7. Теорема Гильберта-Шмидта.

Save this PDF as:
 WORD  PNG  TXT  JPG

Размер: px
Начинать показ со страницы:

Download "7. Теорема Гильберта-Шмидта."

Транскрипт

1 Лекция 5 7 Теорема Гильберта-Шмидта Будем рассматривать интегральный оператор A, ядро которого K( удовлетворяет следующим условиям: K( s ) симметрическое, непрерывное по совокупности переменных на [, ] [, ] и K( 0 В соответствии с результатами предыдущего параграфа этот оператор обладает конечной или бесконечной последовательностью характеристических чисел, которым соответствует ортонормированная система собственных функций,,,, определяемых уравнением = K( ( ds, Определение Функция f ( называется истокопредставимой с помощью ядра K (, если существует непрерывная функция s () такая, что f K( ( ds или, что тоже самое, f = A (те f R(A) - множеству значений оператора A, действующего h[, ] h[, ] ) Любой функции f h[, ] можно формально сопоставить ее ряд Фурье по системе функций (, те f f = Теорема Гильберта-Шмидта Если функция f ( истокопредставима с помощью непрерывного симметрического ядра K (, то она может быть разложена в ряд f = f, где f = ( f, ) = f( ( d = причем этот ряд сходится абсолютно и равномерно на отрезке [, ] Доказательство ) Докажем, что ряд f сходится абсолютно и равномерно = на [, ] Будем рассматривать случай, когда характеристических чисел бесконечно много (в противном случае очевидно, что ряд сходится) Заметим, что f = ( f, ) = ( A, ) = (, A ) = (, ) = Итак, нам надо доказать равномерную и абсолютную сходимость ряда = Для доказательства применим критерий Коши равномерной сходимости Для нас представляет интерес сумма =, = = = где и произвольные натуральные числа (здесь мы использовали неравенство Коши- Буняковского для сумм вещественных чисел) а) Из неравенства Бесселя = = ( ds следует, что ряд = состоит из неотрицательных чисел, и все частичные суммы его ограничены сходится, тк 3

2 б) Заметим, что = K( ( ds, тк собственная функция, соответствующая характеристическому числу Если фиксировать x [, ], то - коэффициент Фурье ядра K (, и можно записать неравенство Бесселя для K( = = K ( ds K o ( ), где K = mx K( o s [, ] В то же время, из неравенства Бесселя для функции ( следует, что числовой ряд = сходится, и выполняется критерий Коши как необходимое условие его сходимости, те ε ε > 0 N N Но тогда при тех же ε, N,, имеет K ( ) место оценка = = o ε, те выполнен критерий Коши как достаточное условие равномерной сходимости функционального ряда = Итак, равномерная и абсолютная сходимость ряда Фурье доказана ) Докажем, что ряд Фурье f сходится к функции f ( Так как ряд = состоит из непрерывных функций и сходится равномерно на [,, ] то его сумма непрерывная на [, ] функция Обозначим ω = f = f Надо доказать, что ω 0 Докажем, что ω ( ортогональна всем собственным функциям i ( Действительно, ( ω, i ) = ω( i dx = f i dx f i dx = fi f i dx = = = = fi fi = 0 i =,, (возможность изменения порядка интегрирования и суммирования следует из равномерной сходимости ряда) Так как функция ω ( ортогональна всем i (, то (см предыдущий параграф), ω ( принадлежит нуль-пространству оператора A, те A ω = 0 Далее ω dx = [ f f ] ω( dx = f ω( dx = ( f, ω) = ( A, ω) = (, Aω) = 0 = Изменение порядка интегрирования и суммирования возможно в силу доказанной выше равномерной сходимости ряда Фурье Так как ω ( непрерывная функция, то ω 0 Теорема доказана В заключение этого параграфа сформулируем без доказательства некоторые обобщения полученных результатов Можно рассматривать задачу в многомерном случае Пусть Ω - замкнутая ограниченная область Ω R, для которой можно определить указанные ниже интегралы Введем пространство h[ Ω ], состоящее из функций, непрерывных в Ω, со скалярным 3

3 произведением ( y, y) = y( y( d dx = dx dx dx Ω Рассмотрим многомерное интегральное уравнение Фредгольма -го рода с ядром K( yx ( ) = Kxsysds (, ) ( ) + f, xs, Ω Ω Если ядро непрерывно и симметрично по переменным s, то все результаты, полученные выше, остаются верными и в многомерном случае Φ( В курсе методов математической физики рассматриваются ядра K( =, α x s где Φ( непрерывная в Ω по совокупности аргументов и симметрическая функция, x s = r xs - расстояние между точками x и s в пространстве Если α <, где = dim R, то ядро K( называется полярным Для таких ядер доказывается, что интегральный оператор A: h [ Ω] h[ Ω] является вполне непрерывным Таким образом, для интегральных операторов с полярными ядрами справедливы теоремы о существовании хотя бы одного собственного значения и теоремы о построении последовательности собственных значений Если α < ( = dim R ), то ядро K ( называется слабополярным Для таких ядер справедлива также и теорема Гильберта-Шмидта Все результаты могут быть перенесены на случай комплексных пространств h[, ] и h [Ω], но вместо требования симметричности ядра, если ядро является комплексным, надо потребовать K( = K (, для любых s из Ω, где - знак комплексного сопряжения R 8 Неоднородное уравнение Фредгольма -го рода с симметрическим непрерывным ядром Рассмотрим интегральное уравнение Фредгольма -го рода: y = K( y( ds + f Ay + f Пусть ядро K ( непрерывно по совокупности переменных, симметрично и K( / 0; 0 - вещественное число (в противном случае решение находится тривиально); f ( - заданная непрерывная функция; - последовательность характеристических чисел интегрального оператора, которым соответствует ортонормированная система собственных функций,,,, Допустим, что решение уравнения существует Преобразуем искомую функцию так, чтобы она стала истокопредставимой Для этого будем искать решение в виде y = f + ( Подставляя в исходное уравнение, получаем ( f ( + ( ) f + ( = K( ds + f Сократив f ( x ), получим уравнение для ( ) операторная форма которого = A( + f ) 33

