. Экзамен. Главные дифракционные максимумы решетки. Дифракционная решетка может работать как в отраженном свете, так и в прошедшем свете. Рассмотрим решетку, работающую на пропускание.

Подробнее

КВАНТОВАЯ ОПТИКА. Задачи

КВАНТОВАЯ ОПТИКА. Задачи КВАНТОВАЯ ОПТИКА. Задачи 1 Качественные задачи 1. Зависит ли энергия фотона от длины волны света? 2. Металлическая пластинка под действием рентгеновских лучей зарядилась. Каков знак заряда? 3. Чему равно

Подробнее

ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ И РАЗМЕРОВ МАЛЫХ ПРЕПЯТСТВИЙ

ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ И РАЗМЕРОВ МАЛЫХ ПРЕПЯТСТВИЙ Министерство образования Российской Федерации ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ОПРЕДЕЛЕНИЕ ДЛИНЫ ВОЛНЫ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ И РАЗМЕРОВ МАЛЫХ ПРЕПЯТСТВИЙ Методические указания Иркутск 2004 Печатается

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 47 ИЗУЧЕНИЕ ДИФРАКЦИИ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ (ДИФРАКЦИЯ ФРАУНГОФЕРА)

ЛАБОРАТОРНАЯ РАБОТА 47 ИЗУЧЕНИЕ ДИФРАКЦИИ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ (ДИФРАКЦИЯ ФРАУНГОФЕРА) ЛАБОРАТОРНАЯ РАБОТА 47 ИЗУЧЕНИЕ ДИФРАКЦИИ В ПАРАЛЛЕЛЬНЫХ ЛУЧАХ (ДИФРАКЦИЯ ФРАУНГОФЕРА) Цель работы наблюдение дифракционной картины при дифракции в параллельных лучах на одной и двух щелях; определение

Подробнее

Лекция 7. Гипотеза де Бройля. Волновые свойства микрочастиц

Лекция 7. Гипотеза де Бройля. Волновые свойства микрочастиц Лекция 7. Гипотеза де Бройля. Волновые свойства микрочастиц 1 Гипотеза де Бройля Дуализм «волны-частицы» был установлен прежде всего при изучении природы света. В 1924 г. де Бройль выдвинул гипотезу, которая

Подробнее

Тестовые задания по курсу «Введение в квантовую физику». 1.2 Закон движения частиц в бегущей волне имеет вид: y( x, t) 10cos( 20pt

Тестовые задания по курсу «Введение в квантовую физику». 1.2 Закон движения частиц в бегущей волне имеет вид: y( x, t) 10cos( 20pt Тестовые задания по курсу «Введение в квантовую физику». Тема 1. Волны. 1.1 Закон движения частиц в бегущей волне имеет вид: y( x, t) 5sin( 30pt - px ) =. 8 Координата x измеряется в метрах, время t в

Подробнее

λ α = 1.22, где D диаметр объектива микроскопа.

λ α = 1.22, где D диаметр объектива микроскопа. Экзамен. Понятие о разрешающей способности микроскопа. Микроскоп это одна линза объектив и экран. Чтобы получить увеличенное действительное изображение предмета нужно поместить предмет близко к фокальной

Подробнее

Лабораторная работа 41 2

Лабораторная работа 41 2 Лабораторная работа 41 2 Определение радиуса кривизны линзы интерференционным методом Цель работы: изучение интерференции в тонких плёнках на примере колец Ньютона и определение радиуса кривизны линзы.

Подробнее

КОЛЛОИДНАЯ ХИМИЯ. НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Механико-технологический факультет Кафедра химии и химической технологии

КОЛЛОИДНАЯ ХИМИЯ. НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Механико-технологический факультет Кафедра химии и химической технологии НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Механико-технологический факультет Кафедра химии и химической технологии КОЛЛОИДНАЯ ХИМИЯ Коллоидная химия, Зима Т.М. Новосибирский государственный

Подробнее

Внешний фотоэффект Фотоны Эффект Комптона Рентгеновское излучение Давление света

Внешний фотоэффект Фотоны Эффект Комптона Рентгеновское излучение Давление света Сегодня: воскресенье, 8 декабря 2013 г. Лекция 16 Квантовая природа излучения Содержание лекции: Внешний фотоэффект Фотоны Эффект Комптона Рентгеновское излучение Давление света 1. Внешний фотоэффект Внешний