4 Решение этого уравнения, если оно есть, является истокопредставимым Следовательно, по теореме Гильберта-Шмидта, функция ( может быть разложена в равномерно и абсолютно сходящийся ряд Фурье по собственным функциям ядра K ( : = ( = Вычисляя коэффициенты Фурье функций и A ( + f ), получаем = Для определения необходимо решить систему уравнений ( ) = f, =,, Возможны два случая ), =,, Тогда ( A( + f ), ) = ( + f, A ) = + f, = ( + f ) =,, = f, и можно формально записать ряды Фурье = ( f и y( = f + f Чтобы последний ряд Фурье = = на самом деле являлся решением, достаточно доказать, что этот ряд сходится равномерно на сегменте [, ] Заметим, что, поэтому при любом, начиная с некоторого номера, выполняется оценка = 5 Тогда для достаточно больших и любого натурального имеем f 5 f Далее, как в предыдущем параграфе, доказывается, что выполняется критерий Коши как достаточное условие равномерной сходимости, те ряд Фурье сходится равномерно Замечание Запишем решение уравнения в следующем виде: f() s () s ds yx ( ) = f + = Предположим, что можно поменять местами суммирование и интегрирование, тогда ( y( f = + f ( ds, = R( ) или y = f + R( ) f ( ds В операторной форме уравнение Фредгольма -го рода имеет вид y = Ay + f, или ( I A) y = f Тк решение существует и единственно, то y = ( I A) f = f + R f, где R - интегральный оператор с ядром R ( ) В операторном виде полученный результат можно записать так: ( I A) = I + R, 34

5 Определение Ядро R( ) называется резольвентой Рассмотрим теперь второй случай ) = Пусть сначала простое характеристическое число Тогда при f ( ) = f, =,,;, следовательно = При = имеем 0 = f, где 0 Если f 0, f = ( f, ), то последнее уравнение не имеет решения, а значит и исходное уравнение решений не имеет Если же f = 0, то получаем = c, где c - произвольная постоянная, те решений бесконечно много Наконец, пусть - характеристическое число кратности r В этом случае получаем систему уравнений: 0 = f 0 = f 0 r = f r Эта система имеет решение тогда и только тогда, когда все коэффициенты Фурье f, f,, f r равны нулю Если хотя бы один коэффициент Фурье не равен нулю, то система не имеет решений, а, следовательно, и исходное уравнение не имеет решений Другими словами, условием разрешимости является ортогональность функции f ( всем собственными функциям, соответствующим характеристическому числу В этом случае решение не единственно и дается формулой f yx ( ) = f + + c + + c r r, = r где c,, c + r - произвольные константы Ряд, записанный в данном представлении, сходится абсолютно и равномерно В результате проведенного исследования мы доказали две теоремы Теорема Если однородное уравнение Фредгольма -го рода с непрерывным симметрическим ядром имеет только тривиальное решение (те, =,, ), то неоднородное уравнение имеет, и притом, единственное, решение для любой непрерывной функции f ( Если однородное уравнение имеет нетривиальное решение, те = при некотором, то неоднородное уравнение разрешимо тогда и только тогда, если неоднородность непрерывная функция f ( ортогональна всем собственным функциям, соответствующим данному (те всем решениям однородного уравнения) В последнем случае, если решение существует, то оно не единственно Теорема (Альтернатива Фредгольма для интегральных уравнений Фредгольма -го рода с симметрическими ядрами) Либо неоднородное уравнение имеет решение для любой непрерывной функции f (, либо однородное уравнение имеет нетривиальное решение 35

6 Экзаменационные вопросы ) Определения и формулировки теорем Сформулировать определение функции, истокопредставимой с помощью ядра интегрального оператора Сформулировать теорему Гильберта-Шмидта 3 Сформулировать определение интегрального оператора с полярным ядром 4 Сформулировать определение интегрального оператора со слабо полярным ядром 5 Сформулировать определение резольвенты интегрального оператора 6 Сформулировать альтернативу Фредгольма для интегральных уравнений Фредгольма -го рода с непрерывным симметрическим ядром 7 При каком условии неоднородное уравнение Фредгольма -го рода с симметрическим непрерывным ядром имеет и притом единственное решение для любой непрерывной функции f ( - неоднородности уравнения? 8 Сформулировать условие разрешимости неоднородного уравнения Фредгольма -го рода с симметрическим непрерывным ядром в случае, когда однородное уравнение имеет нетривиальное решение Сколько решений имеет неоднородное уравнение, если оно разрешимо? ) Утверждения и теоремы, которые необходимо уметь доказывать Теоретические задачи Доказать теорему Гильберта-Шмидта Построить решение интегрального уравнения Фредгольма -го рода с симметрическим непрерывным ядром с помощью разложения в ряд Фурье по собственным функциям ядра и доказать альтернативу Фредгольма 36

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами.

12. Уравнения Фредгольма 2-го рода с вырожденными ядрами. Лекция 7 2 Уравнения Фредгольма 2го рода с вырожденными ядрами Этот случай отличается тем, что решение интегрального уравнения сводится к решению линейной алгебраической системы и может быть легко получено

Подробнее

4. Существование собственного значения вполне непрерывного самосопряженного оператора.

4. Существование собственного значения вполне непрерывного самосопряженного оператора. Лекция 4 Существование собственного значения вполне непрерывного самосопряженного оператора Пусть линейный оператор действует в линейном пространстве L Число называется собственным значением оператора,

Подробнее

ТЕМА 6. Неоднородное уравнение Фредгольма 2-го рода. Уравнения Фредгольма с вырожденными ядрами. Теоремы Фредгольма.

ТЕМА 6. Неоднородное уравнение Фредгольма 2-го рода. Уравнения Фредгольма с вырожденными ядрами. Теоремы Фредгольма. ТЕМА 6 Неоднородное уравнение Фредгольма -го рода Уравнения Фредгольма с вырожденными ядрами Теоремы Фредгольма Основные определения и теоремы Рассмотрим неоднородное уравнение Фредгольма yx ( ) = λ Kxs

Подробнее

9. Принцип сжимающих отображений. Теоремы о неподвижной точке.