Подробнее

Лабораторная работа 19 Изучение интерференции на опыте Юнга

Лабораторная работа 19 Изучение интерференции на опыте Юнга Лабораторная работа 19 Изучение интерференции на опыте Юнга Приборы и принадлежности: 1. Установка опыта Юнга, линейка миллиметровая. Цель работы: Изучение явления интерференции от двух когерентных источников

Подробнее

Работа ИССЛЕДОВАНИЕ ПОЛЯРИЗОВАННОГО СВЕТА В.И.Сафаров

Работа ИССЛЕДОВАНИЕ ПОЛЯРИЗОВАННОГО СВЕТА В.И.Сафаров Кафедра экспериментальной физики СПбГПУ Работа 3.02 ИССЛЕДОВАНИЕ ПОЛЯРИЗОВАННОГО СВЕТА В.И.Сафаров ЗАДАЧА Исследование и преобразование поляризации света с помощью поляризатора и фазовых пластинок. Проверка

Подробнее

c t Возьмем ротор от второго уравнения системы и получим:

c t Возьмем ротор от второго уравнения системы и получим: 30 Волновое уравнение для электромагнитного поля в вакууме Плоские монохроматические волны и их свойства Поляризация электромагнитных волн Рассмотрим систему уравнений Максвелла div( D) = 4πρ 1 B rot(

Подробнее

ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ ПРИ ПОМОЩИ КОЛЕЦ НЬЮТОНА. 1. Цель работы

ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ ПРИ ПОМОЩИ КОЛЕЦ НЬЮТОНА. 1. Цель работы `ЛАБОРАТОРНАЯ РАБОТА 3.0 ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ ПРИ ПОМОЩИ КОЛЕЦ НЬЮТОНА. Цель работы Целью данной работы является изучение явления интерференции света и применения этого явления для измерения

Подробнее

ГЕОМЕТРИЧЕСКАЯ И ВОЛНОВАЯ ОПТИКА. СКОРОСТЬ СВЕТА 1. Метод Ремера. Впервые скорость света измерил датский астроном Ремер в 1676 году.

ГЕОМЕТРИЧЕСКАЯ И ВОЛНОВАЯ ОПТИКА. СКОРОСТЬ СВЕТА 1. Метод Ремера. Впервые скорость света измерил датский астроном Ремер в 1676 году. ГЕОМЕТРИЧЕСКАЯ И ВОЛНОВАЯ ОПТИКА СКОРОСТЬ СВЕТА. Метод Ремера. Впервые скорость света измерил датский астроном Ремер в 676 году. с = 5000 км с Спутник Ио в положении I находился в тени Юпитера 4 часа 8

Подробнее

Введение в физику дифракции

Введение в физику дифракции Введение в физику дифракции 1. Физические основы кинематической теории рассеяния Рассеяние под малыми углами Проф., дфмн Суворов Э.В. ИНСТИТУТ ФИЗИКИ ТВЕРДОГО ТЕЛА РОССИЙСКОЙ АКАДЕМИИ НАУК МАЛОУГЛОВОЕ

Подробнее

Дифракционная решетка. Экзамен. Главные дифракционные максимумы решетки.

Дифракционная решетка. Экзамен. Главные дифракционные максимумы решетки. Дифракционная решетка. Экзамен. Главные дифракционные максимумы решетки. Дифракционная решетка может работать как в отраженном свете, так и в прошедшем свете. Рассмотрим решетку, работающую на пропускание.

Подробнее

Примеры применения порошковой рентгеновской дифракции. Сочетание с другими дифракционными методами.

Примеры применения порошковой рентгеновской дифракции. Сочетание с другими дифракционными методами. Лаборатория Неорганической Кристаллохимии Кафедра Неорганической Химии, Химический Факультет МГУ Примеры применения порошковой рентгеновской дифракции. Сочетание с другими дифракционными методами. Москва

Подробнее

Восточно-Сибирский государственный университет технологий и управления. Кафедра «Физика» Дифракция света. Лекция 4.2

Восточно-Сибирский государственный университет технологий и управления. Кафедра «Физика» Дифракция света. Лекция 4.2 Восточно-Сибирский государственный университет технологий и управления Кафедра «Физика» Дифракция света Лекция 4.2 Дифракция света совокупность явлений, наблюдаемых при распространении света в среде с

Подробнее

Методы определения размера частиц

Методы определения размера частиц Методы определения размера частиц Статическое светорассеяние Угол рассеяния обратно пропорционален размеру частицы. Малые частицы рассеивают на больший угол чем большие Количество квантов рассеянного света