9. Принцип сжимающих отображений. Теоремы о неподвижной точке. Лекция 6 9 Принцип сжимающих отображений Теоремы о неподвижной точке Пусть D оператор, вообще говоря, нелинейный, действующий из банахова пространства B в себя Определение Оператор D, действующий из банахова

Подробнее

Материалы к экзамену по курсу "Интегральные уравнения. Вариационное исчисление"

Материалы к экзамену по курсу Интегральные уравнения. Вариационное исчисление Материалы к экзамену по курсу "Интегральные уравнения Вариационное исчисление" Экзамен по курсу "Интегральные уравнения Вариационное исчисление" состоит из -х частей -я часть экзамена - тест на знание

Подробнее

6. Характеристические числа и собственные функции интегрального оператора Фредгольма с симметрическим непрерывным ядром.

6. Характеристические числа и собственные функции интегрального оператора Фредгольма с симметрическим непрерывным ядром. Лекция 4 6. Характеристические числа и собственные функции интегрального оператора Фредгольма с симметрическим непрерывным ядром. Подытожим результаты полученные в предыдущем параграфе в следующей теореме.

Подробнее

14. Задача Штурма-Лиувилля.

14. Задача Штурма-Лиувилля. Лекция 8 4 Задача Штурма-Лиувилля Рассмотрим начально-краевую задачу для дифференциального уравнения в частных производных второго порядка описывающего малые поперечные колебания струны Струна рассматривается

Подробнее

Глава 1. ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ

Глава 1. ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ Глава 1 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ Лекция 1 1 Введение Уравнение называется интегральным, если неизвестная функция входит в уравнение под знаком интеграла Разумеется, мы не будем рассматривать интегральные

Подробнее

ТЕМА 4. Принцип сжимающих отображений. Метод последовательных приближений для уравнения Фредгольма 2-рода с "малым" λ.

ТЕМА 4. Принцип сжимающих отображений. Метод последовательных приближений для уравнения Фредгольма 2-рода с малым λ. ТЕМА 4 Принцип сжимающих отображений Метод последовательных приближений для уравнения Фредгольма -рода с "малым" λ Основные определения и теоремы Пусть D оператор вообще говоря нелинейный действующий D:

Подробнее

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора.

ТЕМА 3. Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора. ТЕМА 3 Собственные значения и собственные векторы вполне непрерывного самосопряженного оператора Основные определения и теоремы Оператор A : E E, действующий в евклидовом пространстве, называется сопряженным

Подробнее

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода.

ТЕМА 5. Линейное уравнение Вольтерра 2-го рода. ТЕМА 5 Линейное уравнение Вольтерра -го рода Основные определения и теоремы Уравнение y = λ K(, ) y( ) d+ f( ),, [,, или в операторной форме y = λ By+ f, называется уравнением Вольтерра -го рода Пусть

Подробнее

Краевые задачи. ни разу, все функции комплекснозначные. , такое, что (2) верно. (0,0,0) задача имеет хоть одно решение, а именно ) ~ (

Краевые задачи. ни разу, все функции комплекснозначные. , такое, что (2) верно. (0,0,0) задача имеет хоть одно решение, а именно ) ~ ( Краевые задачи L ни разу все функции комплекснозначные Определение: - задачей называют задачу найти такое что верно задача имеет хоть одно решение а именно Предложение : - линейный оператор L и - линейные

Подробнее

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ

ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Глава 3 ПОНЯТИЕ О МЕТОДАХ РЕГУЛЯРИЗАЦИИ РЕШЕНИЯ НЕКОРРЕКТНО ПОСТАВЛЕННЫХ ЗАДАЧ Лекции 3-4 Интегральное уравнение Фредгольма -го рода как пример некорректно поставленной задачи Эта тема по предмету рассмотрения

Подробнее

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8

Оглавление. Введение. Основные понятия Интегральные уравнения Вольтерры... 5 Варианты домашних заданий... 8 Оглавление Введение. Основные понятия.... 4 1. Интегральные уравнения Вольтерры... 5 Варианты домашних заданий.... 8 2. Резольвента интегрального уравнения Вольтерры. 10 Варианты домашних заданий.... 11

Подробнее

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению.

ТЕМА 7. Задача Штурма-Лиувилля. Собственные значения и собственные функции. Сведение задачи Штурма-Лиувилля к интегральному уравнению. ТЕМА 7 Задача Штурма-Лиувилля Собственные значения и собственные функции Сведение задачи Штурма-Лиувилля к интегральному уравнению Основные определения и теоремы Оператором Штурма-Лиувилля называется дифференциальный

Подробнее

Список задач с решениями по функциональному анализу.

Список задач с решениями по функциональному анализу. Список задач с решениями по функциональному анализу Пусть линейное нормированное пространство Доказать, что для любых элементов выполняется неравенство из аксиом нормы:, тогда: Можно ли в пространстве

Подробнее

В. Т. Волков, А. Г. Ягола

В. Т. Волков, А. Г. Ягола В Т Волков, А Г Ягола ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ (курс лекций) Предисловие Учебное пособие "Интегральные уравнения Вариационное исчисление (курс лекций)" написано на основе опыта чтения

Подробнее

7 Гильбертово пространство. Определение. Простейшие свойства скалярного произведения. Основная теорема. Ряды Фурье в гильбертовом пространстве.

7 Гильбертово пространство. Определение. Простейшие свойства скалярного произведения. Основная теорема. Ряды Фурье в гильбертовом пространстве. В.В. Жук, А.М. Камачкин 7 Гильбертово пространство. Определение. Простейшие свойства скалярного произведения. Основная теорема. Ряды Фурье в гильбертовом пространстве. 7.1 Определение гильбертова пространства.

Подробнее

называется обобщенным рядом Фурье по ортогональной системе функций

называется обобщенным рядом Фурье по ортогональной системе функций 345 4 Ряды Фурье по ортогональным системам функций Пусть ( ( x - ортогональная система функций в L [ ; ] Выражение c ( x + c1 ( x + 1 c ( x + + ( c ( x = c ( x (41 = называется обобщенным рядом Фурье по

Подробнее

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ.

ЧАСТЬ 2 КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. 8 Глава VI ЧАСТЬ КРАЕВЫЕ ЗАДАЧИ И ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ. ГЛАВА VI Краевые задачи для обыкновенны дифференциальных уравнений 9. Постановка краевых задач для обыкновенных дифференциальных уравнений В отличие

Подробнее

Предварительные сведения теории разностных схем

Предварительные сведения теории разностных схем Предварительные сведения теории разностных схем 1 Формулы суммирования по частям и разностные формулы Грина для сеточных функций Получим ряд соотношений, которые в дальнейшем будем использовать при исследовании

Подробнее

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D.

2. Теорема существования и единственности решения скалярного уравнения. , т.е. (, ) f xy M в D. Лекция 3 Теорема существования и единственности решения скалярного уравнения Постановка задачи Основной результат Рассмотрим задачу Коши d f ( ) d =,, () = Функция f (, ) задана в области G плоскости (,

Подробнее

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА

Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА Лекция 8 РАЗРЕШИМОСТЬ ЗАДАЧ ДИРИХЛЕ И НЕЙМАНА В этой лекции мы введём альтернативы Фредгольма и докажем с их помощью существование классических решений задач Дирихле и Неймана в ограниченных и неограниченных

Подробнее

В. И. Кузоватов, А. М. Кытманов ПРИНЦИП СИММЕТРИИ ДЛЯ РЕШЕНИЙ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА В ПОЛУПРОСТРАНСТВЕ

В. И. Кузоватов, А. М. Кытманов ПРИНЦИП СИММЕТРИИ ДЛЯ РЕШЕНИЙ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА В ПОЛУПРОСТРАНСТВЕ УДК 517.95 В. И. Кузоватов, А. М. Кытманов ПРИНЦИП СИММЕТРИИ ДЛЯ РЕШЕНИЙ УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА В ПОЛУПРОСТРАНСТВЕ В работе рассмотрен принцип симметрии для функций, являющихся решениями уравнения Гельмгольца

Подробнее

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется

8. Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида.. При этом предел S последовательности ( S n ) называется 8 Комплексные числовые ряды Рассмотрим числовой ряд с комплексными числами вида k a, (46) где ( a k ) - заданная числовая последовательность с комплексными членами k Ряд (46) называется сходящимся, если

Подробнее

ϕ называется ортогональной на [ a, b]

ϕ называется ортогональной на [ a, b] ТЕМА V РЯД ФУРЬЕ ЛЕКЦИЯ 6 Разложение периодической функции в ряд Фурье Многие процессы происходящие в природе и технике обладают свойствами повторяться через определенные промежутки времени Такие процессы

Подробнее

ТЕМА 2. Элементы теории линейных операторов. Обратный оператор. Вполне непрерывный оператор.

ТЕМА 2. Элементы теории линейных операторов. Обратный оператор. Вполне непрерывный оператор. ТЕМА Элементы теории линейных операторов Обратный оператор Вполне непрерывный оператор Основные определения и теоремы Оператор A, действующий из линейного пространства L в линейное пространство L, называется

Подробнее

3. Записать уравнение Фредгольма 1-го рода. Какое уравнение называется

3. Записать уравнение Фредгольма 1-го рода. Какое уравнение называется 1. Записать уравнение Фредгольма 2-го рода. Какое уравнение называется однородным y x = K x, s y s ds f x, x, s [, ] где K x, s - заданная непрерывная по совокупности аргументов функция, называемя ядром

Подробнее

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА

ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА ЛАБОРАТОРНАЯ РАБОТА 5 ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ. ТЕОРЕМЫ ФРЕДГОЛЬМА. О С Н О В Н Ы Е П О Н Я Т И Я И Т Е О Р Е М Ы Определение. Интегральным уравнением Фредгольма рода называется уравнение x ( s, ds f (.

Подробнее

Лекция 18. Системы дифференциальных уравнений

Лекция 18. Системы дифференциальных уравнений Лекция 8 Системы дифференциальных уравнений Общие понятия Системой обыкновенных дифференциальных уравнений -порядка называется совокупность уравнений F y y y y ( F y y y y ( F y y y y ( Частным случаем

Подробнее

Интегралы и дифференциальные уравнения. Лекции 18-19

Интегралы и дифференциальные уравнения. Лекции 18-19 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекции 18-19 Линейные

Подробнее

Лекция 11. Гильбертовы пространства. Общая теория.

Лекция 11. Гильбертовы пространства. Общая теория. Лекция 11. Гильбертовы пространства. Общая теория. Корпусов Максим Олегович, Панин Александр Анатольевич Курс лекций по линейному функциональному анализу 22 января 2012 г. Определение гильбертова пространства.

Подробнее

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности

и ряды» Р. М. Гаврилова, Г. С. Костецкая Методические указания по теме «Функциональные последовательности Федеральное агентство по образованию Федеральное государственное образовательное учреждение высшего профессионального образования ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ Р. М. Гаврилова, Г. С. Костецкая Методические

Подробнее

2М 0,2, следовательно, М М 2М

2М 0,2, следовательно, М М 2М Глава 3 НОРМИРОВАННЫЕ ПРОСТРАНСТВА Векторные пространства Пусть поле действительных чисел или поле комплексных чисел и будем рассматривать векторные пространства над этим полем Это значит будем рассматривать:

Подробнее

Интегралы и дифференциальные уравнения. Лекция 23

Интегралы и дифференциальные уравнения. Лекция 23 кафедра «Математическое моделирование» проф. П. Л. Иванков Интегралы и дифференциальные уравнения конспект лекций для студентов 1-го курса 2-го семестра специальностей РЛ1,2,3,6, БМТ1,2 Лекция 23 Системы

Подробнее

Дифференциальные уравнения Т С

Дифференциальные уравнения Т С Дифференциальные уравнения. 1999. Т.35. 6. С.784-792. УДК 517.957 ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ КРАЕВЫХ ЗАДАЧ ДЛЯ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ С НЕЛИНЕЙНОСТЯМИ Ю. В. Жерновый 1. Введение. Постановка задачи. Наиболее

Подробнее

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

5. ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ 5 ЛИНЕЙНЫЕ ОДНОРОДНЫЕ УРАВНЕНИЯ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Рассмотрим линейное уравнение ( ) ( ) ( ) L[ ] p p p p f () () коэффициенты которого p p p постоянные вещественные числа а правая часть f ()

Подробнее

Основы теории специальных функций

Основы теории специальных функций Основы теории специальных функций Необходимость изучения специальных функций математической физики связана с двумя основными обстоятельствами. Во-первых, при разработке математической модели физического

Подробнее

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ.

Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Тема курса лекций: ЧИСЛОВЫЕ РЯДЫ. Лекция 2. Абсолютно сходящиеся ряды, признаки сходимости. Свойства абсолютно сходящихся рядов. Условная сходимость. Признаки сходимости Лейбница, Дирихле, Абеля. Далее

Подробнее

Ряды Тейлора и Лорана

Ряды Тейлора и Лорана Лекция 7 Ряды Тейлора и Лорана 7. Ряд Тейлора В этой части мы увидим, что понятия степенного ряда и аналитической функции определяют один и тот же объект: любой степенной ряд с положительным радиусом сходимости

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ. РЯДЫ. ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАСЧЕТНЫМ ЗАДАНИЯМ ПО КУРСУ ВЫСШЕЙ МАТЕМАТИКИ «ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ РЯДЫ ДВОЙНЫЕ ИНТЕГРАЛЫ» ЧАСТЬ Ш ТЕМА РЯДЫ Оглавление Ряды Числовые ряды Сходимость и расходимость

Подробнее

Ряды. Числовые ряды.

Ряды. Числовые ряды. Ряды Числовые ряды Общие понятия Опр Если каждому натуральному числу ставится в соответствие по определенному закону некоторое число, то множество занумерованных чисел, называется числовой последовательностью,

Подробнее

Определение 1. Степенным рядом называется функциональный ряд вида

Определение 1. Степенным рядом называется функциональный ряд вида . Радиус сходимости Определение. Степенным рядом называется функциональный ряд вида c 0 + c (t a) + c 2 (t a) 2 + + c (t a) + = c (t a), () где c 0, c, c 2,..., c,... C называются коэффициентами степенного

Подробнее

Лекция. Преобразование Фурье

Лекция. Преобразование Фурье С А Лавренченко wwwwrckoru Лекция Преобразование Фурье Понятие интегрального преобразования Метод интегральных преобразований один из мощных методов математической физики является мощным средством решения

Подробнее

Московский государственный технический университет им. Н. Э. Баумана.

Московский государственный технический университет им. Н. Э. Баумана. Московский государственный технический университет им. Н. Э. Баумана. Курсовая работа по дисциплине: «ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ И ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ» по теме: «РЕШЕНИЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ 2-ГО РОДА

Подробнее

ОБ ОДНОМ КРИТЕРИИ ЯДЕРНОСТИ ЛИНЕЙНЫХ ОПЕРАТОРОВ В. Б. Коротков

ОБ ОДНОМ КРИТЕРИИ ЯДЕРНОСТИ ЛИНЕЙНЫХ ОПЕРАТОРОВ В. Б. Коротков Сибирский математический журнал Сентябрь октябрь, 2005. Том 46, 5 УДК 517.983 ОБ ОДНОМ КРИТЕРИИ ЯДЕРНОСТИ ЛИНЕЙНЫХ ОПЕРАТОРОВ В. Б. Коротков Аннотация: Доказывается критерий ядерности линейного оператора

Подробнее

Лекция Теорема существования и единственности решения стационарного уравнения Навье Стокса.

Лекция Теорема существования и единственности решения стационарного уравнения Навье Стокса. Лекция 9-10. Теорема существования и единственности решения стационарного уравнения Навье Стокса. Мы докажем теорему существования и единственности обобщенного решения системы уравнений Навье Стокса с

Подробнее

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора.

ЛЕКЦИЯ N 27. Степенные ряды и ряды Тейлора. ЛЕКЦИЯ N 7. Степенные ряды и ряды Тейлора..Степенные ряды..... Ряд Тейлора.... 4.Разложение некоторых элементарных функций в ряды Тейлора и Маклорена.... 5 4.Применение степенных рядов.... 7.Степенные

Подробнее

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2)

1. Краевая задача для линейного дифференциального уравнения второго порядка. (2) Глава 4 Краевые задачи Лекция 8 Краевыми задачами для ОДУ называются задачи в которых дополнительные условия ставятся в нескольких точках Далее мы рассмотрим двухточечные краевые задачи для линейных ОДУ

Подробнее

где - функции данного класса, а - коэффициенты из R или C,

где - функции данного класса, а - коэффициенты из R или C, Ряды Фурье Ортогональные системы функций С точки зрения алгебры равенство где - функции данного класса а - коэффициенты из R или C попросту означает что вектор является линейной комбинацией векторов В

Подробнее

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия.

Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. 1. Основные понятия. Дифференциальные уравнения высшего порядка. Конев В.В. Наброски лекций. Содержание 1. Основные понятия 1 2. Уравнения, допускающие понижение порядка 2 3. Линейные дифференциальные уравнения высшего порядка

Подробнее

Системы дифференциальных уравнений

Системы дифференциальных уравнений Системы дифференциальных уравнений Введение Также как и обыкновенные дифференциальные уравнения системы дифференциальных уравнений применяются для описания многих процессов реальной действительности В

Подробнее

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c)

, обращающая уравнение в тождество. Определение. Общим решением дифференциального уравнения первого порядка называется функция y ( x, c) II ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Дифференциальные уравнения первого порядка Определение Соотношения, в которых неизвестные переменные и их функции находятся под знаком производной или дифференциала, называются

Подробнее

Первые интегралы систем ОДУ

Первые интегралы систем ОДУ Глава IV. Первые интегралы систем ОДУ 1. Первые интегралы автономных систем обыкновенных дифференциальных уравнений В этом параграфе будем рассматривать автономные системы вида f x = f 1 x,, f n x C 1

Подробнее

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА.