Подробнее

Типы частиц. Различаются три основных типа частиц: Первичные частицы (кристаллиты, аморфные цельные частицы);

Типы частиц. Различаются три основных типа частиц: Первичные частицы (кристаллиты, аморфные цельные частицы); Типы частиц Различаются три основных типа частиц: Первичные частицы (кристаллиты, аморфные цельные частицы); Агрегаты (группа плотно спеченных частиц ) Агломераты ( группа частиц связанная Ван-дер-Ваальсовым

Подробнее

cn = световые волны разных частот не t ɶ ɶ = 0. Тогда = I, и свет разных частот не m m

cn = световые волны разных частот не t ɶ ɶ = 0. Тогда = I, и свет разных частот не m m Интерференция. Экзамен. Явление интерференции. Ширина полос. Видность. Говорят, что волны интерферируют, если интенсивность суммарной волны не равна сумме интенсивностей: I I. Рассмотрим свет, в разложении

Подробнее

Лабораторная работа 3.05 ДИФРАКЦИЯ ФРАУНГОФЕРА НА ЩЕЛЯХ И ДИФРАКЦИОННЫХ РЕШЕТКАХ М.В. Козинцева, Т.Ю. Любезнова, А.М. Бишаев

Лабораторная работа 3.05 ДИФРАКЦИЯ ФРАУНГОФЕРА НА ЩЕЛЯХ И ДИФРАКЦИОННЫХ РЕШЕТКАХ М.В. Козинцева, Т.Ю. Любезнова, А.М. Бишаев Лабораторная работа 3.05 ДИФРАКЦИЯ ФРАУНГОФЕРА НА ЩЕЛЯХ И ДИФРАКЦИОННЫХ РЕШЕТКАХ М.В. Козинцева, Т.Ю. Любезнова, А.М. Бишаев Цель работы: исследование особенностей дифракции Фраунгофера световых волн на

Подробнее

Экзамен. Дифракция Фраунгофера на одной щели (продолжение).

Экзамен. Дифракция Фраунгофера на одной щели (продолжение). Экзамен Дифракция Фраунгофера на одной щели (продолжение) --------- Рассмотрим теперь задачу дифракции Фраунгофера на одной щели графически Разобьем щель на тонкие полоски вторичных источников Пусть высота

Подробнее

Кафедра физики Пестряев Е.М. ГТЗ-МТЗ-СТЗ-05: вариант=номер зачетки

Кафедра физики Пестряев Е.М. ГТЗ-МТЗ-СТЗ-05: вариант=номер зачетки Контрольная работа 5, 6 - оптика и атомная физика: Вариант 1 1. Определить длину отрезка l 1, на котором укладывается столько же длин волн монохроматического света в вакууме, сколько их укладывается на

Подробнее

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 1 ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. ВОЛНОВАЯ И ГЕОМЕТРИЧЕСКАЯ ОПТИКА

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 1 ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. ВОЛНОВАЯ И ГЕОМЕТРИЧЕСКАЯ ОПТИКА ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ 1 ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. ВОЛНОВАЯ И ГЕОМЕТРИЧЕСКАЯ ОПТИКА Вариант 1 1. Длина электромагнитной волны в вакууме, на которую настроен колебательный контур, равна 12 м. Пренебрегая

Подробнее

Тема 4. Оптические свойства дисперсий и методы исследования (нефелометрия, турбидиметрия). V I p

Тема 4. Оптические свойства дисперсий и методы исследования (нефелометрия, турбидиметрия). V I p Тема. Оптические свойства дисперсий и методы исследования (нефелометрия, турбидиметрия). Теория. Прохождение света через высокодисперсную систему (золь) сопровождается рассеянием света на частицах дисперсной

Подробнее

ФОТОЭФФЕКТ. ЭФФЕКТ КОМПТОНА. ВОЛНОВЫЕ СВОЙСТВА ЧАСТИЦ. 1. Определить энергию ε, импульс р и массу m фотона, длина волны которого λ = 500 нм.