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ, ЗАВИСЯЩИЕ ОТ ПАРАМЕТРА. Лекция 7. Несобственные интегралы, зависящие от параметра. Равномерная сходимость несобственного интеграла -го рода. Критерий Коши. Признаки

Подробнее

1 Принцип сжимающих отображений 2

1 Принцип сжимающих отображений 2 Содержание 1 Принцип сжимающих отображений Применения принципа сжимающих отображений для решения линейных интегральных уравнений -го рода 3.1 Уравнения Фредгольма.................................. 3. Уравнения

Подробнее

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка

3. СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ. 1. Приведение к одному уравнению n -го порядка СИСТЕМЫ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ Приведение к одному уравнению -го порядка С практической точки зрения очень важны линейные системы с постоянными коэффициентами

Подробнее

Программа курса ТЕОРИЯ ФУНКЦИЙ И ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ. Факультет информационных технологий, II курс, II семестр

Программа курса ТЕОРИЯ ФУНКЦИЙ И ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ. Факультет информационных технологий, II курс, II семестр Программа курса ТЕОРИЯ ФУНКЦИЙ И ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ Факультет информационных технологий, II курс, II семестр. Организационно-методический раздел.. Учебный курс «Теория функций и функциональный анализ»

Подробнее

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11

2 модуль Тема 13 Функциональные последовательности и ряды. Свойства равномерной сходимости последовательностей и рядов. Степенные ряды Лекция 11 модуль Тема Функциональные последовательности и ряды Свойства равномерной сходимости последовательностей и рядов Степенные ряды Лекция Определения функциональных последовательностей и рядов Равномерно

Подробнее

1. Числовые ряды ТЕОРИЯ РЯДОВ

1. Числовые ряды ТЕОРИЯ РЯДОВ ТЕОРИЯ РЯДОВ Теория рядов является важнейшей составной частью математического анализа и находит как теоретические, так и многочисленные практические приложения. Различают ряды числовые и функциональные.

Подробнее

РЯДЫ. Методические указания

РЯДЫ. Методические указания Металлургический факультет Кафедра высшей математики РЯДЫ Методические указания Новокузнецк 5 Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования

Подробнее

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ

ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА СО СЛУЧАЙНЫМИ КОЭФФИЦИЕНТАМИ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ, 214, том 5, 6, с. 726 744 ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ УДК 517.925.52+519.218 ПЕРИОДИЧЕСКИЕ В СРЕДНЕМ РЕШЕНИЯ ЛИНЕЙНОГО НЕОДНОРОДНОГО ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ

Подробнее

О представлении поля в волноводе в виде суммы полей ТЕ и ТМ.

О представлении поля в волноводе в виде суммы полей ТЕ и ТМ. Журнал технической физики, том XVIII, вып 7, 1948 А Н Тихонов, А А Самарский О представлении поля в волноводе в виде суммы полей ТЕ и ТМ Несмотря на то, что утверждение о возможности разложения произвольного

Подробнее

Решение типовых задач к разделу «Матрицы»

Решение типовых задач к разделу «Матрицы» Решение типовых задач к разделу «Матрицы» Вычислить сумму матриц и Р е ш е н и е 8 8 9 + + + + Вычислить произведение матрицы на число Р е ш е н и е Вычислить произведение матриц и Р е ш е н и е 8 Вычислить

Подробнее

Глава 3. Линейные дифференциальные уравнения n-го порядка

Глава 3. Линейные дифференциальные уравнения n-го порядка Глава 3 Линейные дифференциальные уравнения -го порядка Лекция 6 В этой главе рассматриваются дифференциальные уравнения вида ( ) Ly y a y a y f + + + = () при условии что все функции a = а также f ( )

Подробнее

В. Т. Волков, А. Г. Ягола. Интегральные уравнения Вариационное исчисление

В. Т. Волков, А. Г. Ягола. Интегральные уравнения Вариационное исчисление Московский государственный университет им М В Ломоносова Физический факультет В Т Волков, А Г Ягола Интегральные уравнения Вариационное исчисление Методы решения задач Учебное пособие для студентов курса

Подробнее

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет»

Тема13. «Ряды» Министерство образования Республики Беларусь. УО «Витебский государственный технологический университет» Министерство образования Республики Беларусь УО «Витебский государственный технологический университет» Тема. «Ряды» Кафедра теоретической и прикладной математики. разработана доц. Е.Б. Дуниной . Основные

Подробнее

ЛЕКЦИЯ 11А Гильбертовы пространства. 0. Необходимое условие «евклидовости». Простейшее свойство скалярного произведения

ЛЕКЦИЯ 11А Гильбертовы пространства. 0. Необходимое условие «евклидовости». Простейшее свойство скалярного произведения ЛЕКЦИЯ А Гильбертовы пространства. Необходимое условие «евклидовости». Простейшее свойство скалярного произведения Как следует из лекционного материала, необходимым (а также и достаточным см. Колмогорова,

Подробнее

Глава 4. Системы линейных уравнений

Глава 4. Системы линейных уравнений Глава 4 Системы линейных уравнений Лекция 7 Общие свойства Определение Нормальной системой (НС) линейных дифференциальных уравнений называется система вида x A () x + F () () где A( ) квадратная матрица

Подробнее

Глава II. Интегральные и операторные уравнения

Глава II. Интегральные и операторные уравнения Глава II. Интегральные и операторные уравнения 1. Понятие метрического пространства. Принцип сжимающих отображений Важнейшее понятие предела в математике опирается на понятие «близости» точек, т.е. на

Подробнее

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы

Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы 1 Функции непрерывные на отрезке (теоремы Больцано-Коши, Вейерштрасса, Кантора). Функционалы непрерывные на компакте. 1.1 Теорема о промежуточных значениях Теорема 1. (Больцано-Коши) Пусть функция f непрерывна на отрезке [a, b], причем f(a) f(b). Тогда для любого числа C, заключенного между f(a) и f(b) найдется точка γ (a, b), что f(γ) = C. Доказательство. Пусть, например, f(a) = A < B = f(b) и A < C < B. Функция g(x) = f(x) C, очевидно, непрерывна на [a, b]. Кроме того, g(a) < 0, g(b) > 0. Для доказательства теоремы достаточно показать, что существует такая точка γ (a, b), что g(γ) = 0. Разделим отрезок [a, b] точкой x 0 на два равных по длине отрезка, тогда либо g(x 0 ) = 0 и, значит, искомая точка γ = x 0 найдена, либо g(x 0 ) 0 и тогда на концах одного из полученных промежутков функция g принимает значения разных знаков, точнее, на левом конце значение меньше нуля, на правом - больше. Обозначим этот отрезок [a 1, b 1 ] и разделим его снова на два равных по длине отрезка и т.д. В результате, либо через конечное число шагов придем к искомой точке γ, в которой g(γ) = 0, либо получим последовательность вложенных отрезков [a n, b n ] по длине стремящихся к нулю и таких, что g(a n ) < 0 < g(b n ) (1) Пусть γ - общая точка всех отрезков [a n, b n ], n = 1, 2,... Тогда γ = lim a n = lim b n. Поэтому, в силу непрерывности функции g Из (1) находим, что g(γ) = lim g(a n ) = lim g(b n ) (2) Из (2) и (3) следует, что g(γ) = 0. lim g(a n ) 0 lim g(b n ) (3) Следствие 1. Если функция непрерывна на отрезке и на его концах принимает значения разных знаков, то на этом отрезке есть хотя бы одна точка, в которой функция обращается в нуль. 1.2 Первая и вторая теоремы Вейерштрасса Будем говорить, что функция f, определенная на множестве E достигает на нем своей верхней (нижней) границы β = sup E f (α = inf E f), если существует такая точка x 0 E, что f(x 0 ) = β (f(x 0 ) = α). 1

Подробнее

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ

ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Глава ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ Лекция 9 Введение В этой главе мы будем рассматривать задачи отыскания экстремумов (максимумов или минимумов) функционалов Сразу отметим, что такие задачи относятся к числу

Подробнее

Функциональные ряды. Лекции 7-8

Функциональные ряды. Лекции 7-8 Функциональные ряды Лекции 7-8 1 Область сходимости 1 Ряд вида u ( ) u ( ) u ( ) u ( ), 1 2 u ( ) где функции определены на некотором промежутке, называется функциональным рядом. Множество всех точек,

Подробнее

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения.

2. Дифференциальные уравнения первого порядка, разрешенные относительно производной Теорема существования и единственности решения. Дифференциальные уравнения первого порядка разрешенные относительно производной Теорема существования и единственности решения В общем случае дифференциальное уравнение первого порядка имеет вид F ( )

Подробнее

Лекция 10 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ. 1. Банаховы алгебры

Лекция 10 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ. 1. Банаховы алгебры Лекция 0 БАНАХОВЫ ПРОСТРАНСТВА. СПЕКТРАЛЬНАЯ ТЕОРИЯ В этой лекции мы изучим банаховы алгебры и рассмотрим спектральную теорию операторов, действующих в банаховом пространстве, которое в данной лекции всюду

Подробнее

Дискретный аналог формулы суммирования Эйлера

Дискретный аналог формулы суммирования Эйлера Дискретный аналог формулы суммирования Эйлера Устинов А В УДК 51117 В работе доказывается дискретный аналог формулы суммирования Эйлера Отличие от классического варианта формулы Эйлера заключается в том,

Подробнее

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование»

Московский государственный технический университет имени Н.Э. Баумана. Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ ÌÃÒÓ Московский государственный технический университет имени Н.Э. Баумана Факультет «Фундаментальные науки» Кафедра «Математическое моделирование» À.Í. Êàíàòíèêîâ, À.Ï. Êðèùåíêî

Подробнее

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ. В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ В.М. Любимов, Е.А. Жукова, В.А. Ухова, Ю.А. Шуринов М А Т Е М А Т И К А Р Я Д Ы ПОСОБИЕ по изучению дисциплины и контрольные задания

Подробнее

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье.

Лекция 14. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда Фурье. Лекция 4. Равенство Парсеваля. Минимальное свойство коэффициентов разложения. Комплексная форма ряда..4. Равенство Парсеваля Пусть система вещественных функций g( ), g( ),..., g ( ),... ортогональна и

Подробнее

СИСТЕМЫ ОРТОГОНАЛЬНЫХ МНОГОЧЛЕНОВ И ИХ ПРИЛОЖЕНИЯ. А. Многочлены Чебышева - Эрмита

СИСТЕМЫ ОРТОГОНАЛЬНЫХ МНОГОЧЛЕНОВ И ИХ ПРИЛОЖЕНИЯ. А. Многочлены Чебышева - Эрмита . СИСТЕМЫ ОРТОГОНАЛЬНЫХ МНОГОЧЛЕНОВ И ИХ ПРИЛОЖЕНИЯ А. Многочлены Чебышева - Эрмита Вводные замечания При решении многих важных задач математической физики, квантовой механики, теоретической физики приходится

Подробнее

удовлетворяются условия теоремы суще6ствования и единственности.

удовлетворяются условия теоремы суще6ствования и единственности. Лекция 9 Линеаризация диффе6ренциальных уравнений Линейные дифференциальные уравнения высших порядков Однородные уравнения свойства их решений Свойства решений неоднородных уравнений Определение 9 Линейным

Подробнее

n =1,2, K. Ряд называют

n =1,2, K. Ряд называют 2. Признаки сходимости знакоположительных рядов Ряд u называют знакоположительным, если все его члены неотрицательны, т.е. если u 0 для любого,2, K. Ряд называют знакоотрицательным, если все его члены

Подробнее

Теория устойчивости разностных схем

Теория устойчивости разностных схем Теория устойчивости разностных схем 1 Операторно-разностные схемы 1.1 Введение Пусть B банахово (то есть полное нормированное) пространство функций, заданных в некоторой области G R m, и пусть u(t) абстрактная

Подробнее

Теория устойчивости разностных схем

Теория устойчивости разностных схем Теория устойчивости разностных схем 1 Устойчивость решения задачи Коши по начальным данным и правой части Пусть B банахово (то есть полное нормированное) пространство функций, заданных в некоторой области

Подробнее

Аналитические решения экстремальных задач для уравнения Лапласа

Аналитические решения экстремальных задач для уравнения Лапласа Дальневосточный математический журнал. 214. Том 14. 2. C. 231 241 УДК 517.95 MSC21 35J5 c A. A. Илларионов, Л. В. Илларионова 1 Аналитические решения экстремальных задач для уравнения Лапласа Представлены

Подробнее

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г.