ФОТОЭФФЕКТ. ЭФФЕКТ КОМПТОНА. ВОЛНОВЫЕ СВОЙСТВА ЧАСТИЦ. 1. Определить энергию ε, импульс р и массу m фотона, длина волны которого λ = 500 нм. ФОТОЭФФЕКТ. ЭФФЕКТ КОМПТОНА. ВОЛНОВЫЕ СВОЙСТВА ЧАСТИЦ 1. Определить энергию ε, импульс р и массу m фотона, длина волны которого λ = 500 нм. 2. Какую длину волны λ должен иметь фотон, чтобы его масса была

Подробнее

5 Волновая оптика. Основные формулы и определения

5 Волновая оптика. Основные формулы и определения 5 Волновая оптика Основные формулы и определения Интерференцией света называется сложение когерентных волн, в результате которого происходит перераспределение световой энергии в пространстве, что приводит

Подробнее

1. ОСНОВЫ ОПТИЧЕСКИХ МЕТОДОВ ИССЛЕДОВАНИЙ

1. ОСНОВЫ ОПТИЧЕСКИХ МЕТОДОВ ИССЛЕДОВАНИЙ 1.. Дифракция на щели 1.. Дифракция на щели 1 1..1. Дифракционный предел разрешения 1... Критерий Релея 3 1..3. Оптимальная (нормальная) ширина щели 3 1..4. Дифракция на входной щели прибора 4 Дифракция

Подробнее

Исследование дифракции Френеля на круглом отверстии и круглом диске

Исследование дифракции Френеля на круглом отверстии и круглом диске РАБОТА 6 Исследование дифракции Френеля на круглом отверстии и круглом диске Цель работы: изучение явления дифракции света на простейших объектах и измерение их основных параметров. Введение Дифракцией

Подробнее

объемную энергии электромагнитного поля w: Лучевая скорость вводится аналогично соотношению S = w V

объемную энергии электромагнитного поля w: Лучевая скорость вводится аналогично соотношению S = w V Экзамен Лучевая и фазовая скорости световой волны в кристалле И лучевая и фазовая скорости световой волны в кристалле являются аналогами одной и той же фазовой скорости в некристаллической изотропной среде

Подробнее

mc E c c E c Сравним давление или плотность потока импульса p с интенсивностью

mc E c c E c Сравним давление или плотность потока импульса p с интенсивностью Световое давление Корпускулярная и волновая трактовки 1) Корпускулярная трактовка давления света Рассмотрим свет, который нормально падает на площадку и полностью поглощается F Давление это сила, деленная

Подробнее

Paбота 9 РАССЕЯНИЕ СВЕТА В МУТНОЙ СРЕДЕ

Paбота 9 РАССЕЯНИЕ СВЕТА В МУТНОЙ СРЕДЕ Paбота 9 РАССЕЯНИЕ СВЕТА В МУТНОЙ СРЕДЕ Цель работы: наблюдение явления рассеяния света в мутной среде; определение коэффициента экстинкции (ослабления) света в мутной среде. Введение Электромагнитные

Подробнее

ЛАБОРАТОРНАЯ РАБОТА 250. ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ ПО КОЛЬЦАМ НЬЮТОНА. Интерференция света

ЛАБОРАТОРНАЯ РАБОТА 250. ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ ПО КОЛЬЦАМ НЬЮТОНА. Интерференция света ЛАБОРАТОРНАЯ РАБОТА 5. ОПРЕДЕЛЕНИЕ РАДИУСА КРИВИЗНЫ ЛИНЗЫ ПО КОЛЬЦАМ НЬЮТОНА. Цель и содержание работы Цель работы состоит в ознакомлении с явлением интерференции в тонких слоях. Содержание работы заключается

Подробнее

Дифракция света. Дифракция на круглом отверстии и на диске. Дифракция на крае полуплоскости. Дифракция на щели. Рис.1. Рис.2. Рис.3.

Дифракция света. Дифракция на круглом отверстии и на диске. Дифракция на крае полуплоскости. Дифракция на щели. Рис.1. Рис.2. Рис.3. Дифракция света. Под дифракцией света понимают всякое отклонение от прямолинейного распространения света, если оно не является результатом отражения или преломления. Дифракция, в частности приводит к огибанию

Подробнее

Размеры и форма узлов обратной решетки

Размеры и форма узлов обратной решетки Размеры и форма узлов обратной решетки Размеры и форма узлов обратной решетки Влияние размеров и формы кристалла λ k λ k K K = hb + + () = k k kb lb3 = d K = 00 λ k λ k K 00 Условие Лауэ K = K 00 λ k Размеры

Подробнее

Физика. Простые задачи. Задача 1. Задача 2

Физика. Простые задачи. Задача 1. Задача 2 Физика Простые задачи Задача 1 Для элементного анализа пробу наночастиц подготавливают следующим образом: сперва её испаряют, а затем ионизируют электронным пучком. Температура кипения серебра T = 2485

Подробнее

Дифракция Френеля. = 1,29 мм.