Дифференциальные уравнения. Тема: Уравнения n-го порядка, допускающие понижение порядка. Лектор Янущик О.В г. Дифференциальные уравнения Тема: Уравнения n-го порядка, допускающие понижение порядка Лектор Янущик О.В. 2012 г. Глава II. Дифференциальные уравнения высших порядков 12. Основные понятия и определения

Подробнее

Краевые задачи для ОДУ второго порядка

Краевые задачи для ОДУ второго порядка Глава I. Краевые задачи для ОДУ второго порядка 1. Основные понятия I.1.1. Краевые задачи Наряду с задачей Коши для ОДУ, подробно изученной в курсе обыкновенных дифференциальных уравнений, имеет смысл

Подробнее

Глава 7. Понятие об асимптотических методах

Глава 7. Понятие об асимптотических методах Глава 7 Понятие об асимптотических методах Лекция Регулярно и сингулярно возмущенные задачи При построении математических моделей физических объектов, характеризующихся различными масштабами по пространству,

Подробнее

1.Дифференциальные уравнения высших порядков, общие понятия.

1.Дифференциальные уравнения высших порядков, общие понятия. ЛЕКЦИЯ N Дифференциальные уравнения высших порядков, методы решения Задача Коши Линейные дифференциальные уравнения высших порядков Однородные линейные уравнения Дифференциальные уравнения высших порядков,

Подробнее

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы

СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ) Основные понятия. Нормальные системы СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ (СДУ Основные понятия Нормальные Системой называется совокупность в каждое из которых входят независимая переменная искомые функции и их производные Всегда предполагается

Подробнее

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx.

b lim b a f x dx, то он называется несобственным f x dx, при этом говорят, что интеграл f x dx. Тема курса лекций: НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ. Лекция 5. Понятие несобственного интеграла -го рода, его вычисление. Критерий сходимости. Интегралы от положительных функций. Признаки сравнения, абсолютная

Подробнее

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член

... Числа, a,... называются членами ряда (его слагаемыми), выражение a - общий член Лекция Числовые ряды Признаки сходимости Числовые ряды Признаки сходимости Бесконечное выражение числовой последовательности + + + +, составленное из членов бесконечной, называется числовым рядом Числа,,

Подробнее

Семинар Лекция 12 ГИЛЬБЕРТОВЫ ПРОСТРАНСТВА. ОБСУЖДЕНИЕ. 1. Необходимое условие «евклидовости» 2. Поляризационное тождество

Семинар Лекция 12 ГИЛЬБЕРТОВЫ ПРОСТРАНСТВА. ОБСУЖДЕНИЕ. 1. Необходимое условие «евклидовости» 2. Поляризационное тождество Семинар Лекция 12 ГИЛЬБЕРТОВЫ ПРОСТРАНСТВА. ОБСУЖДЕНИЕ 1. Необходимое условие «евклидовости» Как следует из материала лекции 11, необходимым (а также и достаточным см. [?]) условием возможности задать

Подробнее

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница

Ряды Конспект лекций и практикум для студентов экономических специальностей Составил В. С. Мастяница БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Э К О Н О М И Ч Е С К И Й Ф А К У Л Ь Т Е Т КАФЕДРА ЭКОНОМИЧЕСКОЙ ИНФОРМАТИКИ И МАТЕМАТИЧЕСКОЙ ЭКОНОМИКИ Ряды Конспект лекций и практикум для студентов экономических

Подробнее

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей.

Глава 4. Основные теоремы дифференциального исчисления. Раскрытие неопределенностей. Глава 4 Основные теоремы дифференциального исчисления Раскрытие неопределенностей Основные теоремы дифференциального исчисления Теорема Ферма (Пьер Ферма (6-665) французский математик) Если функция y f

Подробнее

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1

} k=1. ОПРЕДЕЛЕНИЕ Рядом называется выражение вида. a k. k=1. k=1 Глава 3. Числовые ряды 3.. Занятие 0 3... Сумма ряда Рассмотрим числовую последовательность {a k } k=. ОПРЕДЕЛЕНИЕ 3... Рядом называется выражение вида a + a 2 +...+ a k +...= a k. k= Величина a k называется

Подробнее

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка

Уравнения с частными производными первого порядка и классификация линейных уравнений второго порядка Министерство образования Российской Федерации МАТИ - РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им К Э ЦИОЛКОВСКОГО Кафедра Высшая математика В В Горбацевич К Ю Осипенко Уравнения с частными

Подробнее

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий.

3. Непрерывная зависимость решения задачи Коши от параметров и начальных условий. Лекция 4 3 Непрерывная зависимость решения задачи Коши от параметров и начальных условий Постановка задачи Простейшим примером параметра, от которого зависит решение задачи Коши = f ( xy, ), yx ( ) = y

Подробнее

Числовые ряды. Лекции 6-7

Числовые ряды. Лекции 6-7 Числовые ряды Лекции 6-7 Понятие числового ряда Аналитическое выражение вида, a a2 a a a, a, a, где 2 последовательность чисел членов ряда, выражение a - называется общим членом ряда. Последовательность

Подробнее

Функциональные ряды Функциональный ряд, его сумма и область сходимости

Функциональные ряды Функциональный ряд, его сумма и область сходимости Функциональные ряды Функциональный ряд его сумма и область функциональног о Пусть в области Δ вещественных или комплексных чисел дана последовательность функций k ( k 1 Функциональным рядом называется

Подробнее