Дифракция Френеля. = 1,29 мм. Дифракция Френеля Примеры решения задач Пример. Между точечным источником света и экраном поместили диафрагму с круглым отверстием радиус которого r можно менять. Расстояния от диафрагмы до источника и

Подробнее

таким же модулем амплитуды, но с другой фазой. Фазовый сдвиг δϕ = ( ) = d sin α + sin α, где d шаг решетки,

таким же модулем амплитуды, но с другой фазой. Фазовый сдвиг δϕ = ( ) = d sin α + sin α, где d шаг решетки, Экзамен. Дифракционная решетка с отсутствующими четными главными дифракционными максимумами (продолжение). Факультативная вставка. Можно найти аналитическое выражение для зависимости интенсивности света

Подробнее

1. Рентгеновские спектры.

1. Рентгеновские спектры. РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ И ЕГО ПРИМЕНЕНИЕ. Жигалова Ю. В. НИУ БелГУ Белгород, Россия X-RAY ANALYSIS AND ITS APPLICATION. Zhigalova Y. V. NIU BSU Belgorod, Russia Рентгеновские лучи, открытые в 1895 г.

Подробнее

Какое уравнение не относится к математическому маятнику? l g

Какое уравнение не относится к математическому маятнику? l g - 1 - КОЛЕБАНИЯ И ВОЛНЫ 1. Какое уравнение не относится к математическому маятнику? mg l sinϕ π ϕ + ω ϕ ) m l ϕ mgl sinϕ l g π LC.. Какое выражение или определение не относится к периоду гармонических

Подробнее

Работа 5.10 Определение ширины запрещенной зоны полупроводников по краю собственного поглощения

Работа 5.10 Определение ширины запрещенной зоны полупроводников по краю собственного поглощения Работа 5.10 Определение ширины запрещенной зоны полупроводников по краю собственного поглощения Оборудование: призменный монохроматор УМ-2, лампа накаливания, гальванометр, сернисто-кадмиевое фотосопротивление,

Подробнее

Понятие дифракции Дифр фракцией независимо от их природы дифракция

Понятие дифракции Дифр фракцией независимо от их природы дифракция Дифракция света Понятие дифракции Дифракцией называется совокупность явлений,, наблюдаемых при распространении света в среде с резкими неоднородностями и связанных с отклонениями от законов геометрической

Подробнее

ЛАБОРАТОРНАЯ РАБОТА ИССЛЕДОВАНИЕ ВНЕШНЕГО ФОТОЭФФЕКТА. Введение

ЛАБОРАТОРНАЯ РАБОТА ИССЛЕДОВАНИЕ ВНЕШНЕГО ФОТОЭФФЕКТА. Введение ЛАБОРАТОРНАЯ РАБОТА 3.09. ИССЛЕДОВАНИЕ ВНЕШНЕГО ФОТОЭФФЕКТА Введение Внешним фотоэлектрическим эффектом называется явление испускания (эмиссии) электронов поверхностью вещества под действием света, (поэтому

Подробнее

3. Гармонический осциллятор, пружинный, физический и математический маятники.

3. Гармонический осциллятор, пружинный, физический и математический маятники. 3 3. Гармонический осциллятор, пружинный, физический и математический маятники. Физический маятник. Физическим маятником называется твёрдое тело, совершающее под действием силы тяжести колебания вокруг

Подробнее

ОПТИЧЕСКИЕ МОДУЛЯТОРЫ

ОПТИЧЕСКИЕ МОДУЛЯТОРЫ ОПТИЧЕСКИЕ МОДУЛЯТОРЫ Модуляция света это изменение его параметров в зависимости от управляющего (модулирующего) сигнала. С ее помощью производят наложение информации на световую волну или световой поток,

Подробнее

Экзамен. Рентгеновское излучение. Сплошной и линейчатый спектры. серии спектральных линий.

Экзамен. Рентгеновское излучение. Сплошной и линейчатый спектры. серии спектральных линий. Экзамен. Рентгеновское излучение. Сплошной и линейчатый спектры.,,,,... K LM N серии спектральных линий. Рентгеновское излучение получают с помощью рентгеновской трубки это откачанная стеклянная трубка

Подробнее